XIV Training Course on Strongly Correlated Systems

Vietri Sul Mare, Salerno, Italy, October 5-16, 2009

Exact diagonalization studies

Anders W. Sandvik, Boston University

Studies of small spin chains

Using basis states incorporating conservation laws (symmetries)

- magnetization conservation, momentum states, parity, spin inversion
- discussion without group theory
- only basic quantum mechanics and common sense needed

Key elements of an actual program implementation

- pseudocode segments; actual program available for practice

How to characterize different kinds of ground states

- critical ground state of the Heisenberg chain
- quantum phase transition to a valence-bond solid in a $J_{1}-J_{2}$ chain

Complete diagonalization of the hamiltonian

To find the ground state (maybe excitations, $\mathrm{T}>0$ properties) of the Heisenberg $\mathrm{S}=1 / 2$ chain

$$
\begin{aligned}
H & =J \sum_{i=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}=J \sum_{i=1}^{N}\left[S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}+S_{i}^{z} S_{i+1}^{z}\right] \\
& =J \sum_{i=1}^{N}\left[S_{i}^{z} S_{i+1}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)\right]
\end{aligned}
$$

Simplest way; enumerate the states

- construct the hamiltonian matrix using bits

$$
\begin{array}{rlll}
|0\rangle & =|\downarrow, \downarrow, \downarrow, \ldots, \downarrow\rangle & (=0 \ldots 000) & \\
|1\rangle & =|\uparrow, \downarrow, \downarrow, \ldots, \downarrow\rangle & (=0 \ldots 001) & H_{i j}=\langle i| H|j\rangle \\
|2\rangle & =|\downarrow, \uparrow, \downarrow, \ldots, \downarrow\rangle & (=0 \ldots 010) & i, j=0, \ldots, 2^{N}-1 \\
|3\rangle & =|\uparrow, \uparrow, \downarrow, \ldots, \downarrow\rangle & (=0 \ldots 011) &
\end{array}
$$

bit representation perfect for $S=1 / 2$ systems

- use $>1 \mathrm{bit} /$ spin for $\mathrm{S}>1 / 2$, or integer vector
- construct H by examining/flipping bits

Diagonalizing the matrix

- on the computer
- gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H , then

$$
\langle n| A|n\rangle=\left[U^{T *} A U\right]_{n n}
$$

is the expectation value of some operator A in the n :th eigenstate
Use some "canned" diagonalization subroutine

- Useful subroutines available at http://gams.nist.gov

Problem: Matrix size $M=2^{N}$ becomes too large quickly

- maximum $\mathrm{N} \approx 20$
- M^{2} matrix elements to store, time to diagonalize ${ }_{\propto} \mathrm{M}^{3}$

Pseudocode; construction of the hamiltonian matrix

Let a[i] refer to the i:th bit of an integer a
Define a function flip(a, i,j)

- "flips" ($0 \leftrightarrow 1$) bits i and j of the integer a
- In F90 the bit-level function ieor(a, $2^{* *}$ i) can be used to flip bit i of a
- bits i and j can be flipped using ieor(a,2*i+2**j)

$$
\begin{aligned}
& \\
& \operatorname{ieor}\left(a, 2^{i}+2^{j}\right) \begin{array}{|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

The $S=1 / 2$ Heisenberg chain hamiltonian can be constructed according to
j is the "right" nearest-neighbor of i

- periodic boundary conditions

$$
\begin{aligned}
& \text { do } a=0,2^{N}-1 \\
& \text { do } i=0, N-1 \\
& j=\bmod (i+1, N) \\
& \text { if }(a[i]=a[j]) \text { then } \\
& \quad H(a, a)=H(a, a)+\frac{1}{4} \\
& \text { else } \\
& \quad H(a, a)=H(a, a)-\frac{1}{4} \\
& \quad b=\operatorname{llip}(a, i, j) ; H(a, b)=\frac{1}{2} \\
& \text { endif } \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

Using conservation laws (symmetries) for block-diagonalization

We can choose the basis in such a way that the H becomes block-diagonal

- the blocks can be diagonalized individually
- we can reach larger N (but not much larger, $\mathrm{N} \approx 40$ is max)

Simplest example; magnetization conservation

$$
m_{z}=\sum_{i=1}^{N} S_{i}^{z}
$$

- blocks correspond to fixed values of m_{z}
- no H matrix elements between states of different m_{z}
- block-diagonalization just amounts to including states with only given m_{z}

Number of states in the largest block $\left(m_{z}=0\right)$:

$$
\frac{N!}{(N / 2)!(N / 2)!}
$$

Other symmetries (conserved quantum numbers)

- can be used to further split the blocks
- but more complicated
- basis states have to be constructed to obey symmetries

Pseudocode: using magnetization conservation

Constructing the basis in the block of n_{\uparrow} spins \uparrow
Store state-integers in ordered list $\mathbf{S a}, \mathbf{a}=\mathbf{1}, \ldots, \mathbf{M}$

```
do \(s=0,2^{N}-1\)
    if \(\left(\sum_{i} s[i]=n_{\uparrow}\right)\) then \(a=a+1 ; s_{a}=s\) endif
enddo
\(M=a\)
```

```
    subroutine findstate \((s, b)\)
    do
    \(b_{\min }=1 ; b_{\max }=M\)
    \(b=b_{\min }+\left(b_{\max }-b_{\text {min }}\right) / 2\)
    if \(\left(s<s_{b}\right)\) then
        \(b_{\text {max }}=b-1\)
    elseif \(\left(s>s_{b}\right)\) then
        \(b_{\text {min }}=b+1\)
        else
            exit
        endif
    enddo
```

Example; $\mathrm{N}=4, \mathrm{n}_{\uparrow}=2$

$$
\begin{array}{ll}
s_{1}=3 & (0011) \\
s_{2}=5 & (0101) \\
s_{3}=6 & (0110) \\
s_{4}=9 & (1001) \\
s_{5}=10 & (1010) \\
s_{6}=12 & (1100)
\end{array}
$$

Finding the location \boldsymbol{b} of a state-integer \boldsymbol{s} in the list

- using bisection in the ordered list

Hamiltonian construction

$$
\begin{aligned}
& \text { do } a=1, M \\
& \text { do } i=0, N-1 \\
& j=\bmod (i+1, N) \\
& \text { if }\left(s_{a}[i]=s_{a}[j]\right) \text { then } \\
& H(a, a)=H(a, a)+\frac{1}{4} \\
& \text { else } \\
& H(a, a)=H(a, a)-\frac{1}{4} \\
& s=\operatorname{flip}\left(s_{a}, i, j\right) \\
& \text { call findstate }(s, b) \\
& H(a, b)=H(a, b)+\frac{1}{2} \\
& \text { endif } \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

Momentum states (translationally invariant systems)

A periodic chain (ring) is translationally invariant

- the eigenstates have a momentum (crystal momentum)
- quantum number k

$$
T|n\rangle=\mathrm{e}^{i k}|n\rangle \quad k=m \frac{2 \pi}{N}, \quad m=0, \ldots, N-1
$$

The operator T translates the state by one lattice spacing

- for a spin basis state

$$
T\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle=\left|S_{N}^{z}, S_{1}^{z}, \ldots, S_{N-1}^{z}\right\rangle
$$

$[\mathrm{T}, \mathrm{H}]=0 \rightarrow$ momentum blocks of H

- can use eigenstates of T with given k as basis

A momentum state can be constructed from any representative state

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|S_{1}^{z}, \ldots, S_{N}^{z}\right\rangle
$$

Construct ordered list of representatives If $\mathrm{la}>$ and $\mathrm{lb}>$ are representatives, then

$$
T^{r}|a\rangle \neq|b\rangle \quad r \in\{1, \ldots, N-1\}
$$

4-site examples
(0011) \rightarrow (0110),(1100),(1001)
$(0101) \rightarrow(1010)$

The sum can contain several copies of the same state

$$
\text { If } T^{R}|a\rangle=|a\rangle \text { for some } R
$$

- the total weight for this component is

$$
1+\mathrm{e}^{-i k R}+\mathrm{e}^{-i 2 k R}+\ldots+\mathrm{e}^{-i k(N-R)}
$$

- vanishes (state incompatible with k) unless $\mathrm{kR}=\mathrm{n} 2 \pi$
- the total weight of the representative is then N/R

$$
k R=n 2 \pi \rightarrow \frac{m R}{N}=n \rightarrow m=n \frac{N}{R} \rightarrow \bmod (m, N / R)=0
$$

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}|a\rangle
$$

Normalization of a state $\mathrm{Ia}(\mathrm{k})>$ with periodicity R_{a}

$$
\langle a(k) \mid a(k)\rangle=\frac{1}{N_{a}} \times R_{a} \times\left(\frac{N}{R_{a}}\right)^{2}=1 \rightarrow N_{a}=\frac{N^{2}}{R_{a}}
$$

Pseudocode; basis construction

$$
\begin{aligned}
& \text { do } s=0,2^{N}-1 \\
& \quad \text { call checkstate }(s, R) \\
& \quad \text { if } R \geq 0 \text { then } a=a+1 ; s_{a}=s ; R_{a}=R \text { endif } \\
& \text { enddo } \\
& M=a
\end{aligned}
$$

$M=$ size of the H-block

Uses a subroutine checkstate(s,R)

- $R=$ periodicity if state-integer s is a new representative
- store in list $R_{\mathrm{a}}, a=1, \ldots, M$
- $R=-1$ if some translation of Is〉 gives a smaller integer

Translations of the representative; cyclic permutation
Define function cyclebits(t, N)

- cyclic permutations of first N bits of integer t
- F90 function ishiftc $(t,-1, N)$

Pseudocode; checkstate() subroutine

```
subroutine checkstate(s,R)
R=-1
if ( ( < i
t=s
do i=1,N
    t= cyclebits(t,N)
    if (t<s) then
        return
    elseif (t=s) then
        if (\boldsymbol{mod}(k,N/i)\not=0) return
        R=i; return
    endif
enddo
```

The representative is the lowest integer among all translations

The Hamiltonian matrix. Write $S=1 / 2$ chain hamiltonian as

$$
H_{0}=\sum_{j=1}^{N} S_{j}^{z} S_{j+1}^{z}, \quad H_{j}=\frac{1}{2}\left(S_{j}^{+} S_{j+1}^{-}+S_{j}^{+} S_{j+1}^{-}\right), \quad j=1, \ldots, N
$$

Act with H on a momentum state

$$
H|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r} H|a\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{j=0}^{N} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r} H_{j}|a\rangle
$$

$\mathrm{H}_{\mathrm{j}} \mathrm{la}>$ is related to some representative: $H_{j}|a\rangle=h_{a}^{j} T^{-l_{j}}\left|b_{j}\right\rangle$

$$
H|a(k)\rangle=\sum_{j=0}^{N} \frac{h_{a}^{j}}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{\left(r-l_{j}\right)}\left|b_{j}\right\rangle
$$

Shift summation index r and use definition of momentum state

$$
\begin{aligned}
& H|a(k)\rangle=\sum_{j=0}^{N} h_{a}^{j} \mathrm{e}^{-i k l_{j}} \sqrt{\frac{N_{b_{j}}}{N_{a}}}\left|b_{j}(k)\right\rangle \quad \rightarrow \text { matrix elements } \\
& \langle a(k)| H_{0}|a(k)\rangle=\sum_{j=1}^{N} S_{j}^{z} S_{j}^{z} \\
& \left\langle b_{j}(k)\right| H_{j>0}|a(k)\rangle=\mathrm{e}^{-i k l_{j}} \frac{1}{2} \sqrt{\frac{R_{a}}{R_{b_{j}}}}, \quad\left|b_{j}\right\rangle \propto T^{-l_{j}} H_{j}|a\rangle
\end{aligned}
$$

Pseudocode；hamiltonian construction

First，some elements needed；recall

$$
H_{j}|a\rangle=h_{a}^{j} T^{-l_{j}}\left|b_{j}\right\rangle
$$

Finding the representative r of a state－integer s

```
subroutine representative( }s,r,l
r=s;t=s;l=0
do i=1,N-1
    t=\operatorname{cyclebits}(t,N)
    if (t<r) then r=t;l=i endif
enddo
```

Finding the location of the representative in the state list
－may not be there，if the new state is incompatible with k
－ $\mathbf{b}=\mathbf{- 1}$ for not found in list

$$
|r\rangle=T^{l}|s\rangle
$$

```
subroutine findstate(s,b)
do
    b}\mp@subsup{b}{\mathrm{ min }}{}=1;\mp@subsup{b}{\mathrm{ max }}{}=
    b= b min }+(\mp@subsup{b}{\mathrm{ max }}{}-\mp@subsup{b}{\mathrm{ min }}{})/
    if (s< s⿱丶万⿱⿰㇒一乂心
        b
    elseif (s> s
        bmin}=b+
    else
        exit
    endif
    if ( }\mp@subsup{b}{\mathrm{ min }}{}>\mp@subsup{b}{\mathrm{ max }}{}\mathrm{ then
        b=-1; exit
    endif
enddo
```

Construct all the matrix elements

```
do \(a=1, M\)
    do \(i=0, N-1\)
        \(j=\bmod (i+1, N)\)
        if \(\left(s_{a}[i]=s_{a}[j]\right)\) then
            \(H(a, a)=H(a, a)+\frac{1}{4}\)
        else
            \(H(a, a)=H(a, a)-\frac{1}{4}\)
            \(s=\operatorname{flip}\left(s_{a}, i, j\right)\)
            call representative \((s, r, l)\)
            call findstate \((r, b)\)
            if \((b \geq 0)\) then
                \(\bar{H}(a, b)=H(a, b)+\frac{1}{2} \sqrt{R_{a} / R_{b}} \mathrm{e}^{i 2 \pi k l / N}\)
            endif
        endif
    enddo
enddo
```

Reflection symmetry (parity) Define a reflection (parity) operator

$$
P\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle=\left|S_{N}^{z}, \ldots, S_{2}^{z}, S_{1}^{z}\right\rangle
$$

Consider a hamiltonian for which $[\mathrm{H}, \mathrm{P}]=0$ and $[\mathrm{H}, \mathrm{T}]=0$; but note that $[\mathrm{P}, \mathrm{T}] \neq 0$
Can we still exploit both P and T at the same time? Consider the state

$$
|a(k, p)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}(1+p P)|a\rangle, \quad p= \pm 1
$$

This state has momentum k, but does it have parity p? Act with P

$$
\begin{aligned}
P|a(k, p)\rangle & =\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{-r}(P+p)|a\rangle \\
& =p \frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{i k r} T^{r}(1+p P)|a\rangle=p|a(k, p)\rangle \text { if } k=0 \text { or } k=\pi
\end{aligned}
$$

$\mathrm{k}=0, \pi$ momentum blocks are split into $\mathrm{p}=+1$ and $\mathrm{p}=-1$ sub-blocks

- $[T, P]=0$ in the $k=0, \pi$ blocks
- physically clear because $-k=k$ on the lattice for $k=0, \pi$
- we can exploit parity in a different way for other $\mathrm{k} \rightarrow$
- semi-momentum states

Semi-momentum states

Mix momenta +k and $\mathbf{- k}$ for $\mathbf{k} \neq \mathbf{0}, \boldsymbol{\pi}$. Introduce function

$$
C_{k}^{\sigma}(r)= \begin{cases}\cos (k r), & \sigma=+1 \\ \sin (k r), & \sigma=-1\end{cases}
$$

Useful trigonometric relationships

$$
\begin{aligned}
C_{k}^{ \pm}(-r) & = \pm C_{k}^{ \pm}(r) \\
C_{k}^{ \pm}(r+d) & =C_{k}^{ \pm}(r) C_{k}^{+}(d) \mp C_{k}^{\mp}(r) C_{k}^{-}(d)
\end{aligned}
$$

Semi-momentum state

$$
\begin{aligned}
& \left|a^{\sigma}(k)\right\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} C_{k}^{\sigma}(r) T^{r}|a\rangle \\
& \quad k=m \frac{2 \pi}{N}, \quad m=1, \ldots, N / 2-1, \quad \sigma= \pm 1
\end{aligned}
$$

States with same k, different σ are orthogonal

$$
\left\langle a^{-\sigma}(k) \mid a^{\sigma}(k)\right\rangle=\frac{1}{N_{a}} \sum_{r=1}^{R_{a}} \sin (k r) \cos (k r)=0
$$

Normalization of semi-momentum states

$$
N_{a}=\left(\frac{N}{R_{a}}\right)^{2} \sum_{r=1}^{R_{a}}\left[C_{k}^{\sigma}(r)\right]^{2}=\frac{N^{2}}{2 R_{a}}
$$

Hamiltonian: ac with H

$$
H\left|a^{ \pm}(k)\right\rangle=\sum_{j=0}^{N} h_{a}^{j} \sqrt{\frac{R_{a}}{R_{b_{j}}}}\left(C_{k}^{+}\left(l_{j}\right)\left|b_{j}^{ \pm}(k)\right\rangle \mp C_{k}^{-}\left(l_{j}\right)\left|b_{j}^{\mp}(k)\right\rangle\right)
$$

The matrix elements are

$$
\left\langle b^{\tau}(k)\right| H_{j}\left|a^{\sigma}(k)\right\rangle=\tau^{(\sigma-\tau) / 2} h_{a}^{j} \sqrt{\frac{N_{b_{j}}}{N_{a}}} C_{k}^{\sigma \tau}\left(l_{j}\right)
$$

σ is mot a conserved quantum number

- H and T mix $\sigma=+1$ and $\sigma=-1$ states
- the H matrix is twice as large as for momentum states

Why are the semi-momentum states useful then?

Because we can construct a real-valued basis:

Semi-momentum states with parity

This state has definite parity with $\mathrm{p}=+1$ or $\mathrm{p}=-1$

$$
\left|a^{\sigma}(k, p)\right\rangle=\frac{1}{\sqrt{N_{a}^{\sigma}}} \sum_{r=0}^{N-1} C_{k}^{\sigma}(r)(1+p P) T^{r}|a\rangle
$$

- (k,-1) and (k,+1) blocks
- roughly of the same size as original k blocks
- but these states are real, not complex!
- For $k \neq 0, \pi$, the $p=-1$ and $p=+1$ states are degenerate

r	$\mathrm{T}^{\text {r }}$	$\mathrm{T}^{\mathrm{r}} \mathrm{P}$						
0		216 1\|1	0	1	1	0	0	0
1		177 1\|0	1	1	0	0	0	1
2								
3		1981 1 0 0 1 1 1						
4		141$1\|0\| 0\|0\| 1\|0\| 1$ 1						
5								
6		$54.0 \|$0 1 1 0 1 1						
7								

P,T transformations
example: $\mathrm{N}=8$;note that

- T5 ${ }^{5}$ Pla>=la>
such P, T relationships
will affect normalization and H -elements

Normalization: We have to check whether or not

$$
T^{m} P|a\rangle=|a\rangle \text { for some } m \in\{1, \ldots, N-1\}
$$

Simple algebra gives

$$
N_{a}^{\sigma}=\frac{N^{2}}{R_{a}} \times \begin{cases}1, & T^{m} P|a\rangle \neq|a\rangle \\ 1+\sigma p \cos (k m), & T^{m} P|a\rangle=|a\rangle\end{cases}
$$

In the latter case the $\sigma=-1$ and $\sigma=+1$ states are not orthogonal

- calculation of the overlap gives

$$
\left\langle a^{\mp}(k, p) \mid a^{ \pm}(k, p)\right\rangle=-p, \quad\left(T^{m} P|a\rangle=|a\rangle \text { for some } m\right)
$$

Then only one of them should be included in the basis

- convention: use $\sigma=+1$ if $1+\sigma p \cos (k m) \neq 0$, else $\sigma=+1$

If both $\sigma=+1$ and $\sigma=-1$ are present:

- we store 2 copies of the same representative
- we will store the σ value along with the periodicity of the representative

Pseudocode: semi-momentum, parity basis construction

```
do }s=0,\mp@subsup{2}{}{N}-
    call checkstate(s,R,m)
    do }\sigma=\pm1\mathrm{ (do only }\sigma=+1\mathrm{ if }k=0\mathrm{ or }k=N/2
        if (m\not=-1) then
            if (1+\sigmap\operatorname{cos}(ikm2\pi/N)=0) R=-1
            if (\sigma=-1 and 1-\sigmap\operatorname{cos}(ikm2\pi/N)\not=0);R=-1
        endif
        if R>0 then }a=a+1;\mp@subsup{s}{a}{}=s;\mp@subsup{R}{a}{}=\sigmaR;\mp@subsup{m}{a}{}=m\mathrm{ endif
    enddo
enddo
```

In the subroutine checkstate(), we now find whether

$$
T^{m} P|a\rangle=|a\rangle \text { for some } m \in\{1, \ldots, N-1\}
$$

$\mathrm{m}=-1$ if there is no such transformation
if $\sigma=-1$ we check whether the $\sigma=+1$ state is orthogonal to the $\sigma=-1$ state or not

- if not orthogonal use $\sigma=+1$
- $\mathrm{R}=-1$ for not including
the subroutine checkstate()
is modified to gives us:
- periodicity $R(R=-1$ if incompatible)
- $m>0$ if TmPls>=Is>
- $m=-1$ if no such relationship
$\xrightarrow{\text { check all translations of Is> }}$
construct reflected state Pls>
check all translations of PIs>

```
subroutine checkstate(s,R,m)
R=-1
if ( ( }\mp@subsup{|}{i}{}s[i]\not=\mp@subsup{n}{\uparrow}{})\mathrm{ return
t=s
do i=1,N
    t= cyclebits}(t,N
    if (t<s) then
        return
    elseif (t=s) then
        if (\boldsymbol{mod}(k,N/i)\not=0) return
        R=i; exit
    endif
enddo
t= reflectbits(s,N);m=-1
do i=0,R-1
    if (t<s) then
        R=-1; return
        elseif (t=s) then
        m=i; return
    endif
    t= cyclebits}(t,N
enddo
```

Hamiltonian : Act with an operator H_{j} on a representative state:

$$
H_{j}|a\rangle=h_{a}^{j} P^{q_{j}} T^{-l_{j}}\left|b_{j}\right\rangle
$$

We can write H acting on a basis state as

$$
H\left|a^{\sigma}(k, p)\right\rangle=\sum_{j=0}^{N} \frac{h_{a}^{j}(\sigma p)^{q_{j}}}{\sqrt{N_{a}^{\sigma}}} \sum_{r=0}^{N-1} C_{k}^{\sigma}\left(r+l_{j}\right)(1+p P) T^{r}\left|b_{j}\right\rangle
$$

Using the properties (trigonometry) of the C-functions:

$$
\begin{aligned}
& H\left|a^{\sigma}(k, p)\right\rangle=\sum_{j=0}^{N} h_{a}^{j}(\sigma p)^{q_{j}} \sqrt{\frac{N_{b_{j}}^{\sigma}}{N_{a}^{\sigma}} \times} \\
& \left.\quad\left(\cos \left(k l_{j}\right)\left|b_{j}^{\sigma}(k, p)\right\rangle-\sigma \sqrt{\frac{N_{b_{j}}^{-\sigma}}{N_{b_{j}}^{\sigma}}} \sin \left(k l_{j}\right)\left|b^{-\sigma}(k, p)\right\rangle\right)\right)
\end{aligned}
$$

If, for some $\mathrm{m}, T^{m} P\left|b_{j}\right\rangle=\left|b_{j}\right\rangle$ then

$$
\begin{aligned}
& \sqrt{\frac{N_{b_{j}}^{-\sigma}}{N_{b_{j}}^{\sigma}}}=\sqrt{\frac{1-\sigma p \cos (k m)}{1+\sigma p \cos (k m)}}=\frac{|\sin (k m)|}{1+\sigma p \cos (k m)} \\
& \left\langle b_{j}^{\mp}(k, p) \mid b_{j}^{ \pm}(k, p)\right\rangle=-p
\end{aligned}
$$

else the ratio is one and the + and - states are orthogonal

The matrix elements are
diagonal in σ

$$
\begin{aligned}
& \left\langle b_{j}^{\sigma}(k, p)\right| H_{j}\left|a^{\sigma}(k, p)\right\rangle=h_{a}^{j}(\sigma p)^{q_{j}} \sqrt{\frac{N_{b_{j}}^{\sigma}}{N_{a}^{\sigma}}} \times \\
& \quad \begin{cases}\cos \left(k l_{j}\right), & P\left|b_{j}\right\rangle \neq T^{m}\left|b_{j}\right\rangle \\
\frac{\cos \left(k l_{j}\right)+\sigma p \cos \left(k\left[l_{j}-m\right]\right)}{1+\sigma p \cos (k m)}, & P\left|b_{j}\right\rangle=T^{m}\left|b_{j}\right\rangle\end{cases}
\end{aligned}
$$

off-diagonal in σ

$$
\begin{aligned}
& \left\langle b_{j}^{-\sigma}(k, p)\right| H_{j}\left|a^{\sigma}(k, p)\right\rangle=h_{a}^{j}(\sigma p)^{q_{j}} \sqrt{\frac{N_{b_{j}}^{-\sigma}}{N_{a}^{\sigma}}} \times \\
& \begin{cases}-\sigma \sin \left(k l_{j}\right), & P\left|b_{j}\right\rangle \neq T^{m}\left|b_{j}\right\rangle, \\
\frac{-\sigma \sin \left(k l_{j}\right)+p \sin \left(k\left[l_{j}-m\right]\right) \mid}{1-\sigma p \cos (k m)}, & P\left|b_{j}\right\rangle=T^{m}\left|b_{j}\right\rangle,\end{cases}
\end{aligned}
$$

Pseudocode: semi-momentum, parity hamiltonian

If 2 copies of the same representative, $\sigma=-1$ and $\sigma=+1$:

- do both in the same loop iteration
- examine the previous and next element
- carry out the loop iteration only if representative found for the first time

```
do \(a=1, M\)
    if \(\left(a>1\right.\) and \(\left.s_{a}=s_{a-1}\right)\) then
        cycle
    elseif \(\left(a<M\right.\) and \(\left.s_{a}=s_{a+1}\right)\) then
        \(n=2\)
    else
        \(n=1\)
    endif
enddo
```

n is the number of copies of the representative

$$
\begin{aligned}
& \text { do } i=a, a+n-1 \\
& \quad H(a, a)=H(a, a)+E_{z} \\
& \text { enddo }
\end{aligned}
$$

diagonal matrix elements

- $\mathrm{E}_{\mathrm{z}}=$ diagonal energy

```
s= flip}(\mp@subsup{s}{a}{},i,j
call representative(s,r,l,q)
call findstate( }r,b
if ( }b\geq0)\mathrm{ then
    if (b>1 and s}\mp@subsup{s}{b}{}=\mp@subsup{s}{b-1}{})\mathrm{ then
        m=2;b=b-1
    elseif (b<M and s}\mp@subsup{s}{b}{}=\mp@subsup{s}{b+1}{})\mathrm{ then
        m=2
    else
        m=1
    endif
    do }j=b,b+m-
    do i=a,a+n-1
        H(i,j) =H(i,j)+\operatorname{helement}(i,j,l,q)
    enddo
    enddo
endif
```

```
subroutine representative(s,r,l,q)
*
t= reflectbits}(s,N);q=
do i=1,N-1
    t= cyclebits(t,N)
    if (t<r) then r=t;l=i;q=1 endif
enddo
```

construct
off-diagonal
matrix elements
helement()
computes the values based on

- stored info
- and I, q
find the
representative r of s
- translation and reflection numbers I,q

Using spin-inversion symmetry

Spin inversion operator: $Z\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle=\left|-S_{1}^{z},-S_{2}^{z}, \ldots,-S_{N}^{z}\right\rangle$
In the magnetization block $\mathrm{m}^{\mathrm{z}}=0$ we can use eigenstates of Z

$$
\begin{aligned}
& \left|a^{\sigma}(k, p, z)\right\rangle=\frac{1}{\sqrt{N_{a}^{\sigma}}} \sum_{r=0}^{N-1} C_{k}^{\sigma}(r)(1+p P)(1+z Z) T^{r}|a\rangle \\
& Z\left|a^{\sigma}(k, p, z)\right\rangle=z\left|a^{\sigma}(k, p, z)\right\rangle, \quad z= \pm 1
\end{aligned}
$$

Normalization: must check how a representative transforms under Z,P,T

1) $T^{m} P|a\rangle \neq|a\rangle$,
$T^{m} Z|a\rangle \neq|a\rangle$
$T^{m} P Z|a\rangle \neq|a\rangle$
2) $\quad T^{m} P|a\rangle=|a\rangle$,
$T^{m} Z|a\rangle \neq|a\rangle$
$T^{m} P Z|a\rangle \neq|a\rangle$
3) $\quad T^{m} P|a\rangle \neq|a\rangle$,
$T^{m} Z|a\rangle=|a\rangle$
$T^{m} P Z|a\rangle \neq|a\rangle$
4) $\quad T^{m} P|a\rangle \neq|a\rangle$,
$T^{m} Z|a\rangle \neq|a\rangle$
$T^{m} P Z|a\rangle=|a\rangle$
5) $\quad T^{m} P|a\rangle=|a\rangle$,
$T^{n} Z|a\rangle=|a\rangle$
$\Rightarrow T^{m+n} P Z|a\rangle=|a\rangle$

For cases $2,4,5$ only $\sigma=+1$ or $\sigma=-1$ included

$$
N_{a}^{\sigma}=\frac{2 N^{2}}{R_{a}} \times\left\{\begin{array}{l}
1 \\
1+\sigma p \cos (k m) \\
1+z \cos (k m) \\
1+\sigma p z \cos (k m) \\
{[1+\sigma p \cos (k m)][1+z \cos (k n)]}
\end{array}\right.
$$

Hamiltonian: acting on a state gives a transformed representative

$$
\begin{aligned}
& H_{j}|a\rangle=h_{a}^{j} P^{q_{j}} Z^{g_{j}} T^{-l_{j}}\left|b_{j}\right\rangle \\
& q_{j} \in\{0,1\}, \quad g_{j}=\in\{0,1\}, \quad l_{j}=\{0,1, \ldots, N-1\}
\end{aligned}
$$

After some algebra we can obtain the matrix elements

$$
\begin{aligned}
& \frac{\text { diagonal in } \sigma}{\left\langle b_{j}^{\sigma}(k, p)\right| H_{j}\left|a^{\sigma}(k, p)\right\rangle}=h_{a}^{j}(\sigma p)^{q_{j}} z^{g_{j}} \sqrt{\frac{N_{b_{j}}^{\tau}}{N_{a}^{\sigma}}} \times \\
& \begin{cases}\cos \left(k l_{j}\right), & 1), 3) \\
\frac{\cos \left(k l_{j}\right)+\sigma p \cos \left(k\left[l_{j}-m\right]\right)}{1+\sigma p \cos (k m)}, & 2), 5) \\
\frac{\left.\cos \left(k l_{j}\right)+\sigma p z \cos \left(k l_{j}-m\right]\right)}{1+\sigma p z \cos (k m)}, & 4)\end{cases}
\end{aligned}
$$

$$
\frac{\text { off-diagonal in } \sigma}{\left\langle b_{j}^{-\sigma}(k, p)\right| H_{j}\left|a^{\sigma}(k, p)\right\rangle=h_{a}^{j}(\sigma p)^{q_{j}} z^{g_{j}} \sqrt{\frac{N_{b_{j}}^{\tau}}{N_{a}^{\sigma}}} \times}
$$

$$
\begin{cases}-\sigma \sin \left(k l_{j}\right), & 1), 3) \\ \frac{-\sigma \sin \left(k l_{j}\right)+p \sin \left(k\left[l_{j}-m\right]\right)}{1-\sigma p \cos (k m)}, & 2), 5) \\ \frac{-\sigma \sin \left(k l_{j}\right)+p z \sin \left(k\left[l_{j}-m\right]\right)}{1-\sigma p z \cos (k m)}, & 4)\end{cases}
$$

Example: block sizes

$\mathrm{k}=0, \mathrm{~m}_{\mathrm{z}}=0$ (largest block)

$(p= \pm 1, z= \pm 1)$				
N	$(+1,+1)$	$(+1,-1)$	$(-1,+1)$	$(-1,-1)$
8	7	1	0	2
12	35	15	9	21
16	257	183	158	212
20	2518	2234	2136	2364
24	28968	27854	27482	28416
28	361270	356876	355458	359256
32	4707969	4690551	4685150	4700500

Total spin S conservation

- difficult to exploit
- complicated basis states
- calculate \mathbf{S} using $\mathbf{S}^{\mathbf{2}=\mathbf{S}(\mathbf{S + 1})}$

$$
\begin{aligned}
\mathbf{S}^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \\
& =2 \sum_{i<j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{3}{4} N
\end{aligned}
$$

Full diagonalization; expectation values
shorthand block label: $\mathbf{j}=\left(\mathbf{m}_{\mathbf{z}}, \mathbf{k}, \mathbf{p}\right)$ or $\mathbf{j}=\left(\mathbf{m}_{\mathbf{z}}=\mathbf{0}, \mathbf{k}, \mathbf{p}, \mathbf{z}\right)$

$$
D_{j}^{-1} H_{j} D_{j}=E_{j}, \quad\left\langle n_{j}\right| A\left|n_{j}\right\rangle=\left[D_{j}^{-1} A D_{j}\right]_{n n}
$$

$\mathrm{T}>0$: sum over all blocks j and states in block $\mathrm{n}=0, \mathrm{M}_{\mathrm{j}}-1$

$$
\langle A\rangle=\frac{1}{Z} \sum_{j} \sum_{n=0}^{M_{j}-1} \mathrm{e}^{-\beta E_{j, n}}\left[D_{j}^{-1} A_{j} U_{j}\right]_{n n}, \quad Z=\sum_{j} \sum_{n=0}^{M_{j}-1} \mathrm{e}^{-\beta E_{j, n}}
$$

$\mathrm{E}_{\mathrm{j}}=$ diagonal (energy) matrix, $\mathrm{E}_{\mathrm{j}, \mathrm{n}}=$ energies, $\mathrm{n}=0, \ldots, \mathrm{M}_{\mathrm{j}}-1$
Full diagonalization limited to small $\mathrm{N} ; \mathrm{N}=20-24$

Example: Thermodynamics

some quantities can be computed using only the magnetization $m_{z}=0$ sector

- spin-inversion symmetry can be used, smallest blocks
- spin-S state is $(2 S+1)$-fold degenerate (no magnetix field) \rightarrow weight factor
- possible spin dependence of expectation value \rightarrow average over $\mathrm{m}_{z}=-\mathrm{S}, . . ., \mathrm{S}$

$$
\begin{aligned}
C & =\frac{d\langle H\rangle}{d t}=\frac{1}{T^{2}}\left(\left\langle H^{2}\right\rangle-\langle H\rangle^{2}\right) \\
\chi^{z} & =\frac{d\left\langle m_{z}\right\rangle}{d h_{z}}=\frac{1}{T}\left(\left\langle m_{z}^{2}\right\rangle-\left\langle m_{z}\right\rangle^{2}\right) \\
\left\langle m_{z}\right\rangle & =0, \quad\left\langle m_{z}^{2}\right\rangle=\frac{\left\langle m_{x}^{2}+m_{y}^{2}+m_{z}^{2}\right\rangle}{3}=\frac{\left\langle S^{2}\right\rangle}{3}=\frac{S(S+1)}{3}
\end{aligned}
$$

Compared with leading high-T forms
$\mathrm{X}=(1 / 4) / T$
$C=(3 / 13) / T^{2}$

The Lanczos method

If we need only the ground state and a small number of excitations

- can use "Krylov space" methods, which work for much larger matrices
- basis states with 10^{7} states or more can be easily handled (30-40 spins)

The Krylov space and "projecting out" the ground state
Start with an arbitrary state $|\psi\rangle$

- it has an expansion in eigenstates of H ; act with a high power \wedge of H

$$
H^{\Lambda}|\Psi\rangle=\sum_{n} c_{n} E_{n}^{\Lambda}|n\rangle=E_{0}^{\Lambda}\left(c_{0}|0\rangle+c_{1}\left(\frac{E_{1}}{E_{0}}\right)^{\Lambda}|1\rangle+\ldots\right)
$$

For large Λ, if the state with largest $\left|E_{n}\right|$ dominates the sum

- one may have to subtract a constant, $H-C$, to ensure ground state - even better to use linear combination of states generated for different Λ

$$
\left|\psi_{a}\right\rangle=\sum_{m=0}^{\Lambda} \psi_{a}(m) H^{m}|\Psi\rangle, \quad a=0, \ldots, \Lambda
$$

- diagonalize H in this basis

In the Lanczos basis, H is tridiagonal, convenient to generate and use

- Normally $\mathrm{M}=50-200$ basis states is enough; easy to diagonalize H

Constructing the Lanczos basis

First: construct orthogonal but not normalized basis $\left\{\mathbf{f}_{\mathrm{m}}\right\}$. Define

$$
N_{m}=\left\langle f_{m} \mid f_{m}\right\rangle, \quad H_{m m}=\left\langle f_{m}\right| H\left|f_{m}\right\rangle
$$

The first state $\mathrm{If}_{0}>$ is arbitrary, e.g., random. The next one is

$$
\left|f_{1}\right\rangle=H\left|f_{0}\right\rangle-a_{0}\left|f_{0}\right\rangle
$$

Demand orthogonality

$$
\left\langle f_{1} \mid f_{0}\right\rangle=\left\langle f_{0}\right| H\left|f_{0}\right\rangle-a_{0}\left\langle f_{0} \mid f_{0}\right\rangle=H_{00}-a_{0} N_{0} \quad \rightarrow a_{0}=H_{00} / N_{0}
$$

The next state and its overlaps with the previous states

$$
\begin{aligned}
& \left|f_{2}\right\rangle=H\left|f_{1}\right\rangle-a_{1}\left|f_{1}\right\rangle-b_{0}\left|f_{0}\right\rangle \\
& \left\langle f_{2} \mid f_{1}\right\rangle=H_{11}-a_{1} N_{1}, \quad\left\langle f_{2} \mid f_{0}\right\rangle=N_{1}-b_{0} N_{0}
\end{aligned}
$$

For orthogonal states

$$
a_{1}=H_{11} / N_{1}, \quad b_{0}=N_{1} / N_{0}
$$

All subsequent states are constructed according to

$$
\begin{aligned}
& \left|f_{m+1}\right\rangle=H\left|f_{m}\right\rangle-a_{m}\left|f_{m}\right\rangle-b_{m-1}\left|f_{m-1}\right\rangle \\
& a_{m}=H_{m m} / N_{m}, \quad b_{m-1}=N_{m} / N_{m-1}
\end{aligned}
$$

Easy to prove orthogonality of all these states $\left(\left\langle f_{m+1} \mid f_{m}\right\rangle=0\right.$ is enough)

The hamiltonian in the Lanczos basis

Rewrite the state generation formula

$$
H\left|f_{m}\right\rangle=\left|f_{m+1}\right\rangle+a_{m}\left|f_{m}\right\rangle+b_{m-1}\left|f_{m-1}\right\rangle
$$

Because of the orthogonality, the only non-0 matrix elements are

$$
\begin{aligned}
\left\langle f_{m-1}\right| H\left|f_{m}\right\rangle & =b_{m-1} N_{m-1}=N_{m} \\
\left\langle f_{m}\right| H\left|f_{m}\right\rangle & =a_{m} N_{m} \\
\left\langle f_{m+1}\right| H\left|f_{m}\right\rangle & =N_{m+1}
\end{aligned}
$$

But the f-states or not normalized. The normalized states are:

$$
\left|\phi_{m}\right\rangle=\frac{1}{\sqrt{N_{m}}}\left|f_{m}\right\rangle
$$

In this basis the H -matrix is

$$
\begin{aligned}
\left\langle\phi_{m-1}\right| H\left|\phi_{m}\right\rangle & =\sqrt{b_{m-1}} \\
\left\langle\phi_{m}\right| H\left|\phi_{m}\right\rangle & =a_{m} \\
\left\langle\phi_{m+1}\right| H\left|\phi_{m}\right\rangle & =\sqrt{b_{m}}
\end{aligned}
$$

Potential problem:

The normalization constants N_{m} can become very large (think of $\mathrm{E}_{0}{ }^{\wedge}$)

Solution:

generate the normalized basis directly

- start with $\mid \phi_{0}>$ arbitrary, normalized, and then

$$
\begin{aligned}
& \left|\phi_{1}\right\rangle=\frac{1}{N_{1}}\left(H\left|\phi_{0}\right\rangle-a_{0}\left|\phi_{0}\right\rangle\right) \\
& \left|\phi_{m+1}\right\rangle=\frac{1}{N_{m+1}}\left(H\left|\phi_{m}\right\rangle-a_{m}\left|\phi_{m}\right\rangle-N_{m}\left|\phi_{m-1}\right\rangle\right)=\frac{\left|\gamma_{m}\right\rangle}{N_{m+1}}
\end{aligned}
$$

The definition of N_{m} is different, and no b_{m} :

$$
\begin{aligned}
a_{m} & =\left\langle\phi_{m}\right| H\left|\phi_{m}\right\rangle \\
N_{m} & =\left\langle\gamma_{m} \mid \gamma_{m}\right\rangle^{-1 / 2}
\end{aligned}
$$

Generate ${ } \gamma_{m}>$ first, normalize to get N_{m+1}
The H-matrix is

$$
\begin{aligned}
\left\langle\phi_{m-1}\right| H\left|\phi_{m}\right\rangle & =N_{m} \\
\left\langle\phi_{m}\right| H\left|\phi_{m}\right\rangle & =a_{m} \\
\left\langle\phi_{m+1}\right| H\left|\phi_{m}\right\rangle & =N_{m+1}
\end{aligned}
$$

Lanczos basis generation in practice

Here: generate the orthogonal basis $\left\{\phi_{m}\right\}$ directly

$$
\left|\phi_{m}\right\rangle=\sum_{a=1}^{M} \phi_{m}(a)|a\rangle, \quad m=0, \ldots, \Lambda
$$

in a given symmetry block of size M
The coefficients $\Phi_{m}(a)$ are stored as $\Lambda+1$ vectors of size M

- may store only the vectors $\phi_{\mathrm{m}-1}$ and ϕ_{m} to generate $\phi_{\mathrm{m}+1}$
- but basis has to be re-generated when computing expectation values
- stabilization by "re-orthogonalization" (later) requires storage of all ϕ_{m}

The main computational effort is in acting with the hamiltonian; Hl $\phi_{m}>$

- implement as a subroutine hoperation (ϕ, γ), where $|\gamma>=H| \phi>$
- state normalization implemented as normalize(ϕ, n)
- $\phi=$ vector to normalize, $\mathrm{n}=\langle\Phi \mid \phi\rangle$ before normalization

Pseudocode; Lanczos basis generation

Initial random state

```
do i=1,M
    \phi0}(i)=\operatorname{randomfloat (0, 1)
enddo
call normalize( }\mp@subsup{\phi}{0}{},\mp@subsup{n}{0}{}
```

second state

```
call hoperation (}\mp@subsup{\phi}{0}{},\mp@subsup{\phi}{1}{}
a}=\langle\mp@subsup{\phi}{0}{}|\mp@subsup{\phi}{1}{}\rangle;\mp@subsup{\phi}{1}{}=\mp@subsup{\phi}{0}{}-\mp@subsup{a}{0}{}|\mp@subsup{\phi}{1}{}
call normalize( ( }\mp@subsup{|}{1}{},\mp@subsup{n}{1}{}
```

Generate the rest of the states

```
do }m=1,\Lambda-
    call hoperation( }\mp@subsup{\phi}{m}{},\mp@subsup{\phi}{m+1}{}
    am}=\langle\mp@subsup{\phi}{m}{}|\mp@subsup{\phi}{m+1}{}
    \phim+1}=\mp@subsup{\phi}{m+1}{}-\mp@subsup{a}{m}{}\mp@subsup{\phi}{m}{}-\mp@subsup{n}{m}{}\mp@subsup{\phi}{m-1}{
    call normalize( }\mp@subsup{\phi}{m+1}{},\mp@subsup{n}{m+1}{}
enddo
```

Note: the H-matrix can be constructed and diagonalized after each step

- follow evolution of energy versus Λ
- stop based on some convergence criterion on E_{0} (or higher energy)
- expectation values converge slower than energies

The subroutine hoperation (ϕ, γ) implements

$$
H|\phi\rangle=|\gamma\rangle=\sum_{a=1}^{M} \sum_{b=1}^{M} \phi(a)\langle b| H|a\rangle|b\rangle
$$

in a given symmetry block ($\mathrm{M}=$ block size)
We do not want to store H as an $M \times M$ matrix (too big). Two options:

- carry out the operations on the fly; only the vectors are stored
- store H in a compact form; only non-0 elements (sparse matrix)

Storing H speeds up the Lanczos iterations

- but may require a lot of memory

Compact storage of H : For each $a=1, M$

- e_{a} is the number of non-0 elements $\langle\mathrm{b}| \mathrm{H}|\mathrm{a}\rangle$
- labels $i=s_{a}+1, s_{a}+e_{a}$ will refer to these matrix elements; $\quad s_{a}=\sum_{c=1} e_{a}$
- $H(i)$ contains the values of the matrix elements $\langle b| H|a\rangle$
- B (i) contains the corresponding "target" state index b
- The hamiltonian is symmetric
-store only elements with $\mathrm{b} \leq \mathrm{a}$ (divide diagonal elements by 2)

Pseudocode; hamiltonian operation with compact storage

```
subroutine hoperation \((\phi, \gamma)\)
\(\gamma=0 ; i=0\)
do \(a=1, M\)
    do \(j=1, e_{a}\)
        \(i=i+1\)
        \(\gamma(B(i))=\gamma(B(i))+H(i) \phi(a)\)
        \(\gamma(a)=\gamma(a)+H(i) \phi(B(i))\)
    enddo
enddo
```

$$
H|\phi\rangle=|\gamma\rangle=\sum_{a=1}^{M} \sum_{b=1}^{M} \phi(a)\langle b| H|a\rangle|b\rangle
$$

Further storage compactification possible

- small number of different elements
- use mapping $\langle\mathbf{b}| \mathbf{H}|\mathbf{a}\rangle \rightarrow$ integer
- many operations on la> give same lb>
- add up all contributions before storing

Operator expectation values

Diagonalizing the tri-diagonal matrix \rightarrow eigenstates in the Lanczos basis

- eigenvectors v_{n}, energies E_{n}
- only some number of low-energy states $(\ll \Lambda)$ are correct eigenstates of H

To compute expectation values we normally go back to the original basis

$$
\psi_{n}(a)=\sum_{m=0}^{\Lambda} v_{n}(m) \phi_{m}(a), \quad a=1, \ldots, M
$$

To compute $\left\langle\psi_{\mathbf{n}}\right| \mathrm{O}\left|\psi_{\mathbf{n}}\right\rangle$ first construct

$$
\begin{aligned}
O\left|\psi_{n}\right\rangle=\left|\psi_{n}^{O}\right\rangle & =\sum_{a=1}^{M} \psi_{n}(a) O|a\rangle \\
& =\sum_{a=1}^{M} \sum_{b=1}^{M} \psi_{n}(a)|b\rangle\langle b| O|a\rangle \\
& =\sum_{b=1}^{M} \psi_{n}^{O}(b)|b\rangle \quad \psi_{n}^{O}(b)=\sum_{a=1}^{M} \psi_{n}(a)\langle b| O|a\rangle
\end{aligned}
$$

Then evaluate the scalar product

$$
\left\langle\psi_{n}\right| O\left|\psi_{n}\right\rangle=\left\langle\psi_{n} \mid \psi_{n}^{O}\right\rangle=\sum_{a=1}^{M} \psi_{n}(a) \psi_{n}^{O}(a)
$$

Convergence properties of the Lanczos method

Example; 24-site chain $m_{z}=0, k=0, p=1, z=1$ block size $M=28416$

Ground state converges first, then successively excited states
Loss of orthogonality: accumulation of numerical error \rightarrow basis becomes non-orthogonal

- higher states collapse down onto lower ones
- can be cured with re-orthogonalization

Example; 16-site chain $m_{z}=0, k=0, p=1, z=1$ block size $M=212$

- (a) non-orthogonality
- (b) re-orthogonalized

Re-orthogonalization procedure

For each state generated, remove all components of prior states, $i=1, \ldots, m$

- easy if we work with the normalized basis and all states are stored

$$
\left|\phi_{m}\right\rangle \rightarrow \frac{\left|\phi_{m}\right\rangle-q\left|\phi_{i}\right\rangle}{1-q^{2}}, \quad q=\left\langle\phi_{i} \mid \phi_{m}\right\rangle
$$

Pseudocode: modify state generation

```
do \(m=1, \Lambda-1\)
    call hoperation \(\left(\phi_{m}, \phi_{m+1}\right)\)
    \(a_{m}=\left\langle\phi_{m} \mid \phi_{m+1}\right\rangle ; \phi_{m+1}=\phi_{m+1}-a_{m} \phi_{m}-n_{m} \phi_{m-1}\)
    call normalize \(\left(\phi_{m+1}, n_{m+1}\right)\)
    do \(i=1\), \(m\)
        \(q=\left\langle\phi_{m+1} \mid \phi_{i}\right\rangle ; \phi_{m+1}=\left(\phi_{m+1}-q \phi_{i}\right) /\left(1-q^{2}\right)\)
    enddo
enddo
```

Note: the Lanczos method can only generate a single state of a multiplet

- some random linear combination of degenerate states

Example: 2 degenerate states i, j :

$$
H^{\Lambda}|\Psi\rangle=\sum_{m \neq i, j} c_{m} E_{m}^{\Lambda}\left|\psi_{m}\right\rangle+E_{i, j}^{m}\left(c_{i}\left|\psi_{i}\right\rangle+c_{j}\left|\psi_{j}\right\rangle\right)
$$

The mixing of the duplet is determined by $\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}$ of the initial state

Spin correlations in the Heisenberg chain

Let's look at the (staggered) spin correlation function

$$
C(r)=\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{i+r}\right\rangle(-1)^{r}
$$

versus the distance r and at $r=N / 2$ versus system size N
Theory (bosonization conformal field theory) predicts (for large r, N)

$$
C(r) \propto \frac{\ln ^{1 / 2}\left(r / r_{0}\right)}{r}
$$

Plausible based on N up to 32

- other methods for larger N

Power-law correlations are a sign of a "critical" state; at the boundary between

- ordered (antiferromagnetic)
- disordered (spin liquid)

Excitations of the Heisenberg chain

- the ground state is a singlet $(S=0)$ for even N
- the first excited state is a triplet ($\mathrm{S}=1$)
- can be understood as pair of "spinons"

Neutron scattering experiments

- quasi-one-dimensional KCuF_{3}
B. Lake et al., Nature Materials 4 329-334 (2005)

Heisenberg chain with frustrated interactions

$$
H=\sum_{i=1}^{N}\left[J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}+J_{2} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2}\right]
$$

For the special point $J_{2} / J_{1}=0.5$, this model has an exact solution

Singlet-product states

$$
\begin{aligned}
\left|\Psi_{A}\right\rangle & =|(1,2)(3,4)(5,6) \cdots\rangle \\
\left|\Psi_{B}\right\rangle & =|(1, N)(3,2)(5,4) \cdots\rangle
\end{aligned}
$$

It is not hard to show that these are eigenstates of H (we will do later)

$$
(a, b)=\left(\uparrow_{a} \downarrow_{b}-\downarrow_{a} \uparrow_{b}\right) / \sqrt{2}
$$

The system has this kind of order (with fluctuations, no exact solution) for all $J_{2} / J_{1}>0.2411 \ldots .$. This is a quantum phase transition between

- a critical state
- a valence-bond-solid (VBS) state

The symmetry is not broken for finite N

- the ground state is a superposition of the two ordered states

$$
\left|\Psi_{0}\right\rangle \sim\left|\Psi_{A}\right\rangle+\left|\Psi_{B}\right\rangle, \quad\left|\Psi_{1}\right\rangle \sim\left|\Psi_{A}\right\rangle-\left|\Psi_{B}\right\rangle
$$

The VBS state can be detected in finite systems using "dimer" correlations

$$
D(r)=\left\langle B_{i} B_{i+r}\right\rangle=\left\langle\left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1}\right)\left(\mathbf{S}_{i+r} \cdot \mathbf{S}_{i+1+r}\right)\right\rangle
$$

Results from Lanczos diagonaization; different coupling ratios $g=J_{2} / J_{1}$

It is not easy to detect the transition this way

- much larger systems are needed for observing a sharp transition
- other properties can be used to accurately determine the critical point g_{c}

Determining the transition point using level crossings

Lowest excitation for the $\mathrm{g}=0$ Heisenberg chain is a triplet

- this can be expected for all $\mathrm{g}<\mathrm{g}_{\mathrm{c}}$

The VBS state is 2-fold degenerate for infinite N

- and for any N at $\mathrm{g}=1 / 2$
- these two states are singlets
- gap between them closes exponentially as $N \rightarrow \infty$

- the lowest excitation is the second singlet

The two lowest excited state should cross at g_{c}

Extrapolating point for different N up to 32 gives $\mathrm{g}_{\mathrm{c}}=0.2411674(2)$

