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O
utline

•  C
onventional N

éel - param
agnet quantum

 phase transition 

•  Insights from
 Q

M
C

 sim
ulations; SU

(2) and SU
(N

) m
odels

•  Em
ergent U

(1) sym
m

etry of the near-critical VBS state

•  First-order scenario vs log corrections

•  2D
 H

eisenberg m
odel; T=0 long-range N

éel order

•  Valence-bonds-solid (VB
S) order and “deconfined” criticality

•  M
icroscopic realizations; J-Q

 m
odel
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 Long-range antiferrom
agnetic order in the 2D

 S=1/2 H
eisenberg m

odel

R
igorous proof of ordered ground states for S>1/2
•  no analytical proof for S=1/2
•  quantum

 M
onte C

arlo is the only 
   unbiased w

ay to com
pute m

s
-  finite-size calculation
-  no approxim

ations
-  extrapolation to infinite size

H
=

J
��i,j⇥ S

i ·S
j

R
eger & Young 1988:

m
s

=
0.30(2)

�
60

%
of

classicalvalue
Sandvik & Evertz 2010:

m
s

=
0.30743(1)

Long-range order: <m
s 2> > 0 for N→

∞

⌃m
s

=
1N

N�i=
1

�
i ⌃S

i ,
�

i =
(�

1)
x

i +
y

i
(2D

square
lattice)

Sublattice m
agnetization

3
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C
onventional quantum

 phase transitions
Exam

ple: D
im

erized S=1/2 H
eisenberg m

odels
• every spin belongs to a dim

er (strongly-coupled pair)
•  m

any possibilities, e.g., bilayer, dim
erized single layer

2D quantum
 Heisenberg m

ap onto (2+1)D classical Heisenberg (Haldane) 
⇒

 3D classical Heisenberg (O
3) universality class; Q

M
C confirm

ed

Singlet form
ation on strong bonds ➙

 Neel - disordered transition
  G

round state (T=0) phases
�

=
spin

gap
s

w
eak interactions

strong interactions

Experim
ental realization (3D

 system
): TlC

uC
l3

4
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• non-trivial non-m
agnetic ground states are possible, e.g.,

➡
 resonating valence-bond (RVB) spin liquid

➡
 valence-bond solid (VBS)

H
=

J
��i,j⇥ S

i ·S
j

+
g
⇥

···
M

ore com
plex non-m

agnetic states; system
s w

ith 1 spin per unit cell

N
on-m

agnetic states often have natural descriptions w
ith valence bonds

=
(⇥

i ⇤
j
�
⇤

i ⇥
j )/ ⌅

2
i

j

In the 2D
 Néel state the bond-length (r) probability has the form

:
•  non-m

agnetic states dom
inated by short bonds

P
(r)�

1r
3

�

�

The basis including bonds of all lengths 
is overcom

plete in the singlet sector

5
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=
〈
!S

i
·
!S

j 〉

VBS states and deconfined quantum
 criticality

Senthil, V
ishw

anath, B
alents, Sachdev, Fisher, Science 303, 1490 (2004)

Neel-VBS transition in 2D
• generically continuous
•

violating the “Landau rule”
stating 1st-order transition

•
field theory: non-com

pact CP
1

•
large-N calculations for CP

N
-1

H
=

J
��i,j⇥ S

i ·S
j

+
g
⇥

···

Landau-G
inzburg paradigm

:
direct transition betw

een states breaking unrelated sym
m

etries is 1st-order
• except at fine-tuned m

ulti-critical points
6
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Spinon confinem
ent in a VBS state: standard picture

The VBS ground state is a singlet

A spinon is an S=1/2 excitation

An S=1 (“triplon”) excitation 
can be regarded as a bound 
state of tw

o spinons
•  confined spinons
• confinem

ent due to “string” 
in VBS background

7
W
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H
ow

 is the confinem
ent m

odified by VBS fluctuations?

W
hat is the length-scale of confinem

ent?

W
hat are the actual VBS fluctuations like?

W
hat happens at the VBS-N

eel transition?
In w

hat m
odel can this be studied on large lattices w

ith Q
M

C
?

•  frustrated system
s have sign problem

s
•  are there sign-problem

 free m
odels w

ith N
eel-VB

S transitions?

8
W
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Spinons in 1D
: a single spinon in odd-N

 J-Q
3  m

odel
- one spin (spinon) doesn’t belong to any bond
- bra and ket spinons at different locations; non-orthogonality

Y. Tang and AW
S, Phys. Rev. Lett. 107, 157201 (2011)9
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Tw
o spinons in 1D

 VBS are deconfined (no confining potential)
- 2 separated (deconfined) sets of bra/ket spinons

10
W
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2D
 VBS states from

 frustrated interactions
Q

uantum
 phase transitions as som

e coupling (ratio) is varied (T=0)
• J

1 -J
2  Heisenberg m

odel is the prototypical exam
ple

H
=

��i,j⇥ J
ij ⌅S

i ·
⌅S

j
=

J
1

=
J

2

g
=

J
2 /J

1

• G
round states for sm

all and large g are w
ell understood

‣  Standard N
éel order up to g≈0.45; collinear m

agnetic order for g>0.6 

0
�

g
<

0.45
0.45

�
g

<
0.6

g
>

0.6
• A non-m

agnetic state exists betw
een the m

agnetic phases
‣  M

ost likely a colum
nar VBS

‣  Som
e calculations (interpretations) suggest RVB spin liquid

• 2D and 3D frustrated m
odels are challenging 

‣  no generally applicable unbiased m
ethods (num

erical or analytical)
‣  Q

M
C sign problem
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The H
eisenberg interaction is equivalent to a singlet-projector

C
ij |�

sij ⇥
=

|�
sij ⇥,

C
ij |�

tmij
⇥

=
0

(m
=
�

1,0,1)
C

ij
=

14
�

⇤S
i ·

⇤S
j

VBS states from
 m

ulti-spin interactions
Sandvik, Phys. Rev. Lett. 98, 227202 (2007)

• w
e can construct m

odels w
ith products of singlet projectors

• no frustration in the conventional sense (Q
M

C can be used)
• correlated singlet projection reduces the antiferrom

agnetic order

+ all translations
   and rotations

The “J-Q
” m

odel w
ith tw

o projectors is

H
=
�

J
��ij⇥

C
ij �

Q
��ij

k
l⇥ C

ij C
k
l

• Has Néel-VBS transition, appears to be continuous
• Not a realistic m

icroscopic m
odel for m

aterials
• Intended to study Néel-VBS transition (universal physics)

12
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N
éel-VBS transition in the J-Q

 m
odel

T=0 projector Q
M

C
 results (no approxim

ations; finite size)
Sandvik, PR

L 2007; Lou, Sandvik, K
aw

ashim
a, PR

B
 (2009)

VBS vector order param
eter (D

x ,D
y ) (x and y lattice orientations)

D
x

=
1N

N�i=
1 (�

1)
x

iS
i ·S

i+
x̂ ,

D
y

=
1N

N�i=
1 (�

1)
y

iS
i ·S

i+
ŷ

⌅M
=

1N

�

i

(�
1)

x
i +

y
i⌅S

i

Néel order param
eter (staggered m

agnetization)

M
2

=
⇥

⌅M
·

⌅M
⇤,

D
2

=
⇥D

2x
+

D
2y ⇤

No sym
m

etry-breaking in sim
ulations; study the squares

Finite-size scaling: a critical squared order param
eter (A) scales as

coupling ratio

q
=

Q
p

Q
p

+
J

,
p

=
2,3

A
(L

,q)
=

L
�

(1
+

�
)f[(q

�
q
c )L

1
/
⇥]

Data “collapse” for different system
 

sizes L of AL
1+η graphed vs (q-q

c )L
1/ν
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J-Q
2  m

odel; q
c =0.961(1)

�
s

=
0.35(2)

�
d

=
0.20(2)

⇥
=

0.67(1)

J-Q
3  m

odel; q
c =0.600(3)

�
s

=
0.33(2)

�
d

=
0.20(2)

⇥
=

0.69(2)

Exponents universal 
(w

ithin error bars)

J
�

Q
2

J
�

Q
3

η
s  “large” in agreem

ent 
w

ith theory
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M
aking connections w

ith field theory results
The non-com

pact CP
N-1 m

odel has been studied for large N
•  large-N expansion, SU(N) sym

m
etry (N+1 com

ponents)

⌘
s
=

1
�

32

⇡
2N

+
...

Senthil et al. (2004), K
aul &

 Sachv (2009)

• older results, using relationship betw
een m

onopoles in the 
field theory and the VBS order param

eter   R
ead &

 Sachdev (1989)

⌘
d
=

0.2492
⇥

N
�
1
+

...

How
 can w

e test these results?
Q

M
C

 studies of spin ham
iltonians w

ith SU
(N

) spins

2D SU(N) Heisenberg m
odel [H

arada, K
aw

ashim
a, Troyer (2003)]

•  Fundam
ental and conjugate repr. of SU(N) on A,B sublattices

•  No sign problem
 in Q

M
C

•  Sam
e repr. used in large-N calculations

•  Neel ground state for N<5, VBS for N=5,6,... 
15
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the
spin

operators
previously

used
in

m
ean-field

2
and

Q
M

C
calculations 18

of
the

SU
!N

"
H

eisenberg
m

odel.W
e

find
con-

tinuous
A

F-V
B

S
transitions

also
for

N
=

3
and

4
!w

hereas
for

N
!

4
the

system
is

V
B

S
ordered

18,19
for

all
Q

2 !
0".

A
n

open
problem

in
previous

studies
of

the
J-Q

2
m

odel
w

as
that

the
order-param

eter
distribution

inside
the

V
B

S
phase

did
notshow

the
expected

fourfold
sym

m
etry.Instead,

the
distribution

w
as

alw
ays

U
!1"

sym
m

etric. 7,9
A

n
em

ergent
U

!1"
sym

m
etry

close
to

criticality
is

indeed
predicted

by
the

field
theory

3
as

a
consequence

of
a

dangerously
irrelevant

operator,butdeep
inside

the
V

B
S

phase
the

order
param

eter
should

exhibit
Z

4
sym

m
etry

!w
hich

has
been

observed
in

other
quantum

m
odels 19,20".

W
ith

the
J-Q

3
m

odel
and

the
N

!
2

versions
of

the
J-Q

2
m

odel,
w

e
can

now
reach

suffi-
ciently

deep
inside

the
V

B
S

phase
to

observe
the

expected
U

!1"−
Z

4
crossover.

W
e

present
quantitative

finite-size
scal-

ing
results

for
the

exponent
governing

the
crossover.

For
all

the
m

odels,
w

e
com

pute
the

square
of

the
stag-

gered
m

agnetization,
M

2=
#M

·M
$,w

here

M
=

1L
2 %x,y !−

1" x+
yS

x,y
!5"

is
the

operator
of

the
A

F
!spin"

order
param

eter.
W

e
define

the
colum

nar
V

B
S

order
param

eter
in

term
s

of
nearest-

neighbor!dim
er"

correlators

D
x =

1L
2 %x,y !−

1" xS
x,y ·S

x+1,y ,
!6"

and
D

y
defined

analogously.
W

e
com

pute
the

square
D

2

=
#D

x 2+
D

y 2$
and

also
study

the
probability

distribution
P!D

x ,D
y ",

w
ith

D
x

and
D

y
evaluated

in
the

configurations
generated

in
the

Q
M

C
sam

pling
!as

in
R

ef.7".To
extractthe

critical
points

and
exponents,

w
e

use
standard

finite-size
scaling

form
s

for
the

order
param

eters,

M
2=

L
1+

"
sF

s !&q
−

q
c 'L

1/#",
!7"

D
2=

L
1+

"
dF

d !&q
−

q
c 'L

1/#",
!8"

w
here

"
s

and
"

d
are

the
exponents

governing
the

spin
and

dim
er

correlation
functions,

respectively,
at

criticality
!the

anom
alous

dim
ensions"

and
1

+
"

s,d =
2$

s,d /#.
H

ere
w

e
as-

sum
e

a
dynam

ic
exponentz=

1,in
accord

w
ith

previous
stud-

ies
of

the
J-Q

2
m

odel, 7,8
and

use
a

single
correlation

length
exponent

#,as
in

the
theory. 3

W
e

first
present

results
for

the
SU

!2"
m

odels.
D

efining
coupling

ratios
q

=
Q

p /!J+
Q

p ",
w

e
find

critical
points

q
c =

0.961!1"
for

p
=

2
and

q
c =

0.600!5"
for

p
=

3.T
he

form
er

agrees
w

ith
previous

estim
ates. 7–9

Standard
data

collapse
plots

according
to

E
qs.!7"

and
!8"

are
show

n
in

Fig.2.T
he

critical
exponents

are
listed

on
the

first
tw

o
lines

of
Table

I.
H

ere
itis

very
significantthatallthe

exponents
are

the
sam

e
for

the
tw

o
m

odels.
T

his
supports

the
notion

of
a

universal
deconfined

quantum
-critical

point.
N

ote
that

the
order

pa-
ram

eters
decay

as
L

1+
"

s,d
at

the
com

m
on

critical
point

q
=

q
c .

A
t

a
first-order

transition,
the

order
param

eters
should

in-
stead

be
size

independent
at

q
c ,due

to
phase

coexistence.
C

om
paring

w
ith

previous
results

for
the

J-Q
2

m
odel,

the
results

for
sm

aller
system

s
in

R
ef.

7
w

ere
consistent

w
ith

"
s =

"
d

!w
ith

a
value

betw
een

those
found

here",
but

the
present

results
for

larger
system

s
clearly

show
that

the
spin

and
dim

er
exponents

are
different.T

he
theory

does
notm

ake
any

specific
predictions

for
a

relationship
betw

een
"

s and
"

d ,
and

they
can

be
expected

to
be

different.
T

he
exponents

"
s

and
#

are
in

good
agreem

ent
w

ith
values

obtained
using

finite-tem
perature

scaling
8

!w
here

"
d

w
as

not
determ

ined".
N

ext,
w

e
discuss

the
J-Q

2
m

odel
generalized

to
SU

!N
"

spins.
C

onsidering
first

the
H

eisenberg
m

odel,
the

H
am

il-
tonian

can
be

w
ritten

as

H
SU

!N
" =

JN %#ij$ S
i %

$S
j $

%
=

−
J%#ij$ C

ij +
2JL

2

N
2

,
!9"

w
here

S
i %

$
is

the
generator

of
the

SU
!N

"
algebra,

w
ith

%
,$

=
1

,2
,...,N

the
different

“colors,”
and

C
ij is

the
gener-

alization
of

E
q.!2"

to
SU

!N
".A

s
in

R
ef.18

w
e

focus
on

the
sim

plest
case,w

here
the

spins
on

sublattice
A

are
expressed

in
the

fundam
ental

representation
!i.e.,

w
ith

a
single-box

Y
oung

tableau".Spins
on

sublattice
B

are
SU

!N
"

conjugates
!dualrepresentation"ofthose

on
A

!a
Y

oung
tableau

w
ith

one
colum

n
and

N
−

1
row

s".T
he

states
in

this
representation

can
be

w
ritten

in
term

s
of

perm
utations

P
of

the
boxes,w

ith

TA
B

L
E

I.
C

ritical
exponent

for
all

the
m

odels
studied.

T
he

crossover
exponent

a
4

cannot
be

determ
ined

for
the

SU
!2"

J-Q
2

m
odel

because
no

crossover
is

observed
for

L
&

64.

M
odel,sym

m
etry

"
s

"
d

#
a

4
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!2"
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FIG
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olor
online"

Finite-size
scaling

of
the

squared
A

F
and

V
B

S
order

param
eters

of
the

J-Q
2

and
J-Q

3
m

odels.
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1-2 J-Q
 m

odels w
ith SU

(N
) spins

Lou, Sandvik, K
aw

ashim
a, PR

B
 (2009)

Heisenberg m
odel (Q

=0) has
Neel ground state for N=2,3,4 ⇒
Neel - VBS transition vs Q

/J

⌘
s

=
1
�

32

⇡
2N

+
...

⌘
d

=
0.2492

⇥
N

�
1
+

...

How
 can w

e reach larger N to
really study the large-N lim

it? 
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J
1 -J

2  H
eisenberg m

odel w
ith SU

(N
) spins

H
=

��i,j⇥ J
ij ⌅S

i ·
⌅S

j
=

J
1

=
J

2
<

0

>
0

Ferrom
agnetic 2nd-neighbor couplings enhance Neel order

K
aul &

 Sandvik (2011)

2

p
h
ase

tran
sition

,
w

ith
n
o

sign
s

of
d
iscontinu

ities
even

on
th

e
largest

system
s

sizes
stu

d
ied

(L
⇥

L
sp

in
s

w
ith

L
u
p

to
128).

M
ost

rem
arkab

ly,
th

e
an

om
alou

s
d
im

en
sion

s
of

th
e

N
éel

an
d

V
B

S
correlation

fu
n
ction

s
of

th
e

m
od

el
for

large-N
sh

ow
s

qu
antitative

agreem
ent

w
ith

th
e

an
a-

lytically
kn

ow
n

[20–22]
scalin

g
d
im

en
sion

s
from

th
e

1/N
exp

an
sion

s
of

th
e

n
on

-com
p
act

C
P

N
�

1
m

od
el.

T
h
e

J
1
-J

2
m
o
d
e
l
.—

O
u
r
S
U

(N
)
sym

m
etric

m
od

elis
d
e-

fi
n
ed

w
ith

a
localH

ilb
ert

sp
ace

of
N

states
on

each
site

of
th

e
squ

are
lattice

illu
strated

in
F
ig.

1(a).
W

e
ad

op
t

th
e

rep
resentation

u
sed

p
reviou

sly
in

b
oth

an
alytic

[4]
an

d
nu

m
erical

[18,
19]

w
orks

on
b
ip

artite
lattices,

w
h
ere

th
e

su
b
lattice-A

states
tran

sform
u
n
d
er

rotation
s

w
ith

th
e

fu
n
d
am

ental
rep

resentation
of

S
U

(N
),

an
d

th
e

B
su

b
-

lattice
states

tran
sform

w
ith

th
e

con
ju

gate
of

th
is

rep
-

resentation
;

|↵i
A

!
U

↵
� |�i

A
,

|↵i
B

!
U

⇤↵
� |�i

B
.

T
h
e

state
P

↵
|↵i

A |↵i
B

is,
thu

s,
an

S
U

(N
)

sin
glet.

P
ij

is
d
e-

fi
n
ed

to
b
e

th
e

p
ro

jector
onto

th
is

sin
glet

b
etw

een
tw

o
sites

i
an

d
j

on
d
i
↵
e
r
e
n
t

su
b
lattices,

i.e.,
H

ij
=

�
P

ij /N
is

th
e

S
U

(N
)

gen
eralization

of
th

e
fam

iliar
H

eisenb
erg

antiferrom
agn

etic
exch

an
ge

(u
p

to
a

con
stant).

A
n
-

oth
er

sim
p
le

S
U

(N
)
invariant

interaction
is

th
e

p
erm

u
ta-

tion
op

erator
b
etw

een
tw

o
sites

on
th

e
s
a
m
e

su
b
lattice,

⇧
ij |↵

�i
=

|�
↵i,

so
th

at
H

ij
=

�
⇧

ij /N
is

th
e

gen
eraliza-

tion
of

th
e

th
e

fam
iliar

ferrom
agn

etic
H

eisenb
erg

inter-
action

.
T

h
e

H
am

ilton
ian

w
e

stu
d
y

h
ere

is
given

by

H
=

�
J

1

N

Xhiji

P
ij �

J
2

N

Xhhijii ⇧
ij ,

(1)

w
h
ere

hiji
an

d
hhijii

d
en

ote
fi
rst

(A
-B

)
an

d
secon

d
(A

-A
an

d
B

-B
)

n
eighb

or
sites,

resp
ectively.

W
ith

J
2

=
0

it
is

n
ow

w
ell

kn
ow

n
th

at
th

e
J

1
m

od
el

is
N

éel
ord

ered
for

N
=

2,3,4
an

d
d
evelop

s
V

B
S

ord
er

for
N

�
5

[18,
19].

O
n

th
e

oth
er

h
an

d
,
w

ith
J

1
=

0
each

su
b
lattice

form
s

a
trivial

ferrom
agn

et.
A

sm
all

J
1

⌧
J

2

w
ill

clearly
lock

th
e

in
d
ivid

u
al

su
b
lattice

m
agn

etization
s

into
a

collective
N

éelord
ered

state.
T

hu
s,

for
each

N
>

5
th

ere
m

u
st

b
e

an
interm

ed
iate

valu
e

of
g

⌘
J

2 /J
1

at
w

h
ich

th
ere

is
a

qu
antu

m
tran

sition
b
etw

een
th

ese
tw

o
p
h
ases

(as
w

e
d
o

n
ot

exp
ect

any
oth

er
interven

in
g

p
h
ase).

Q
M
C

s
i
m
u
l
a
t
i
o
n
s
.
—

A
ll

o↵
-d

iagon
al

m
atrix

elem
ents

in
E

q.
(1)

are
exp

licitly
n
egative

an
d
,
h
en

ce,
th

e
m

od
el

is
free

of
Q

M
C

sign
p
rob

lem
s

[an
d

it
also

satisfi
es

M
ar-

sh
all’s

sign
criterion

,
en

su
rin

g
an

S
U

(N
)

sin
glet

grou
n
d

state].
T
o

ob
tain

exact
(w

ith
in

statistical
errors)

nu
m

er-
ical

resu
lts

for
its

p
rop

erties
on

large
L

⇥
L

lattices,
w

e
u
se

th
e

stoch
astic

series
exp

an
sion

Q
M

C
m

eth
od

w
ith

glob
al

loop
u
p
d
ates

[23–25].
T

h
rou

gh
ou

t
th

is
w

ork,
w

e
set

J
1

=
1

an
d

th
e

inverse
tem

p
eratu

re
�

=
L

/J
1

(re-
fl
ectin

g
th

e
exp

ected
[6]

d
yn

am
ic

exp
on

ent
z

=
1).

W
e

ch
aracterize

th
e

N
éelp

h
ase

as
on

e
w

ith
a

fi
n
ite

sp
in

sti↵
n
ess

⇢
s

(m
easu

red
by

th
e

fl
u
ctu

ation
s

of
th

e
w

in
d
in

g
nu

m
b
er

W
of

w
orld

lin
es;

�
⇢

s
=

hW
2i

[25,
26]).

In
th

e
m

agn
etic

p
h
ase,

th
e

static
(!

=
0)

N
éel

ord
er-p

aram
eter

su
scep

tib
ility

�
N

d
iverges

w
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th
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“qu
antu

m
volu

m
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crossin
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p
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t
for

m
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B
S
]
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th
e
S
U
(5)

J
1 -J
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m
o
d
el

are
sh
ow

n
in

th
e
left
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t]

p
an

el.
T
h
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⇢
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[⇠
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B
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d
iverges
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e
m
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B
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p
h
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d
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to

zero
in

th
e
n
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-m
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etic
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B
S
]
p
h
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w
h
en

�
=

L
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1 .
A
t
a
p
oin

t
w
h
ere

m
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etic
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B
S
]
fl
u
ctu

ation
s
are

critical,
�
⇢
s

[⇠
V
B
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b
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L
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d
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d
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t.
T
h
ese

p
rop

erties
resu
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crossin
gs
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rves
for

d
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t
L
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th
e
critical

p
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T
h
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w
id
th

of
th
e
vertical

lin
e
sh
ow

s
th
e
ran

ge
of

estim
ates

of
th
e

com
m
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N
éel-V

B
S
criticalp

oin
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g
c
=

1.615(10).
F
ig.3

sh
ow

s
th
e
an
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of
th
e
crossin

g
p
oin
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g
th
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lt.

of
th

e
system
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g
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⇠
�
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2.
W

e
d
efi

n
e

th
e

S
U
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)
V

B
S

correlation
fu

n
ction

u
sin

g
th

e
op

erator
P

d
e-

fi
n
ed

ab
ove

in
E

q.(1);
C

V
(r,⌧

)
=

hP
0
,
0
+
x (0)P

r
,
r
+
x (⌧

)i�
hP

0
,
0
+
x (0)i

2.
W

h
en

F
ou

rier
tran

sform
ed
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=
0,q

=
(⇡

,0)
it
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�

V
.

T
h
is

qu
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can
b
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u
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V

B
S

ord
er

sin
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it
d
iverges
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e
V

B
S

p
h
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�

V
⇠

�
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2.
W

e
also

u
se

th
e

stan
d
ard

d
efi

n
ition

of
th

e
correlation

len
gth

of
th

e
V

B
S

ord
er

⇠
V

as
th

e
squ

are
root

of
th

e
secon

d
m

om
ent

of
th

e
sp

atial
correlation

fu
n
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C
V

.
U

sin
g

th
ese
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w
e

tested
for

lon
g-ran

ge
N

éel
an

d
V

B
S

ord
er

as
th

e
ratio

g
=

J
2 /J

1
is

varied
for

each
N

an
d

arrived
at

th
e

p
h
ase

d
iagram

sh
ow

n
in

F
ig.

1(b
).

W
e

elab
orate

on
th

e
qu

antitative
an

alysis
b
elow
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N
a
t
u
r
e
o
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h
e
p
h
a
s
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r
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o
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F
ig.

2
sh
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Q
M

C
resu

lts
for

�
⇢

s
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d
⇠
V

B
S /L
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fu

n
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s
of

th
e
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-

p
lin

g
ratio

g
for

th
e

S
U

(5)
m

od
el

on
lattices

of
size

L
=

8,16,32,64,
an

d
128.

T
h
e

qu
antu

m
-criticalp

oint
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th
e

m
agn

etic
an

d
V

B
S

ord
ers

can
b
e
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g
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g
p
oints
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s

g
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�
⇢

s
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⇠
V

B
S /L

,
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p
u
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o
d
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A

s
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d
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th
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d
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g

p
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w
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a

n
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w
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d
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g

for
b
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N
éel
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d

V
B

S
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ers,
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d
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g
p
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d
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a
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m
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g
c

w
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g
L
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F
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3
w

e
h
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p
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p
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b
etw
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L
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d

L
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�
⇢

s
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d
⇠
V

B
S /L
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S
U

(N
)
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s
w
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N

=
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6,
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an
d

12.
N

u
m
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extrap

ola-
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s
of

th
e

crossin
g

d
ata

for
b
oth

N
éel

an
d

V
B

S
ord

ers
in

th
e

S
U

(5)
an

d
S
U

(6)
cases

(top
tw

o
p
an

els)
p
rovid

e
com

p
ellin

g
evid

en
ce

th
at

in
th

e
th

erm
od

yn
am

ic
lim

it
th

e
crossin

g
p
oints

for
b
oth

ord
er-p

aram
eters

ap
p
roach

P
ij  = SU(N) singlet projector

Π
ij  = perm

utation operator

SU(N) generalization:
g

=
J

2 /J
1

There is Neel order for all N>4
• Neel - VBS transition accessible 

w
ith Q

M
C for large N
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J
1 -J

2  SU
(N

):
critical points from

 curve crossings (T=1/L)

←
 critical correlation exponents

     from
 susceptibilities at g

c
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C
om

paring results: J
1 -J

2,  J-Q
, N

C
C

P
N

-1

Conclusion: Trends for large N show
 excellent agreem

ent
•  Q

M
C results predict size of the next 1/N corrections
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Joint probability distribution P(D
x ,D

y ) of x and y VBS order

D
2

=
⇤D

2x
+

D
2y ⌅,

D
x

=
1N

N�i=
1 (�

1)
x

iS
i ·S

i+
x̂ ,

D
y

=
1N

N�i=
1 (�

1)
y

iS
i ·S

i+
ŷ

D
x

D
x

D
y

D
y

colum
nar

plaquette
The squared order param

eter cannot distinguish betw
een: 

J-Q
2  m

odel, J=0, L=128

M
agnitude of D has form

ed but
the VBS “angle” is fluctuating

N
ature of the VBS fluctuations in the J-Q

 m
odel - SU

(2)
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VBS fluctuations in the theory of deconfined quantum
-critical points

[Senthil et al., 2004]

➣
 p
laq
uette

 and
 colum

nar V
BS

 are
 alm

ost d
egenerate

➣
 tunneling

 b
arrier sep

erating
 the

 tw
o

•
 b
arrier increases

 w
ith

 increasing
 system

 size
 L

•
 barrier decreases as the critical point is approached

➣
 em

ergent U
(1) sym

m
etry

➣
 ring-shaped distribution expected in the VBS phase for sm

all system
s

       L
 <

 Λ
 ∼

 ξ
a,  a>

1
  !sp

inon
 confi

nem
ent length

"
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C
reating a m

ore rubust VB
S order - the J-Q

3  m
odel

This m
odel has a m

ore robust VBS phase
• can the sym

m
etry cross-over be detected?

q
=

0.635
(q

c �
0.60)

L
=

32

q
=

0.85

L
=

32

J. Lou,  A
.W

. Sandvik,  N
. K

aw
ashim

a,  PR
B

 (2009)

H
=
�

J
��ij⇥

C
ij �

Q
3 �

�ij
k
lm

n
⇥ C
ij C

k
l C

m
n

C
ij

=
14
�

⇤S
i ·

⇤S
j

q
=

Q
3

J
+

Q
3
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Analysis of the VB
S sym

m
etry cross-over   (J-Q

3  m
odel)

J. Lou, A
.W

. Sandvik, N
. K

aw
ashim

a, PR
B

 (2009)

Finite-size scaling gives U
(1) (deconfinem

ent) length-scale

�
⇥

�
1
+

a

⇥
(q
�

q
c ) �

(1
+

a
)�

D
4

=
�

rdr �
d�

P
(r,�)cos(4�)

 Z
4 -sensitive VBS order param

eter

S
U
(3)

:
a
=

0.6
±

0.2

S
U
(4)

:
a
=

0.5
±

0.2

a
=

0.20
±

0.05

L
1
/
(1

+
a
)⌫(q

�
q
c )/q

c
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Signs of Z
4  sym

m
etry in the original J-Q

 m
odel?

L=128, J=0
P(D

x ,D
y )

L=32, L=64; J=0
W

eak but statistically
significant angular
dependence consistent
w

ith colum
nar VBS

(L=128 still too noisy)
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The sim
ulations take a long tim

e to rotate the VBS angle
L=128: 10

5 m
easurem

ents require > 1 day of com
putation

building 100×10
5 m

easurem
ents

10
5 m

easurem
ents
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Jiang et a. (2008)

Linear divergence (first-order)?

C
ould the transition be first-order?

Jiang, N
yfeler, C

handrasekharan, W
iese, JSTAT, P02009 (2008)

From
 an antiferrom

agnet to a valence bond solid: evidence for a first order phase transition
K

uklov, M
atsum

oto, Prokof'ev, Svistunov, Troyer, PR
L 101, 050405 (2008)

D
econfined C

riticality: G
eneric First-O

rder Transition in the SU
(2) Sym

m
etry C

ase

O
ne can never, strictly speaking, rule out a very w

eak first-order transition
• but are there any real signs of this in the J-Q

 m
odel?

The above studies w
ere based on scaling of w

inding num
bers

• claim
ed signs of phase coexistence (finite spin stiffness and susceptibility)

�W
2⇥

=
�W

2x ⇥+
�W

2y ⇥+
�W

2� ⇥

=
2�

⇥
s
+

4N�
⇤

z
=

1,�
⇥

L
�

⇥
s
⇥

L
�

1,
⇤
⇥

L
�

1

�
⇤W

2⌅
=

constant

At at a critical point
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Sandvik, PRL 104, 177201 (2010)
Recent large-scale Q

M
C

 results

�
�

L
(�

=
L

,
�

=
L

/4)

• Stochastic series expansion
• up to 256×256 lattices

Sam
e finite-size definition 

of critical point as used by 
Kuklov et al. and Jiang et al.
•fixed probability of the 

generated configurations 
having W

x =W
y =W

τ =0

Logarithm
ic divergence of <W

2>
• scaling correction (not 1st-order)
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U
2  < 0 at a first-order

transition
•no signs of U

2 <0 in 
SSE Q

M
C results for 

L up to 256

Let’s look at a w
ell know

n signal of a first-order transition:

Q
2

=
�m

4⇥
�m

2⇥
2

B
inder ratio

B
inder cum

ulant

Size independent
(curve crossings) at
criticality

U
2

=
(5
�

3Q
2 )/2

Exam
ple: Scalar order param

eter at classical transition

Phase coexistence
leads to U

2  →
 -∞

at 1st-order trans
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H
=
�

J
��ij⇥

C
ij �

Q
3 �

�ijk
lm

n
⇥ C
ij C

k
l C

m
n

C
ij

=
14
�

⇤S
i ·

⇤S
j

Exam
ple of a first-order N

éel - VBS transition
[A. Sen, A. Sandvik, PRB (2010)]

J-Q
 m

odel w
ith staggered VBS phase

• no local VBS fluctuations favoring em
ergent U(1) sym

m
etry

VBS

• clear signs of phase coexistence 

Binder cum
ulant

of the Neel order
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J/Q
=0.040

Any signs of coexistence in the standard J-Q
 VBS distributions?

• L=128 data close to the transition
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J/Q
=0.041
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J/Q
=0.042
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J/Q
=0.043
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J/Q
=0.044
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J/Q
=0.045
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J/Q
=0.046
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C
onclusions

Large-scale Q
M

C
 calculations of the J-Q

 m
odel

•  scaling behavior consistent w
ith a continuous N

eel-VBS transition
- w

ith w
eak scaling corrections; m

aybe logarithm
ic

•  no signatures of first-order behavior
- cannot be ruled out as a m

atter of principle, but seem
s unlikely

•  em
ergent U

(1) sym
m

etric VBS order param
eter

R
elation to deconfined quantum

-criticality of Senthil et al.
•  M

ain features in good agreem
ent

- z=1 scaling
- “large” anom

alous dim
ension η

spin
- em

ergent U(1) sym
m

etry
•  N

C
C

P
N

-1 field theory for large N
 

   [Senthil et al. (PRB 2004), Kaul & Sachdev (PRB 2008)]
- no log-corrections found analytically
- difficult to extend to N=2 (3,4) in analytical w

ork
- could there be log-corrections for N=2 (or general “sm

all” N)?
- claim

ed recently by Nogueira & Sudbo (arXiv 2011)

SU
(N

) J-Q
 m

odel and J
1 -J

2  H
eisenberg m

odel
•  critical correlation exponents approach large-N

 results
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