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Abstract. Quantum stochastic (exotic) formulae were obtained for: Propagator for
nonrelativistic massive spinless particle in a potential (Section A), scalar, neutral
massive field with a self-interaction (Section B), free photon field in the vacuum
(Section C). These results, in turn, lead to the quantum stochastic (exotic)
formulae for corresponding generating functionals Z(J).

INTRODUCTION

It became clear over time that a natural place of the Feynman integrals, [1-4],
is provided by the exotic, or quantum stochastic processes (in terms of the
probability amplitudes rather than in probabilities themselves). Contributions by
mathematicians notably by M. Kac [5] and others stay on a solid ground of classic
probability theory able to grasp statistical aspects of the quantum theory, only.
Review of attempts to justify rigorously the Feynman integrals can be found in, [6].
A novel, effective approach to the problem has been proposed by E. Nelson, [7],
using the LTK product formula, [8].The same approach but in a more pedestrian
form suitable for the physicist audiences was given by L.S. Schulman, [9], who
used the Euclidean time and a standard theory of stochastic processes. We give
in Section A an exotic and improved version of his work using Minkowski’s time
by completing the proof of the basic formula for the propagator (by the mathematical
induction and use of independence of quantum random variables), and by extending
the scheme to scalar quantum field and also to the pure electrodynamics. The later
case deals with Riemann-Silberstein vector formulation of the theory, [10]. The LTK
product formula results in an explicit formulae for the quantum (exotic) stochastic
processes, propagators, as well as in quantum (exotic) stochastic formulae for the
generating functionals Z(J), [11].

xPresent address: 47 Country View Lane, Middle Island, NY 11953, USA
E-mail: jgarchin@optonline.net




A. MASSIVE, NON-RELATIVISTIC PARTICLE ON LINE IN A POTENTIAL 7(x)

The Hamiltonian, in the coordinate representation, is

H=-5-(EP+7), G=1 (1

2m
The Schrédinger equation with an initial condition at ¢ = 0 reads
iy, =Hy, 120, w,_,=yo-given state-vector )

Hence, for ¢ positive
v = Uy yo = exp(- itH)yo, (3)

In the coordinate representation, we get for the wave function
v = (v = WUdyo) = [, elUb)Xolvo) = [, vKGits ,0we() (4

Due to the stationarity of the potential, the propagator K depends on times via their
difference, only

K(x,t; »,0) = KUW) = Kx,t"; p,t),  t=t"-£20 (5)
Using the LTK product formula, we get
exp[t(4 + B)] = lim,.o[exp(ed) exp(eB)]” = lim.[exp(eB) exp(ed)]", (6)
e =+ =¢gn)

where, in our case
_ i (d s
4= 2:71 ( dx )25 = —iV(x) (7)

we get for the evolution operator U, in the coordinate representation

U = lim.o{exp[- ie¥(x)] explie5-(<L)*1}" (8)

The second-order derivative in the exponent can be reduced to the first-order using
the well known Fresnel integral formula [13]




(55)"2 [ dyexp(i4y? £ iby) = Elexp(tibp)] = exp(- %), a)0 (9

Corresponding formula for negative a follows from here by the complex conjugation.
Assuming

a=m, b=iffd (10)
we obtain the following parametric representation

exp[is# d—‘i)z] =

= (£-)1”2 -[u& dyexp(iy? + [ey-L) = E[exp(JEp-L)] (11)

Here y stands for a quantum random variable that is distributed with the probability
amplitude, denoted by the hat, rather than with a probability itself

Ply <p{y+dy) = (L) P exp(iZy®)dy (12)

Generally, as it is well known, |P(4)]> = P(4) where 4 is some event and P(4) is
its probability. The coefficient in front of the integral in (11) ensures the conventional
normalization

E)=1 (13)

Strictly speaking one should have placed the hat on top of £ in the formula (11) but
the very presence of § remainds us that we are in the quantum domain. Anyway, we
omit the hats whenever it does not leads to a confusion.

It will be convenient for what follows to write the formula (8) as a product of equal
factors containing independent and identically distributed random variables ;. This
in turn allows us to write the product of expected values as a single expectation value
of the factors, viz.,

Ur = limy-e(E{exp[- iV(x)] exp(ﬁﬁ,,%)}. - E{exp[- iV(x)] exp(Jey1)}) =
= limye0 E{exp[— ieV(x)] exp(yE Jn-5). . .expl- ieV(x)] exp(J& §14)} (14)
The ordering of factors is immaterial as it amounts to a different numbering of the
variables yx which can be arbitrary. In the process we have inserted factors with

V(x) under the expectation signs which are benign operations. The remaining task
consists of transporting the derivatives to the right using the well known identity

exp(u-4k ) explF(x)] = explFx +u)] exp(uL) (15)




In our case
F(x) = — ieV(x)

ur= Jeh, k=12,....n (16)
Consider first the simplest cases with n = 1,2,3 and before the averaging
exp[F(x)] exp(us L ) exp[F(x)] exp(uz-) exp[F(x)] exp(u1 ) =
= exp[F(x)] exp(us-4) exp[F(x) + F(x + u2)] exp(u1 + u2) 4 =
= exp[F(x)] + F(x +u3) + F(x + uz + u3)] exp(uy + uz + m)% 17)
The identity is valid for an arbitrary coefficient . Missing of the u's with lower numbers
in the arguments of F suggests that we are dealing with differences of two summs.
This suggests the following conjecture, [9]
Uy = lim . Edexpl—ie 30 _ V(x + bi — ba)] exp(= b)) (18)
where we have denoted

bi=—EX 5, k=012..n, (h=0) (19)

This formula may be proven by the mathematical induction with respect to ». Namely,
assuming its validity for some » and an arbitrary costant ¢ we consider the next product
of the n + 1 factors which can be presented a product of two averages: the new factor
followed by the expectation value of the previous » factors with &(n) replaced by e(n + 1).
The factorization results from the independence of the new random variable y,

and all the other variables with smaller numbers entering the second average. Second
average may be written in the form (18) by the assumption. The average on the left is

E{expl- is(n+ 1)V()] exp(u,, .1 4)}

with the new quantum (exotic) random variable, p, .,

Uy = Vg(n+ 1)))n+1

that is independent from all other with smaller subindicies from the second average.
This again allows to write the product of two expectation values as a single expectation
of multipliers. Applying now the formula (15) we get argument x shifted by the «, ;.
The same is true for new coefficient at % under the exponential sign. However, the




emerging combination, according to (19) equals

A

Up 41 b" == bn+1

which effectively increases the upper limit of summation to » + 1, and replaces the
coefficient in front of the derivative to required value of —b,,,. The &(n) was initially
replaced by &(n + 1). Thus the formula (17) holds for » + 1 factors. Finally, the formula

(18) holds for n = 1 as it follows from (15), by taking its expectation value E. This
proves the formula (18) for an arbitrary ».

We introduce now an interpolating function b(s) = b, coinciding with by fors = ke
blke) = by  k=10,1,2,...,n (20)

ho=0, bne)=b,

i

We find for the averages of b's using (9) and the fact that the random variables y,
are mutually independent and identically distributed

Eby) = JE X _ EWp) = JJEEG) = j & ($)" [ dyexp(igy?) y =
=jJELexp(—iL)yo=0 Jj=0,12...n (21)
Ebibi) = €Y Sk E@ppg) = 60 EGR) = e NKEGD = (i AR 5 (22)
This comes about because only terms with g = p contribute due to the independence
of the random variables and vanishing of their averages. Further, their identical
distributions leads to equal expectations of their squares.The above properties are
characteristic for the quantum (exotic) Brownian motion variables. In the continuum

limit when & - 0 we end up with the quantum (exotic) Brownian motion process. The
last quantum (exotic) expectation in (22) is found in a similar way

EGR) = ()2 [ dyexp(i2y?)y? = = (Z5)2exp(= i )p0 = % (23)
which may be written in more clear, physical way
Ab, = (E[(AD)2]DY2 = AD,  At=¢ (24)
The quantum (exotic) Brownian motion possesses continuous trajectories that are

non-differentiable.
Acting with U, on the initial wave function yo(x), we obtain




W(x,2) = limyoe E{exp[— ie 3y _, Vx+ by - b)lwo(x—by))y =
= E{exp[-i | ; dsV(x + bs — b)ywo(x = b))} =
— [, dvE{expl- i | dsV(y+ b)] (x =y = b)}wo(y) (25)
According to the formula (4), we get for the propagator
K(x,t'5 ,0) = E{exp[—i [ dsV(y+b)] 3G~y = b0} = (26)
= lityow E{expl[— ie 3 _ VO +bi)] 8(x =y — bi)} (27)
= Ty [ Ay [ dva( )" explit 3oy vE —ie i, Vv = /& 20, 70)] %
x 8(x—y+ JE ) _v1) (28)

The formula (26) is the quantum counterpart of the Feynman-Kac fomula.To elucidate
this point, we change the integration variables

Zo =y
=y-Jey y ===z -20)
z=y—Je(yi +y2) y2 = -7 (2= 21)
........................................................ (29)
=y = JEW1+y2+..tyn) Yn = =7 (@n = 2p-1)
The modulus of the Jacobian is
=) = (f5)™ (30)

which allows to rewrite the propagator, for ¢ positive, as follows

K(x,t; y.0) =

= liMme f dz‘ " ‘;Z' exp{i[Ze) ,_ [(zk — z5-1)2672 = V(z)]]}6(x — 24) (31




where we denoted
M, = (Z2)12 5 0 whene -0 (32)

Let z(s) be an interpolating function such that

z(ke) =zx=y+br k=0,1,2,...,n (33)

then, in the limit of a continuous time we get from (31)

25 . 1! .
K(x,t; y,0) = H;=OIR ‘140 exp[zj0 dsL(zs,zs)]ko:y,z,:x (34)

which is customerily written as a single Feynman integral over continuous paths
connecting end—points y and x, and where the phase is determined by the Lagrangian

L(z,2) = "7’(2‘)2 - W(2) (35)

Notice that the exotic stochastic formula (26) is free of the embarrassing My = 0
in the denominators. Tthe path’s continuity is guaranteed for massive particles, only.
Massless photon’s path has cadlag property, [11]. Changing the variable from s to u

s =u+t?2, -2 <u<t2, Zs = Zy (36)

we get for K omittig tildas over z since both set of functions are equally good
variables of the functional integration, and renaming back u - s we get similar
foemula for X with just the boundary values changed

/ 2 ) . ,
K(x,t; ,0) = IH;i_ﬂz dmexp[zf_ﬂ2 AsL(zs,2)] iy =y, 22y = x = K(x,1/2 5 y,— t/2) (37)

THE Z(J) GENERATING FUNCTIONAL

Using (26) we consider now the conditional amplitude
K(0,00 3 0,— 0) = lit oo K(0,#/2 5 0, #/2) = lim 0 E{exp[— 1 | ”f/z dsv(b,, )] 8(b/}} (38)
and a similar amplitude under presence of an external non-random source J

. N /2 o) ~ ~
Ky(0,00 5 0,— c0) = lime0 E{exp[- l].’_,,z ds(V(bsy i) = Iy by ] 60 =




=TI [, e expdi [ dsTL(ze, 26) + 2]} o) = sy =0 (39)
The ratio of the two amplitudes is a familiar generating functional

_ K000~ ) _
2y = K=o - g) =1 (40)

which may be expressed using Feynman integrals with M, factors removed or by
the quantum (exotic) stochastic formulae using (38), (39).

APPLICATION

We would like to calculate the free propagator corresponding to V' =0
Ko(x,t3 1,0) = E{8(x—y— b))} = limpw E{8(x~y—ba)} (¢ = ne) (41)
We first use the integral representation of the § —function
Ko(x,1 5 $,0) = limyo 5 [ dAE{expli(x —y - b)) (42)
Using the definition of 5, given in (19) we get
Ko(x,t5 3,0) = o= qu dAe™ D [im .00 E{explid & 2, Jil} (43)

where ; are independent and identically distributed quantum (exotic) random
variables. Hence the average is a product of individual averages that are equal
to one another. As a result, we get

Ko(x,t 5 3,0) = 5= [ dAe™ e limyo E{exp(id/2 )91)}" (44)
Using the definition (9) of the quantum (exotic) average, we get
Ko(,t3 ,0) = & [ dAe™ D lim,o{(35) "2 [ dy1 exp(igy} + id ey} (45)
Performing Fresnel integral using (9) again, we get forz) 0
Ko(,t5 ,0) = 5= [ dhexp[— iz A% +i(x = 1Al = (52) P explif; (x=3)*]  (46)

2rit 2t

the last step entailed another Fresnel integral (in its complex conjugated form). The




limit operation is rather trivial since it amounts to a replacement of ne with ¢ which is
fixed and the dependence on » disappears. In some other system of units when 7
enters the calculations explicitely we end up with the same formula with ¢ replaced
by #t, on the right hand side of (46).

B. MASSIVE, SCALAR AND NEUTRAL FIELD

We are interested in a dynamics that corresponds to the Lagrangian density
L= 40,000~ L~ V(p), m*0 (1)
where ¢(x) is a field operator canonically cojugated to a momentum operator

() = 5 = (9 @

They do satisfy the canonical, equal-time, commutation relations. In the

coordinate representation the ¢(x) acts as a multiplication operator while
the canonical momentum is represented by the functional derivative

T(x) = — i5y &)
The Hamiltonian corresponding to L is given by the formula
H= f,Rg dx{H[I(x) + 23, _, [0:p(0)]? + m2¢2 ()] + V$(x)]} =
= -3 (352 + (9) (4)

where

7(9) = V(p) + L+ 300 (0h)? + Lmg? (5)

Also. we simultaneusly omit the integration sign and the argument x.
Examples

$? =, dxd*(x)

@) = [, dxVpL et ©)




This increases transparency and facilitates the treatement of the second-
quantized case in a way that is similar to the previously considered first—
quantized problem. The evolution operator in this notation is given by

U = exp(- itH) = exp{ifl 4 (35)* = V()]
According to the LTK product formula it may be written as the limit
Ur = limuo(exp[- ieV(9)] expl&-(5)° 1", =+
Using the following parametric representation
¥ [ TL dn(x)exp (£? +&n) = E{exp(¢)} = exp(£&7)
where the normalization factor N ensures that
E{1} =1

we get by substituting & = /¢ %

xpl (3507 = 3 [TL dneexp(n? + JE ) = Edexp(/ 145}

The functional integral over 5(x) is calculated by shifting n - n + ¢ and
and adjusting the fixed function ¢ so that the term linear in n vanishes.
The hat over 5 in the formulae (9) and (11) signifies the fact that it is

a quantum (exotic) random field distributed with the probability amplitude

+exp(Zn) ] 1, dn(x)

Upon substitution of (11) into the formula (8) we get for the evolution
operator

Uy = limpow [T, _, Eexpl[— i s7($)] exp(J& 1ud5)}

We started labelling the random fields although they are assumed
independent and identically distributed which leads to equal averages.
An order of equal multipliers is immaterial and amounts to some re-
labelling of the quantum random fields. Because of their independence
we may write the product of average values as a single average of the
multipliers

M

(8)

)

(10)

(11)

(12)

(13)

10




Uy = limyo E{[ T, _, expl— i7($)] exp( V2 fisZ)}
For tranporting the derivatives to the right we use the identity
exp(u-5) exp[F(#] = exp[F(¢ +u)] exp(u-3)

with the identyfications

F(§) = - igV(9)

ur = J€ i, k=1,2,...,n
In analogy to (418), we obtain for U,

U = limye E{expl~ ie 30, _, V(§ + B = Bi)] exp(- B, 250}
where we denoted the quantum (exotic) random fields
Bix) =~ /e 5 ux),  k=0,1,2,....,n
Bo(x) =0

Using (9) we may find the quantum averages

EBy(x)] =0, k=0,1,2,....,n

E{Bi(0By)} =X ESOn(y)y =iej AkS(x—y)

We also consider an interpolating quantum (exotic) random field coinciding

with By at s = ke
B(x,ke) = Bi(x), k=1,2,...,n

Corresponding relation to (21), in the limit of ¢ - 0 reads
E{]AS(x,r)B(y,s)} =irAsdé(x—-y), 0<rs<t
r A s = smaller of the numbers 7, s

It characterizes the quantum (exotic) Brownian random field.

Acting with the evolution operator on initial wave functional y(¢,0),
which may be inserted under the E —sign, we obtain the wave functional
at later time ¢ 2 0

(14)

(15)

(16)

17)

(18)

(19)

(20)

(21)

(22)

(23)

11




w($,0) = limow E{exp[- ie X _ V(¢ +Be— B)lw(¢ - B}y =
= [T1, d¢' (%) limy E<exp[— ie 3 _, V(¢' + B 66 —¢' - B} (9',0) =

= [T1,d¢' ) K(g,t 5 ¢, 00p(¢',0)

where we have used the propagator fors =z 0
K9t ¢,0) = Edexpl~ [ dsV(¢' + B)] 84 - ¢' - B}

which is a limit form of the prelimit expression given above. Using (9)
we may rewrite the prelimit formula as follows

K((/J):t; (]5,,0) = lim 0 % .[Hx dnl(x) N IH dnn(X) eXP(Zk 172 nk) x

x exp[— iy _ V(¢' — J& T )] 6 — o'+ J& 2;_ m)

We change the variables of integration as follows

$o = ¢’

¢r=¢ - Jem =M = 7= (f1— o)
¢2 = ¢' — Je(m +n2) —n2=f(¢2—¢1)
¢" = ¢/ - x/g(nl + 12 +---+7]n) —Mn = f(lﬁn—%—l)

Modulus of the Jacobian is

CIGTI ) -n
Ty 31,0 Pn) |=(E)

.....

Hence we find from (26) an interpolating function; ¢(x,ke) = ¢(x)
K(¢ t; ¢ O) hm,,_,oo N I d¢l N J.H d‘l’n

x exp{ie 2o _ [ (Bra = 902672 = V(@01 8(d — ) =

(24)

(25)

(26)

27

(28)

12




= %IH,’“:() d¢((;‘;) eXP<iJ.dx,[; ds L[¢(Xas)aa;l¢(XaS)}|¢(O)=¢’, o) =¢ (29)

where the Lagrangian is given in (1). Notice, please, that the quanum (exotic)
stochastic expressions like (24), (25) are free of the apparent zeros in the
denominators.

THE Z(J) GENERATING FUNCTIONAL

Applying the same steps as in the Section A, we arrive at the formulae
K(p,t;¢',0) = K(d, 112 ; ¢',— 1/2) =
= Eexpl- i[" dsV(@' + B)] 6(9 - ¢ - B} (30)
Similarly, we find
K(0,00; 0,— o0) = lim, K(0,/2 ; 0, t/2) =
= limy.o Eexpl— i [ dsT(B, , )] 8(B))} (31)
Replacing 7(B,) by ¥(Bs) - J,B, in the last formula we get K,(0,c0 ; 0,—w),

Hence the previous quantity, K(0, ; 0,~) may be considered as a value
of K; atJ = 0. Their ratio determines the generating functional Z(J)

K;(0,00;0,~ . (12 v A A A
Z() = KJ(i),oo;(),_ :,0)) = % hm”"’oE{exp{" IJ._,/z dS[V(Bs+1/2) —JsemBss nly 6(B)} =

= LT, 2 exp{i [ dx[L($, 0,41 (x) + Jx)p(x)]} (32)

where the integration goes over all fields vanishing at + time infinity. The
normalisation factor N is such that

Z(0) = 1 (33)

The apparent zero in the measure is usually included into the normalization factor.

13




C. THE PURE QED IN THE VACUUM IN TERMS OF RIEMANN-SILBERSTEIN
VECTOR

We shall write the Riemann-Silberstein Vector f,; = E +/B without the "RS"
subscript for the sake of greater transparency. For the pure QED in a vacuum
the Maxwell equations read, [10]
61f =jiVx{ (1)
Vef=0 (2)
Hence f, f* without the traditional hats are field operators. The hats will be saved
for the corresponding quantum (exotic) random fields instead.
Taking the time derivative of f and using the double—curl identity, we find
Of = (0 -2)f =0 (3)
The equations follow from the Lagrangian

L =0,f" 0" 4)

In order to satisfy the transversality condition (2), we assume that f
is the curl of some vector g

f=Vxg (5)
In the components it reads
fr = e™"0,g" rs,u=1273 (6)

Since the potential g may be gaged by adding the gradient of a scalar
field A one may use this freedom in order to impose transversality condition on g

V-.g(x,s) =0, 0<s<t (7
The same holds true for the Hermitian conjugate fields f* and g*.

Using (6) and the identity

2’3 _ € = §sagw — §pS§Ha ®

14




one may express the Lagrangian in terms of the new potential

L=-0,8" AO'g =~ (g)"Ag" - (0g") Ag"

We have omitted here full divergencies assuming that they do not contribute
to the action functional due to vanishing of the potentials at the spatial infinity.
One notice that the generalized velocities can be determined only up to an
arbitrary harmonic function. Hence, the Lagrangian is a singular one.

I1t

r oL __ s\ r . OL __ ¥
7ng W_-A(g)’ 7Eg+=@——Ag

Equal time, non-vanishing commutation relations, compatible with
the trransversality of g, g* and =, n* are of the form

[g"(x),mg(y)] = iP6(x - y)
[(g")"(x), ()] = iP™6(x - y)
where P’ is a projection operator on the transversal directions
Ps = §" — A71070

In the coordinate representation where g,g* are diagonal, we have

¥ _ _ iprs_& r o _ _ ;prs_29o
ny = —IiP 5eT Tgr = i P &)

The Hamiltonian, in this representation, is given by the expression

H= [, dx[~ my(0)A™ m5(x) + Ag") (0Ag' (x)] =

5 _A-lprs 5 :
= 5oy A7 P g + Ag") A

We have used here our familiar convention suppressing both the inte-
gration sign and the variable of integration, cf. (86). Using the LTK product

formula, we find

U, = exp(— itH) = lim,-o[exp(— ie¥) exp(— ie 5(;), A-Lprs %gs N

Me.g") = A(g)ag" = - (f)af = V(£ 1)

It

£
€ ]

9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

15




The place where the Hermitian conjugation matters are the commutation
relations (11), The second line is obtained from the first by the Hermitian
congugation that reverses an order of two operators what produces a minus
sign in front of the commutator needed for its consistency with the first line.
We may reduce the degree of functional derivative in (15) by using the
following integral identity in which 75", (n*)" are independent variables

L [T, , dn" (®)d(n*) (x) expl~ (") P AR + AP + (77) P(4*)7] =
= E{explA°f* + (*)*(A4*)*]} = exp[~ id a7 (4%)")] (18)
where we denoted
Ar=Prgs,  (A*) = P4 (19)
and the normalization factor N is such that
E() =1

E[f"(x)] = E[(A")"(x)] =0

B @YD) = ey smay &P 1Y 87 By =
= 6"si(47r|‘x —~yp! (20)
Upon the substitution
4= PR g, AT = JePR s @)

we obtain the needed representation in the quantum (exotic) stochastic terms

expl- e gl AP ] = E{expl B P gl + VE PP () iy ) 22)

We insert this formula into (15), and repeat the steps from the previous
sections including the use of an identity

exp(u «5- +u* « ) exp[F(g,g")] = exp[F(g +u,g* +u)] exp(u -7 +u' - 52) (23)

In our case at hand

16




W= JEPSRS . () = JEPS@DS,  kl=1,2...n rs=123
F=-iV (24)

where 7 is given in (16).
The evolution operator takes on the form

U1=

= limy.e E{exp[— i¢ ZZ=1 g+ ('fk -Cp gt +Cr - €] exp(— €, - T;SE -C. 6; ) (25)

where the notations are

G = -2 X P00, i) = -/ T} PAf(x) (26)
It is convenient to work with the interpolating quantum (exotic) random fields

Cxke) = Cu(x), € (xke) = Ch(x), k=1,2,....n (27)
Using (20) we find

EC(x,5)] = E[C(x,)] =0, 0<s<t¢

E[C(x,je)(CT)*(y, k)] =jNkes [x—y[™ (28)
Acting with the evolution operator U, on some initial state y(g,g*) we get
vi(g.8") = Uwo(g.g") =
= [T1, , dg"(0d(g") (x)K(g.g*t; g.g",0)yo(gg") (29)
where the propagator, for ¢ > 0, is given by the equivalent formulae
Kg.g*1; ¢'.g",0) =
= limyy. E{exp[- ie 30, V(g' + Crog” + D] 8(g ~ ' - C) 8(g" - g - &)} =

= B{exp[- i[, dsi(g + €, g7 + ED] 8(g-g' - € 6(g* —g* ~ €Dy = (30)

17




We perform a change of the variables of integration as follows

g, =g —JeP(n, +..+m,), gi=g"'-JePMmi+..+n}) k=0,1,...,n

g, =g, gi=g" (bothtransversal, cf. (7))

We also introduce two interpolating functions g(x, s), g*(x,s) coinciding with
g, g5, correspondingly when s = ke. In the continuum limit when & — 0, we get

g(x> S) = gl(x) + C(X,S), g*(x,s) = g+’(X) + C+(X,S)

31

(32)

Both fields are transversal by construction, cf. (26). Inverting the equations (32), we get

‘Pﬂk= %(gkb—gk—-l)b PT]-;(.: #(gZ‘ng)a k:()ala'-')n

&

Absolute values of the Jacobians are

I oP(ny,..Pm,,) I=| oPnt,...P}) |= g2
L CI-) ogt,.83)

In terms of the new variables, the formula for K becomes
% : dgh(x,s) digi(x,s))"
K(gag+at; g/,g+’,0) = llmn—»oo H;z:l[% -[Hx,s ‘*gf/_%gk—;—] X

xexp{-ie 2, _ [ (gF - gi) - Alg, - g,1) - V(g.8M)]} 8(g - g,) 8(g* ~ &) =

- 1 dg"(x,5) dg*)'(xs)
- N I l_—L(, s, r 0 0 x

. ‘
X exp{—zjdx_[o dsOug*(x,s) « AOMg(x,5)} (8 —8,) 6(8" — &g, -5 gt =g =
= K(VxgVxght; Vxg,Vxg*,0)

Notice that in the exponent we got the gauge—invariant Lagrangian, cf. (9).
Going though the time variable change as in (436), we conclude that

K(g.g*.t; g',g",0) = K(g.g", 112 ; g'.g", - 112) =

. f/2 ~ A a3 A A
= E{exp[-i[_ dsV(g' +C,, p, g% + €l )] 8(g-g - C) 8(g* —g* - €}

(33)

(34)

(35)

(36)

(37)

(38)
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Replacing 7 with 7+ in the last formula where

~ % A + A 4
Vigr = V=JdonCoim ‘Js+,/2 *Csvmn (39)

we obtain the propagator K j+.

THE Z(J,J*) GENERATING FUNCTIONAL

Considering f(((),(),oo ; 0,0, ), we encounter an integral over a gauge—invariant
measure from a gauge—invariant action in the exponent. The Faddeev-Popov ansatz,
[12], of extracting out a volume of the gauge group is utilized. This leads to the result

Z(J3,3 = Z(3,J%) = (40)
=+ [T1,  da(x.s) dg*(x,5) 5LV - g(x,)] 8L V - g*(x,5)] exp{i [dx(L + T - g +J* - g*)

The normalization constant N has been modified accordingly so that Z(0,0) =1.
Shifting the variables and eliminating the linear terms in the fields, we find for Z(J,J*)

ZJ,T*) = exp(i [ d*x [ d*yJ" (x)PPDi(x -y 5 0)/°())} (41)

where we denoted

Dr(x—y; 0) = — (L) [d*k (k2 + ie) ™! exp[ik(x ~ )] (42)
= i(£)? [ £ expl- iowh® - 3% + ik - (x - y)] (43)
= {4n%i [(x - y)* - ie]}™! (44)

o = |k

The choice of the Feynman function corresponds to the radiation conditions:
Only incoming wave at x° — 0 — — o, and only outgoing wave at x° —° - .
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