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Starting from Maxwell equations the single photon propagator has been found as the
transition amplitude density for, so called, quantum Cauchy stochastic process. The
bifurcation point between the classical and the quantum descriptions of light is located.

INTRODUCTION

Maxwell electrodynamics [1], [2], [3] is not only relativistic but also quantum as far as
the pure electromagnetic field [6], [8-15]. We shall review briefly the main arguments
leading to this conclusion, and go one step further by calculating the transition amplitude
for the photon. We leave aside the multi-photon systems and the issue of accuracy of the
classical description of strong electromagnetic fields.

In the Gaussian system of units the "microscopic" Maxwell equations for the pure

photon field are
VxE+L-0,B=10
VxB-LoE =0
V-E =0
V-B=0 (1.1)
We want to stress that they are the basic fields of a single photon, and not some averages

over regions of space or time intervals.

The equations can be compactly written in terms of, so called, Riemann-Silberstein
[4-5] complex vector

f=E+/B (1.2)
namely

a[f: —iCVx f

V.f=0 (1.3)
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Furthermore, we use the identity for the curl of a vector [17]
Vxf=—i(S -V)f (1.4)
where S*  are the spin-1 matrices
SYim = —iem  klm=1,2,3 (1.5)

and where g, are the fully antisymmetric Levi-Civita tensor with ¢123 = 1,

00 0 0 0 i 0 —i 0
Sl=| 60 = |« &=| 000 [ = ¢ 00 (1.6)
i 0 —-i 0 0 0 0

Multiplying both sides by ih, we get the Schroedinger equation [6]
iho,f = ¢(S - p)f p = —ihV (1.7)
V.f=0

Notice the Planck constant 1/ cancels on both sides and, in fact, might be
eliminated from the calculations as it is in Maxwell electrodynamics. It appears to be
the reason for the known classic-quantum duality in description of radiation.
Recall, in this regard, a lamentation by Albert Einstein uttered in 1924:

"There are therefore now two theories of light, both indispensable and as one must admit
today despite twenty years of tremendous effort on the part of theoretical physicists-without
any logical connections”

The Schroedinger equation identifies the Hamiltonian [16] and thus opens the door to the
first-quantized theory of photon

H=c(S-2V)=ch| 0. 0 -0, (1.8)
-0, 0 O
We denote the helicity matrix of photon
A= (S-LV)(h/-A)" (1.9)



it commutes with the Hamiltonian so the helicity is conserved, and both matrices share
their eigenvectors. Since the total energy is conserved, we have

[&rf'f =[d*r(E? + B?) = 87E (1.10)

The last formula can be rewritten in a conventional manner if the RS vector is replaced
with LP one proposed by Landau and Peierls [8]. In the momentum space and with

(@ = IpD)

oo = (8mep) 1), (1.11)
The total energy is now given by

[eptipfpd’p = E (1.12)

but the connection between the LP and the RS vectors, in the coordinate space, becomes
non-local [10]. It is immaterial for our purposes which vector to use. Point is that they both
identify the same Hamiltonian which is the departure point for our considerations. We shall
stick with the RS vector as the simpler one.

Following [12], we consider the 6-dimensional vector F  as representing the photon

‘system
f
= L 1.13

iho.F = HF

It satisfies the equations

FiF=0 (1.14)

where the 6x6 resulting Hamiltonian is of the block-diagonal form

H:[ H 0 ] (1.15)
0 -H

and the 6-dimensional divergence is understood as follows

V.f
V.F=-1L = 1.16
S 0



With the conventions

£ =p", px=p's py=p’  p.=p° (L. 17}
E = ¢p, (g*) = diag(1,-1,-1,-1)

we introduce the electromagnetic tensor

0 E. E, E;
~E, 0 Bs -B
() = ‘ N S G 1) (1.18)

~E; -B; 0 B

-Es B, -By 0

The RS vector can be expressed in various equivalent ways

f10+l‘f32 ]
f20 +l~f13

FI{EHB}; 94 (1.19)
2 | E-B 2 A0

bk o
o

Expressing tensor  /  through the 4-vector potentials 4" we get yet another
formula for F.

2. EIGENVALUES AND EIGENVECTORS OF THE HAMILTONIAN

The Hamiltonian (1.8) does not depend on time explicitly, hence we may present
a solution of the Schroedinger equation (1.14) as the product (variables separation)

F(r,t) = G(r)exp {-+Et}, G = %{ gg* } (2.1)

where G  solves the eigenvalue equation



HG = EG (2.2)
which splits into two three-dimensional eigenvalue problems
Hg =Eg,  Hg* = -Eg” (2.3)

Since H  contains spatial derivatives, it is convenient to analyze the equations
in the momentum space

g(r) = [d’p(2nh)~g(p)exp{+p - r} (2.4)

Applying the operator H as given in (1.8), we obtain

0 —-p. py
icl p. 0 -p. |g8=Eg (2.5)
»y pPx 0

Hence the eigenvector g satisfies the homogeneous algebraic equations

Ag =0 (2.6)
-with the matrix
_% —ip- ipy
A = ipz _%' _ipx (2 7)
—ipy Ipx _%

Its determinant must vanish for non-zero solution of (2.6) to exist
detA=L(p-L)p+£)=0 (2.8)

The eigenvalues are obvious

1 E=0
. E=cp
3. E=—p (2.9)

Consider the zero eigenvalue first. Its corresponding eigenvector g, satisfies
the equation



0 —ip: ipy
—ipy ipx 0

Solution is of the form
go(p) = a(p:)"'p (2.11)
where « is an arbitrary constant. It is ruled out by the transversality condition

p-g,(p)=0 forany p =0

which leads to «a = 0.
Consider now the eigenvalue E =c¢p  and the corresponding equation

-p  —ip: ipy
ip:  —p —ipx |8=0 (2.12)
—ipy ipx P

. The normalized solution is given by

—PxP: + Ippy

g=e(p) = @Er.V2)"'| -pp:—ipps (2.13)

4

P 03 +p)"

e-e=e'e =1 (2.14)
Also, the vector e came out transversal, automatically
p-e(p)=0 (2.15)
Thus we have constructed a solution of the Schroedinger equation
f,(r.0)=Ap)e(p) exp{—+(cpt —p - 1)} (2.16)

for any value of p.The vectors e,e*are called the circular polarization vectors,



(e - Left, e* ~ Right polarization for a photon, and reverse, for an anti-photon ).
For the third eigenvalue E = -c¢p  we get the eigenvector equation

p —ip: ipy
ip- p —ipx |g=0 (2.17)
—ipy  Ipx P
Its normalized solution is
—PxPD: — ippy
g =e'(p)= p.V2)"| —pp-+ipp. | = e(-p) (2.18)
2
pi

We get another solution to the Schroedinger equation for any p

£,(r.0) = £ (P)e” (p)exp{L(cpt —p - 1)} = F3(r.0) (2.19)

We can obtain a general solution by taking linear combinations of the
particular solutions (2.16),(2.19)
(2.20)

| f(r,0) = [d’p(2nh)~2e(p)[fip)exp{—~(cpt —p - )} +/ (-p)exp{F(cpt +p-1)}]
It is obvious that the wave-vector also satisfies the d’Alembert equation
COf = (63 -a)f=0 (2.21)

In fact any solution of the Schroedinger equation (1.7) automatically satisfies

the d’Alembert equation as it can be seen by taking the second time derivative

and using the identity curlcurl = graddiv - A, or by manipulating the spin matrices [12].
The helicity matrix( projection of the spin on the momentum ) is

0 -0 0
A=@S-pp'=Hp)'=2| o 0 -0 |=A0O (222

Since A commutes with H, it is conserved and both matrices share the
same eigenvectors. Acting on the vector f  we find that

Af(r,t) = f(r,1) (2.23)



It follows from the following observations

A(0)exp{Lp - r} = exp{p - I}A,

where
0 —ip- ipy
Ap=p7'| ip: 0 —ips
—ipy  Ipx 0

and, according to (2.12)
Ape(p) = e(p)

(2.24)

(2.25)

(2.26)

As the result, we conclude that the vector f has helicity plus one

Af(r,t) = f(r,1)

(2.27)

Similarly, the complex conjugated vector f* also has helicity plus one

Ape*(p) = —e*(p)

and, as the result
A (1) = I (1,0)

(2.28)

(2.29)

We would like to presentt the main relations concerning the polarization vectors

p X e = —ipe, pxe

(2.30)

= ipe*

B = %(11 +il), e = —‘/12:(11 = ks

where 1.1 are the linear polarization vectors



PPz PPy
L = (p.)”! —PypP: | L = (pp.)”! —pDx (2.31)
r 0

The following relations hold

l] X lz = (p)71p (232)

pxli =ph
pxl, =-pl
Li(-p) = ll(p)

L(-p) = -L(p)

We now define the wave-vectors for the photon and the anti-photon with definite
helicities. For this we split the formula (2.20) for f(r,¢) into positive and nega-
tive frequency parts. For instance, the vector

(rly, () = [d*pQrh)=fp)e(p)exp{—+(cpt —p - 1)} (2.33)
represents a photon of helicity plus one. Similarly the vector
(rf§, () = [d*pQrh)=>f (p)e*(p) exp{+(cpt—p - 1)} (2.34)

represents an anti-photon with the same helicity plus one. The vector taken from
f(-r,-1) represents a photon of helicity minus one

(rly_, (1)) = [d*pQrh)~f(p)e(p)exp{+(cpt—p - 1)} (2.35)
Finally, we get the vector representing an anti- photon with helicity minus one

(rfy_, (1)) = [dpQrh)=2f (p)e* (p) exp{—+(cpt —p - 1)} (2.36)



We impose the”following ortho-normalization conditions using (2.30)
o) =&l =@ W) =7 17, = [dpAp)? = 8zE

=K =0 (2.37)

Having the 3-dimensional vectors we may construct the full 6-dimensional
transversal vectors representing the photon system of definite helicity

n—ﬁ{;j}m

where (2.38)
A=

They do satisfy the Schroedinger equations
iho.F, = HF), (2.39)
and the normalization conditions
(ML) = (8rE)S A4 ==l
(2.40)
A1) =0
Notice, please, that all the polarization vectors are scale-invariant
e(p) = e(fik) = e(k) (since % is positive ) (2.41)
and the same holds for the complex conjugateded vector e*, and for their
real and imaginary parts 1;,(p) /= 1,2. Hence, the same polarization
vector enters a solution of the d’Alembert equation using the wave-vectors k
(no 4) (cf. e.g., [15], formula (56)) and the solution (2.20) of the Schroedinger
equation that uses the momenta p, and the Planck constant 7 appears
3. THE EVOLUTION MATRIX

According to the Schroedinger equation (1.14), we have

F@) = UW)F(0)
where

10



U(t) = exp{—+Ht} (3.1)

with H  in the block-diagonal form as shown in (1.15). We find for the
powers of H

H2n H2n+l 0
Hzn B |: 0 H02n jl’ H2"+] B |: 0 _H2n+] :| (32)

n=20,1,2,...

The evolution matrix also has the block-diagonal form and simplifies greatly
when applied to a state of definite helicity( see APPENDIX),

U(r) 0
Ut) = 3.3
o] %0 0] o

U(r) = exp{—Hi}

with

Consider, for example, two states of helicity 1  which may differ by
‘the different functions f(p), and evaluate the matrix element

AUDOIAY = 27, AMUROIA, =

= 300, JdPrdr ey Grl U0 e |, (3.4)
We replace the helicity operator A by its eigenvalue 11; inside U(t).

Next, we calculate the inside matrix element in the momentum space, and
again replace the momentum operator with the relevant eigenvalue

(CUROI) = [dpd®p' @rh) > exp{+(p+r-p' - F)HpUOP)  (3.5)
where the Hamiltonian is replaced by the simpler matrix
H= ch/-A A ~ cp'Al5 (3.6)

The variable A can be associated with the time variable since
the Hamiltonian is multiplied by it. With this in mind, we write

11



exp{—%ktcp}l 3 0

pIUKDIP") = v
BBV 0 exp{+ Atcpi13

s(p-p) (.7

Jk

Hence, we may perform the integration over the momenta in (3.5) passing
to the spherical coordinates and regularizing the integrals over p

, C(r,At;r',0)13 0
rlUyx()|r') = ; 3.8)
wUDIr') li 0 C*(r,At;r',0)13 j|Jk (
where we have denoted
C(r,t;r',0) = ict{n[(r —1')? - (ct — ig)?]} 2 (3.9)

C*(r,t;r',0) = —ict{n[(r — ') = (ct + ig)*]} 2 = C(r,—;x',0)

and the limit ¢ — 0 is understood.

The last formula exhibits the transition probability amplitude that characterizes
the quantum Cauchy stochastic process. To the best our knowledge, this is

for the first time when this process appears. Earlier the quantum Brownian process
, that corresponds to a massive particle, has been studied along with the quantum
Poisson process and few other processes [21], [28], [29].

We note in passing that the photon’s Hamiltonian H = ¢(S - p)

depends on momentum, only. Hence the corresponding phase-space path
integral for the transition amplitude can be performed( first over the coordinates
q, Which leads to the product of &(p, — p,,,), the last momentum integral
,over the unpaired momentum Py yields the above result, [32], [33] ).

The conservation of momentum ensures the known straight-line propagation

of a photon.

Continuing analitically in time

t — —itg (1 —Euclidean time)
we get the transition probability of the classic Cauchy process which belongs
to a wider class of stochastic processes called Le’'vy processes [34]. Both,
Cauchy process and Brownian motion are members of this larger family of
Markovian processes

C(r,—itg;r',0) = cte{n[(r—r')2 +c23]}2, t:>0, r,r' = R*(3.10)

Coming back to the matrix element (3.4), we find now using (3.9)



UY=Ly, ICly,) + FICH 7,18, (3.11)
where we have denoted
WICh,) = Xh [drdr G nCn s 0)8udr'ty, ) (3.12)

and similarly for the anti-photon contribution. We also used the notation
that is consistent with (2.38), taken at 1 = 0

Wl = =Gy j=1.23
(el = —(eff,) j=4.5.6 (3.13)
1 = Sy =123
1) = LYy =456

Formula (3.11) shows that C(...) propagates photons while its complex
conjugate C*(...) propagates anti-photons.

An arbitrary photon’s state can be presented as the linear combination of states
with definite helicities

|FY = ap|l) + Brl-1) (3.14)

where the coefficiets are
ar = (87E)~(1|F)
Br = (8E) (~1|F) (3.15)
This allows to calculate the general matrix element
(AUMIF) = apap (U@ + BrB e (-1{UDI-1) (3.16)

We want to stress the fundamental difference of the photon’s propagator
as given in (3.9) and that for a massive spinless particle

B(r,6;r,0) = (32)Pexp{2Cy 120,  rr eR (3.17)

which corresponds to the quantum Brownian process [20], [21]. The massless photon
propagator can not be obtained from Proca’ massive vector particle theory by

13



taking the mass parameter to zero [35], [36]. The limit is singular one as it involves
blowing up terms proportionate to m .

Thus the quantum Cauchy process complements the quantum Brownian motion
process and should be treated as a stand alone feature of the stochastic formulation
of the quantum mechanics.

4. CONCLUDING REMARKS

The transition amplitudes for photons and anti-photons are needed for the rigorous
definition of Feynman integrals used in quantum mechanics and in quantum
field theory [37], [38].

They might also help with with the temporal description of the double-slit experiment.
What is missing, though, is the transition amplitude in the presence of absorbing or
reflecting screen in which the slits are made. We have found the transition amplitude
in the empty space, so far [39], [40].

One knows, [41], [42], [43], that the classical electrodynamics is sufficiently accurate
when the number of photons in a field is large and the field is strong.

APPENDIX

We want to develop a practical formula for the evolution matrix U(¢)
by expressing it through the helicity matrix. According to (1.8)

0 -0. 0O
H = —ich(S-V) =chy-AA=ch| 0. 0 -0, (4.1)
-0, O«
We find from here the square of H
H? = (chy=A)*A? = (ch)?{[0.0,] — Al} (4.2)
where we have denoted
G:0x 0:0y 0Ox0;
[0:6,] = | 0,0, 8,0, 0,0: (4.3)
8:0x 040, 0:0;
It is remarkable that
H[0,0,] = [0.0,]JH=0 (4.4)

14



which leads to
H3 = (chJ=A)3A (4.5)

Further, using (A.4) again, we get
H4= H3H= (ch/-A)*A? (4.6)
In general, by the complete induction, we get
H2" = (ch/-A )" A? weld., . (4.7)
H = (chf=A)*'A n=0,1,... (4.8)
This allows to further simplify the evolution matrix
U() = exp{-LH} =1-A*+ cos(cty=A)A?* — isin(ctJ=A)A -

- exp{-iket-A}1 (4.9)

when acting on a state of helicity A = +1.Thus the formula (3.7) holds.
To help with the formula ( 3.8 ), notice that with & = |r —r'|, n = cAt, we get
-after the integration over the spherical angles

C(r,Ar,0) = (4n2hE)™'0, fﬁ dplexp{Lp(&§ —n+ie)} —exp{~—4p(&+n—ie)}]
where ¢ - 0. (A4.10)
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