XIV Training Course on Strongly Correlated Systems

Vietri Sul Mare, Salerno, Italy, October 5-16, 2009

Stochastic Series Expansion (quantum Monte Carlo)

Anders W. Sandvik, Boston University

Introduction; path integrals and series representation
SSE algorithm for the $\mathrm{S}=1 / 2$ Heisenberg model

- all details needed to make a simple butvery efficient program
- essentially lattice-independent (bipartite) formulation

Examples: properties of chains, ladders, planes

- critical state of the Heisenberg chain and odd number of coupled chains
- gapped (quantum diordered) state of even number of coupled chains
- long-range order in 2D

Path integrals in quantum statistical mechanics

We want to compute a thermal expectation value

$$
\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left\{A \mathrm{e}^{-\beta H}\right\}
$$

where $\beta=1 / T$ (and possibly $T \rightarrow 0$)
"Time slicing" of the partition function

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\operatorname{Tr}\left\{\prod_{l=1}^{L} \mathrm{e}^{-\Delta_{\tau} H}\right\} \quad \Delta_{\tau}=\beta / L
$$

Choose a basis and insert complete sets of states;

$$
Z=\sum_{\alpha_{0}} \sum_{\alpha_{1}} \cdots \sum_{\alpha_{L}-1}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle
$$

Use approximation for imaginary time evolution operator. Simplest way

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

Leads to error $\propto \Delta_{\tau}$. Limit $\Delta_{\tau} \rightarrow 0$ can be taken

Example: hard-core bosons

$$
H=K=-\sum_{\langle i, j\rangle} K_{i j}=-\sum_{\langle i, j\rangle}\left(a_{j}^{\dagger} a_{i}+a_{i}^{\dagger} a_{j}\right) \quad n_{i}=a_{i}^{\dagger} a_{i} \in\{0,1\}
$$

Equivalent to $\mathrm{S}=1 / 2 \mathrm{XY}$ model

$$
H=-2 \sum_{\langle i, j\rangle}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)=-\sum_{\langle i, j\rangle}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right), \quad S^{z}= \pm \frac{1}{2} \sim n_{i}=0,1
$$

"World line" representation of

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

$Z=\sum_{\{\alpha\}} W(\{\alpha\})$,
$W(\{\alpha\})=\Delta_{\tau}^{n_{K}}$
$\mathrm{n}_{\mathrm{K}}=$ number of "jumps"

Expectation values

$$
\langle A\rangle=\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} A\left|\alpha_{0}\right\rangle
$$

We want to write this in a form suitable for MC importance sampling

$$
\begin{aligned}
& \qquad\langle A\rangle=\frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})} \longrightarrow \quad\langle A\rangle=\langle A(\{\alpha\})\rangle_{W} \\
& \\
& \text { For any quantity diagonal in the } \\
& \text { occupation numbers (spin z) }
\end{aligned}
$$

$$
A(\{\alpha\})=A\left(\alpha_{n}\right) \text { or } A(\{\alpha\})=\frac{1}{L} \sum_{l=0}^{L-1} A\left(\alpha_{l}\right)
$$

Kinetic energy (here full energy). Use

$$
K \mathrm{e}^{-\Delta_{\tau} K} \approx K \quad K_{i j}(\{\alpha\})=\frac{\left\langle\alpha_{1}\right| K_{i j}\left|\alpha_{0}\right\rangle}{\left\langle\alpha_{1}\right| 1-\Delta_{\tau} K\left|\alpha_{0}\right\rangle} \in\{0,1\}
$$

Average over all slices \rightarrow count number of kinetic jumps

$$
\left\langle K_{i j}\right\rangle=\frac{\left\langle n_{i j}\right\rangle}{\beta}, \quad\langle K\rangle=\frac{\left\langle n_{K}\right\rangle}{\beta}, \quad\langle K\rangle \propto N \rightarrow\left\langle n_{K}\right\rangle \propto \beta N
$$

There should be of the order $\beta \mathrm{N}$ "jumps" (regardless of approximation used)

Including interactions

For any diagonal interaction V

$$
\mathrm{e}^{-\Delta_{\tau} H}=\mathrm{e}^{-\Delta_{\tau} K} \mathrm{e}^{-\Delta_{\tau} V}+\mathcal{O}\left(\Delta_{\tau}^{2}\right) \rightarrow\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{l}\right\rangle \approx \mathrm{e}^{-\Delta_{\tau} V_{l}}\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} K}\left|\alpha_{l}\right\rangle
$$

Product over all times slices \rightarrow

$$
W(\{\alpha\})=\Delta_{\tau}^{n_{K}} \exp \left(-\Delta_{\tau} \sum_{l=0}^{L-1} V_{l}\right)
$$

The continuous time limit

Limit $\Delta_{T} \rightarrow 0$: number of kinetic jumps remains finite, store events only

Special methods (loop and worm updates) developed for efficient sampling of the paths in the continuum

local updates
consider probability of inserting/removing events within a time window
\Leftarrow Evertz, Lana, Marcu (1993), Prokofev et al (1996) Beard \& Wiese (1996)

Series expansion representation

Start from the Taylor expansion $\mathrm{e}^{-\beta H}=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} H^{n}$

$$
Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle
$$

Very similar to the path integral; $1-\Delta \tau H \rightarrow H$ and weight factor outside For hard-core bosons the (allowed) path weight is $W\left(\{\alpha\}_{n}\right)=\beta^{n} / n$!
For any model, the energy is

$$
\begin{aligned}
E & =\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n+1}}\left\langle\alpha_{0}\right| H\left|\alpha_{n+1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle \\
& =-\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^{n}}{n!} \frac{n}{\beta} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle=\frac{\langle n\rangle}{\beta} \\
C & =\left\langle n^{2}\right\rangle-\langle n\rangle^{2}-\langle n\rangle
\end{aligned}
$$

From this follows: narrow n -distribution with $\langle n\rangle \propto N \beta, \sigma_{n} \propto \sqrt{N \beta}$
Fixed-length scheme: cut-off at $\mathrm{N}=\mathrm{L}$, fill in with unit operators I

$$
Z=\sum_{S} \frac{(-\beta)^{n}(L-n)!}{L!} \sum_{\{\alpha\}_{L}} \sum_{\left\{S_{i}\right\}}\left\langle\alpha_{0}\right| S_{L}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| S_{2}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| S_{1}\left|\alpha_{0}\right\rangle, \quad S_{i} \in\{0, H\}
$$

Here n is the number of $\mathrm{S}_{\mathrm{i}}=\mathrm{H}$ instances in the sequence $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{L}}$

Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H=J \sum_{b=1}^{N_{b}} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
\begin{aligned}
& H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \\
& H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right) . \\
& H=-J \sum_{b=1}^{N_{b}}\left(H_{1, b}-H_{2, b}\right)+\frac{J N_{b}}{4}
\end{aligned}
$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$
\begin{aligned}
\left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{1, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle & =\frac{1}{2} \\
\left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{1, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{2, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} \\
j(b) & H_{2, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2}
\end{aligned}
$$

Partition function

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty}(-1)^{n_{2}} \frac{\beta^{n}}{n!} \sum_{S_{n}}\langle\alpha| \prod_{p=0}^{n-1} H_{a(p), b(p)}|\alpha\rangle \quad \begin{aligned}
& \begin{array}{l}
\mathrm{n}_{2}=\text { number of a(i)=2 } \\
\text { (off-diagonal operators) } \\
\text { in the sequence }
\end{array}
\end{aligned}
$$

Index sequence: $S_{n}=[a(0), b(0)],[a(1), b(1)], \ldots,[a(n-1), b(n-1)]$

For fixed-length scheme

$$
Z=\sum_{\alpha} \sum_{S_{L}}(-1)^{n_{2}} \frac{\beta^{n}(L-n)!}{L!} \sum_{S_{L}}\langle\alpha| \prod_{p=0}^{L-1} H_{a(p), b(p)}|\alpha\rangle \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

Propagated states: $|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i), b(i)}|\alpha\rangle$
W >0 (n_{2} even) for bipartite lattice Frustration leads to sign problem

$$
\begin{array}{rlrrrrrrrr}
i & = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\sigma(i) & =-1 & +1 & -1 & -1 & +1 & -1 & +1 & +1
\end{array}
$$

\circ	0	0	0	0	0	0	0	p	$a(p)$	$b(p)$	$s(p)$
0	0	0	0	0	0	0	0	12	1	2	4
0	0	0	0	0	0	0	0	11	0	0	0
0	0	0	0	0	0	0	0	10	2	4	9
0	0	0	0	0	0	0	0	9	2	6	13
0	0	0	0	0	0	0	0	8	1	3	6
0	0	0	0	0	0	0	0	7	0	0	0
0	0	0	0	0	0	0	0	6	0	0	0
0	0	0	0	0	0	0	0	5	1	2	4
0	0	0	0	0	0	0	0	4	2	6	13
0	0	0	0	0	0	0	0	3	0	0	0
0	0	0	0	0	0	0	0	2	2	4	9
0	0	0	0	0	0	0	0	1	1	7	14

$$
a_{0} \rightarrow 9_{0} \rightarrow 9_{0} \rightarrow 0 \rightarrow 0 \rightarrow 0
$$

In a program:

$s(p)=$ operator-index string

- $s(p)=2^{*} b(p)+a(p)-1$
- diagonal; $s(p)=$ even
- off-diagonal; $s(p)=$ off
$\sigma(i)=$ spin state, $\mathrm{i}=1, \ldots, \mathrm{~N}$
- only one has to be stored

SSE effectively provides a discrete representation of the time continuum

- computational advantage; only integer operations in sampling

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

$\mathrm{X}(\mathrm{)}=\mathrm{vertex}$ list

- operator at $\mathrm{p} \rightarrow \mathrm{X}(\mathrm{v})$ $v=4 p+l, l=0,1,2,3$
- links to next and previous leg

Spin states between operations are redundant; represented by links

- network of linked vertices will be used for loop updates of vertices/operators

Monte Carlo sampling scheme

Change the configuration; $\left(\alpha, S_{L}\right) \rightarrow\left(\alpha^{\prime}, S_{L}^{\prime}\right)$

$$
W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

$$
P_{\text {accept }}=\min \left[\frac{W\left(\alpha^{\prime}, S_{L}\right)}{W\left(\alpha, S_{L}\right)} \frac{P_{\text {select }}\left(\alpha^{\prime}, S_{L}^{\prime} \rightarrow \alpha, S_{L}\right)}{P_{\text {select }}\left(\alpha, S_{L} \rightarrow \alpha^{\prime}, S_{L}^{\prime}\right)}, 1\right]
$$

Diagonal update: $[0,0]_{p} \leftrightarrow[1, b]_{p}$

$$
\begin{array}{lllllllll}
|\alpha(p+l)\rangle & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
|\alpha(p)\rangle & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \longleftrightarrow \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Attempt at $p=0, \ldots, L-1$. Need to know $\mid \alpha(p)>$

- generate by flipping spins when off-diagonal operator

$$
\begin{array}{ll}
P_{\text {select }}(a=0 \rightarrow a=1)=1 / N_{b}, & \left(b \in\left\{1, \ldots, N_{b}\right\}\right)
\end{array} \quad \stackrel{\circ \circ \circ \circ \circ \circ \circ \circ}{P_{\text {select }}(a=1 \rightarrow a=0)=1} \begin{array}{ll}
& \mathrm{n} \text { is the current power } \\
\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} & \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}
\end{array}
$$

$$
\mathrm{n} \text { is the current power }
$$

Acceptance probabilities

$$
\begin{aligned}
& P_{\text {accept }}([0,0] \rightarrow[1, b])=\min \left[\frac{\beta N_{b}}{2(L-n)}, 1\right] \\
& P_{\text {accept }}([1, b] \rightarrow[0,0])=\min \left[\frac{2(L-n+1)}{\beta N_{b}}, 1\right]
\end{aligned}
$$

Diagonal update; pseudocode implementation

```
do }p=0\mathrm{ to }L-
    if }(s(p)=0)\mathrm{ then
        b= random [1,\ldots, . Nb]; if \sigma(i(b))=\sigma(j(b)) cycle
    if (random[0-1]< P insert (n)) then s(p)=2b;n=n+1 endif
    elseif (mod[s(p),2]=0) then
        if (random[0-1]< Premove}(n))\mathrm{ then }s(p)=0;n=n-1 endif
    else
        b=s(p)/2;}\sigma(i(b))=-\sigma(i(b));\sigma(j(b))=-\sigma(j(b)
    endif
enddo
```


Local off-diagonal update

Switch the type ($\mathrm{a}=1 \leftrightarrow \mathrm{a}=2$) of two operators on the same spins

- constraints have to be satisfied
- inefficient, cannot change the winding number

Operator-loop update

Many spins and operators can be changed simultaneously

Pseudocode

moving horizontally in the list corresponds to changing v even $\leftrightarrow \mathrm{odd}$

- flipbit($(, 0)$ flips bit 0 of v
- a given loop is only constructed once
- vertices can be erased
- $X(v)<0=$ erased
- $X(v)=-1$ not flipped loop
- $X(v)=-2$ flipped loop
constructing all loops, flip probability $1 / 2$

```
do }\mp@subsup{v}{0}{}=0\mathrm{ to }4L-1\mathrm{ step 2
    if (X(\mp@subsup{v}{0}{})<0) cycle
    v=\mp@subsup{v}{0}{}
    if (random[0-1]<\frac{1}{2}) then
            traverse the loop; for all v}\mathrm{ in loop, set X(v)=-1
    else
            traverse the loop; for all v}\mathrm{ in loop, set X(v)=-2
            flip the operators in the loop
    endif
enddo
```

construct and flip a loop

```
v= vo
do
    X(v)=-2
    p=v/4; s(p)= flipbit(s(p),0)
    v}=\mp@code{flipbit (v,0)
    v=X(\mp@subsup{v}{}{\prime}); X(\mp@subsup{v}{}{\prime})=-2
    if (v=\mp@subsup{v}{0}{}) exit
enddo
```


Constructing the linked vertex list

Traverse operator list $s(p), p=0, \ldots, L-1$

- vertex legs $v=4 p, 4 p+1,4 p+2,4 p+3$

Use arrays to keep track of the first and last (previous) vertex leg on a given spin

- $V_{\text {first }}(i)=$ location v of first leg on site i
- $V_{\text {last }}(i)=$ location v of last (currently) leg
- these are used to create the links
- initialize all elements to -1

	$X(v)$	$v X(v)$		$v X(v)$		$v X(v)$	
44	18	45	30	46	16	47	17
40	-	41	-	42	-	43	-
36	31	37	7	38	4	39	5
32	14	31	15	34	12	35	0
28	19	29	6	30	45	31	36
24	-	25	-	26		27	
20	-	21	-	22	-	23	-
16	46	17	47	18	44	19	28
12	34	13	2	14	32	15	33
8	-	9	-	10	-	11	-
4	38	5	39	6	29	7	37
0	35	1	3	2	13	3	1
$1=$	0	$l=$	=1	=	2	l=	

```
\(V_{\text {first }}(:)=-1 ; V_{\text {last }}(:)=-1\)
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) cycle
    \(v_{0}=4 p ; b=s(p) / 2 ; s_{1}=i(b) ; s_{2}=j(b)\)
    \(v_{1}=V_{\text {last }}\left(s_{1}\right) ; v_{2}=V_{\text {last }}\left(s_{2}\right)\)
    if \(\left(v_{1} \neq-1\right)\) then \(X\left(v_{1}\right)=v_{0} ; X\left(v_{0}\right)=v_{1}\) else \(V_{\text {first }}\left(s_{1}\right)=v_{0}\) endif
    if \(\left(v_{2} \neq-1\right)\) then \(X\left(v_{2}\right)=v_{0} ; X\left(v_{0}\right)=v_{2}\) else \(V_{\text {first }}\left(s_{2}\right)=v_{0}+1\) endif
    \(V_{\text {last }}\left(s_{1}\right)=v_{0}+2 ; V_{\text {last }}\left(s_{2}\right)=v_{0}+3\)
enddo
```

creating the last links across the "time" boundary

```
do }i=1\mathrm{ to }
    f= V
    if (f\not=-1) then l= V last (i); X(f)=l;X(l)=f endif
enddo
```

We also have to modify the stored spin state after the loop update

- we can use the information in $\mathrm{V}_{\text {first }}$ () and X() to determine spins to be flipped
- spins with no operators, $V_{\text {first }}(\mathrm{i})=-1$, flipped with probability $1 / 2$

```
do i=1 to N
```



```
    if (v=-1) then
        if (random[0-1]<1/2) \sigma(i)= -\sigma(i)
    else
        if (X(v)=-2) \sigma(i)=-\sigma(i)
    endif
enddo
```

v is the location of the first vertex leg on spin i

- flip it if $X(v)=-2$
- (do not flip it if $X(v)=-1$)
- no operation on if $V_{\text {first }}(\mathrm{i})=-1$

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n

- increase L if n is close to current L
- e.g., $L=n+n / 3$

Example; 16×16 system, $\beta=16 \Rightarrow$

- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work?

Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow x$

- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

\Leftarrow Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit $(\mathrm{T} \rightarrow 0)$

Correlations, criticality and long-range order

Example: 2D Ising model. Correlation function $C\left(r_{i j}\right)=\left\langle\sigma_{i} \sigma_{j}\right\rangle$

Three different behaviors

$$
C(r)=\left\{\begin{array}{ll}
\mathrm{e}^{-r / \xi}, & T>T_{c} \\
r^{-(2-D+\eta)}, & T=T_{c} \\
m^{2}+\mathrm{e}^{-r / \xi}, & T<T_{c}
\end{array} \quad \eta=1 / 8\right.
$$

The correlation length diverges at $\mathrm{T}_{\mathrm{c}}: ~ \xi \sim\left|T-T_{c}\right|^{-\nu}$

In quantum system we can have ordered, disordered, and critical ground states

- quantum phase transitions versus some parameter
- nature of the ground state reflected in finite-T properties

Properties of the Heisenberg chain; large-scale SSE results

Magnetic susceptibility anomalous behavior as $\mathrm{T} \rightarrow 0$

- low-T results seem to disagree with known $\mathrm{T}=0$ value obtained using the Bethe Ansatz method
- Reason: logarithmic correction at low $\mathrm{T}>0$
Eggert, Affleck, Takahashi, PRL 73, 332 (1994)

$$
\chi(T)=\frac{1}{2 \pi c}+\frac{1}{4 \pi c \ln \left(T_{0} / T\right)}
$$

- Low-T form expected based on low-energy field theory
- For the standard chain
$c=\pi J / 2, \quad T_{0} \approx 7.7$
- Other interactions \rightarrow same form, different parameters

Long chains needed for studying low-T behavior (T < finite-size gap)

T=0 spin correlations

Low-energy field theory prediction

$$
C(r)=A \frac{(-1)^{r}}{r} \ln \left(\frac{r}{r_{0}}\right)^{1 / 2}
$$

SSE: converge to $\mathrm{T}=0$ limit

- β dependence of $C(N / 2), N=4096 \Rightarrow$
- $C(r)$ vs r and and $r=N / 2 \Downarrow$

Ladder systems

E. Dagotto and T. M. Rice, Science 271, 618 (1996)

Coupled Heisenberg chains; $L_{x} \times L_{y}$ spins, $L_{y} \rightarrow \infty, L_{x}$ finite

- systems with even and odd L_{y} have qualitatively different properties
- spin gap $\Delta>0$ for L_{y} even, $\Delta \rightarrow 0$ when $L_{x} \rightarrow \infty$
- critical state, similar to single chain, for odd L_{y}
- the 2D limit is approached in different ways

Consider anisotropic couplings; J_{x} and J_{y}

- the correct physics for all J_{y} / J_{x} can be understood based on large J_{y} / J_{x}
- short-range valence bond states (more later)

$$
J_{y}=1, J_{x}=0
$$

$(\uparrow \downarrow-\downarrow \uparrow) / \sqrt{2}$
$\stackrel{\downarrow}{\downarrow}$

$\mathrm{L}_{y}=2,4, \ldots: \Delta=J_{y}$ for $J_{x}=0$

- gap persists for $J_{x}>0$
$\mathrm{L}_{\mathrm{y}}=3,5, \ldots: \Delta=0$ for $\mathrm{J}_{\mathrm{x}}=0$
- critical state for $\mathrm{J}_{\mathrm{x}}>0$

Properties of Heisenberg ladders; large-scale SSE results

Magnetic susceptibility Low-T theoretical forms:

Odd Ly: from nonlinear -sigma model Eggert, Affleck, Takahashi, PRL 73, 332 (1994)

$$
\chi(T)=\frac{1}{2 \pi c}+\frac{1}{4 \pi c \ln \left(T_{0} / T\right)}
$$

Even L_{y} : from large J_{y} / J_{x} expansion Troyer, Tsunetsugu, Wurz, PRB 50, 13515 (1994)

$$
\chi(T)=\frac{a}{\sqrt{T}} \mathrm{e}^{-\Delta / T}
$$

SSE results for large L_{x} (up to 4096, giving $L_{x} \rightarrow \infty$ limit for T shown);

Extracting the gap for evel-Ly systems

From the low-T susceptibility form:

$$
\chi(T)=\frac{a}{\sqrt{T}} \mathrm{e}^{-\Delta / T} \Rightarrow-T \ln (\sqrt{T} \chi)=\Delta-T \ln (a)
$$

T=0 spin correlations of ladders

Expected asymptotic behaviors

$$
\left.C(r)=A \frac{(-1)^{r}}{r} \ln \left(\frac{r}{r_{0}}\right)^{1 / 2} \quad\left(\text { odd } \mathrm{L}_{\mathrm{y}}\right) \quad C(r)=A \mathrm{e}^{-r / \xi} \quad \text { (even } \mathrm{L}_{\mathrm{y}}\right)
$$

We also expect short-distance behavior reflecting 2D order for large L_{y}

short-long distance cross-over behavior starts to become visible, but larger Ly needed to see signs of 2D order for $r<L_{y}$

- $L \times L$ lattices used to study 2D case

Correlation length for even- L_{y}

$$
C(r) \propto \mathrm{e}^{-r / \xi}, \quad \xi \propto \frac{1}{\Delta}
$$

We need system lengths $L_{x} \gg \xi$ to compute ξ reliably. Use:

$$
\xi^{2}=\frac{1}{q^{2}}\left(\frac{S(\pi, \pi)}{S(\pi-q, \pi)}-1\right)
$$

Correlation length versus $\mathrm{J}_{\mathrm{y}} / \mathrm{J}_{\mathrm{x}}$ for $\mathrm{L}_{\mathrm{y}}=2$

the single chain is critical ($1 / \mathrm{r}$ correlations) $\rightarrow \xi$ diverges as $J_{y} / J_{x} \rightarrow 0$

