Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012

Quantum Monte Carlo simulations of "deconfined" quantum criticality at the 2D Néel-VBS transition

Anders W. Sandvik, Boston University

Collaborators:

- Jie Lou (BU→ISSP, U of Tokyo)
- Naoki Kawashima (ISSP, U of Tokyo)
- Ribhu Kaul (U of Kentucky)
- Arnab Sen (BU)

Outline

- 2D Heisenberg model; T=0 long-range Néel order
- **Conventional Néel paramagnet quantum phase transition**
- Valence-bonds-solid (VBS) order and "deconfined" criticality
- Microscopic realizations; J-Q model
- Insights from QMC simulations; SU(2) and SU(N) models
- Emergent U(1) symmetry of the near-critical VBS state
- First-order scenario vs log corrections

≈ 60 % of classical value Sandvik & Evertz 2010: $m_s = 0.30743(1)$	- no approximations - extrapolation to infinite size Reger & Young 1988: $m_s = 0.30(2)$	 no analytical proof for S=1/2 quantum Monte Carlo is the on unbiased way to compute m_s finite-size calculation 	Long-range order: <ms<sup>2> > 0 for 1 Rigorous proof of ordered ground</ms<sup>	$\vec{m}_s = \frac{1}{N} \sum_{i=1}^{N} \phi_i \vec{S}_i, \phi_i = (-1)^{x_i + 1}$	Sublattice magnetization	Long-range antiferromagnetic c
C(L 0.11) = 0.10 = 0.01 = 0.02 = 0.03 = 0.04 = 0.05 = 0.06	$(2,L/2), M_s^2$ 0.13 0.12 0 0.02 0.04 0.0000 C-fit 0 0.02 0.04 0.06 0.00000 C-fit		N→∞ states for S>1/2	$^{-y_i}$ (2D square lattice)	$\mathbf{H} = \mathbf{J} \sum \mathbf{S}_{i} \cdot \mathbf{S}_{j}$	order in the 2D S=1/2 Heisenberg model

2D quantum Heisenberg map onto (2+1)D classical Heisenberg (Haldane) Experimental realization (3D system): TICuCl₃ \Rightarrow 3D classical Heisenberg (O3) universality class; QMC confirmed **Conventional quantum phase transitions** Example: Dimerized S=1/2 Heisenberg models many possibilities, e.g., bilayer, dimerized single layer every spin belongs to a dimer (strongly-coupled pair) Singlet formation on strong bonds → Neel - disordered transition Ground state (T=0) phases $\xi \sim e^{a/T}$ $\mathbb{S}^{\mathbb{N}}$ $\xi \sim 1/T$ 9c $g=J_2/J_1$ $\xi(T ightarrow 0) \sim 1/\Delta$ = spin gap " weak interactions strong interactions G

More complex non-magnetic states; systems with 1 spin per unit cell Non-magnetic states often have natural descriptions with valence bonds In the 2D Néel state the bond-length (r) probability has the form: $P(r) \propto$ non-magnetic states dominated by short bonds non-trivial non-magnetic ground states are possible, e.g., VBS valence-bond solid (VBS) resonating valence-bond (RVB) spin liquid Ľ 90 × : is overcomplete in the singlet sector The basis including bonds of all lengths $=(\uparrow_i\downarrow_j-\downarrow_i\uparrow_j)/\sqrt{2}$ r^{3}

direct transition between states breaking unrelated symmetries is 1st-order except at fine-tuned multi-critical points

Spinon confinement in a VBS state: standard picture

A spinon is an S=1/2 excitation The VBS ground state is a singlet

An S=1 ("triplon") excitation can be regarded as a bound state of two spinons

- confined spinons
- confinement due to "string" in VBS background

How is the confinement modified by VBS fluctuations?

What is the length-scale of confinement?

What are the actual VBS fluctuations like?

What happens at the VBS-Neel transition?

In what model can this be studied on large lattices with QMC?

- frustrated systems have sign problems
- are there sign-problem free models with Neel-VBS transitions?

Spinons in 1D: a single spinon in odd-N J-Q₃ model

one spin (spinon) doesn't belong to any bond

bra and ket spinons at different locations; non-orthogonality

Y. Tang and AWS, Phys. Rev. Lett. 107, 157201 (2011)

Two spinons in 1D VBS are deconfined (no confining potential)

2D VBS states from frustrated interactions

Quantum phase transitions as some coupling (ratio) is varied (T=0)J₁-J₂ Heisenberg model is the prototypical example

- Ground states for small and large g are well understood
- Standard Néel order up to g≈0.45; collinear magnetic order for g>0.6

- A non-magnetic state exists between the magnetic phases
- Most likely a columnar VBS
- Some calculations (interpretations) suggest RVB spin liquid
- 2D and 3D frustrated models are challenging
- no generally applicable unbiased methods (numerical or analytical) QMC sign problem

VBS states from multi-spin interactions

Sandvik, Phys. Rev. Lett. 98, 227202 (2007)

The Heisenberg interaction is equivalent to a singlet-projector

$$\begin{split} C_{ij} &= \frac{1}{4} - S_i \cdot S_j \\ C_{ij} |\phi_{ij}^s\rangle &= |\phi_{ij}^s\rangle, \quad C_{ij} |\phi_{ij}^{tm}\rangle = 0 \quad (m = -1, 0, 1) \end{split}$$

- we can construct models with products of singlet projectors
- no frustration in the conventional sense (QMC can be used)
- correlated singlet projection reduces the antiferromagnetic order

+ all translations and rotations

The "J-Q" model with two projectors is

$$H = -J \sum_{\langle ij \rangle} C_{ij} - Q \sum_{\langle ijkl \rangle} C_{ij} C_{kl}$$

- Has Néel-VBS transition, appears to be continuous
- Not a realistic microscopic model for materials
- Intended to study Néel-VBS transition (universal physics)

Data "collapse" for different system sizes L of AL ¹⁺ⁿ graphed vs (q-q _c)L ^{1/v}	$A(L,q) = L^{-(1+\eta)} f[(q - q_c)L^{1/\nu}]$	Finite-size scaling: a critical squared order pa	$M^{2} = \langle \vec{M} \cdot \vec{M} \rangle, D^{2} = \langle D_{x}^{2} + D_{y}^{2} \rangle$	No symmetry-breaking in simulations; study	$ec{M} = rac{1}{N} \sum_i (-1)^{x_i + y_i} ec{S}_i$	Néel order parameter (staggered magnetizati	$D_x = rac{1}{N} \sum_{i=1}^{N} (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}, D_y = rac{1}{N}$	VBS vector order parameter (D_x, D_y) (x and y la	Néel-VBS transition in the J-Q model T=0 projector QMC results (no approx Sandvik, PRL 2007; Lou, Sandvik, Kawashima, PRB (200
$q = \frac{Q_p}{Q_p + J}, p = 2, 3$	coupling ratio	rameter (A) scales as		he squares		Un)	$\sum_{i=1}^{N} (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$	attice orientations)	mations; finite size)

J-Q₃ model; q_c=0.600(3) J-Q₂ model; q_c=0.961(1) **Exponents universal** (within error bars) η_d $\eta_s = 0.33(2)$ $\eta_d = 0.20(2)$ $\eta_s = 0.35(2)$ $\nu = 0.69(2)$ $\nu = 0.67(1)$ = 0.20(2)

with theory η_s "large" in agreement

Making connections with field theory results

The non-compact CP^{N-1} model has been studied for large N

large-N expansion, SU(N) symmetry (N+1 components)

Senthil et al. (2004), Kaul & Sachv (2009)

$$\eta_s = 1 - \frac{32}{\pi^2 N} + \dots$$

 older results, using relationship between monopoles in the field theory and the VBS order parameter Read & Sachdev (1989)

 $\eta_d = 0.2492 \times N - 1 + \dots$

How can we test these results?

QMC studies of spin hamiltonians with SU(N) spins

2D SU(N) Heisenberg model [Harada, Kawashima, Troyer (2003)]

- Fundamental and conjugate repr. of SU(N) on A,B sublattices
- No sign problem in QMC
- Same repr. used in large-N calculations
- Neel ground state for N<5, VBS for N=5,6,...

How can we reach larger N to really study the large-N limit?	$J-Q_2$, $SU(2)$ $0.35(2)$ $0.20(2)$ $0.67(1)$ $J-Q_3$, $SU(2)$ $0.33(2)$ $0.20(2)$ $0.69(2)$ $J-Q_2$, $SU(3)$ $0.38(3)$ $0.42(3)$ $0.65(3)$ $J-Q_2$, $SU(4)$ $0.42(5)$ $0.64(5)$ $0.70(2)$	Model, symmetry η_s η_d ν	Heisenberg model (Q=0) has Neel ground state for N=2,3,4 \Rightarrow	J-Q models with SU(N) spins Lou, Sandvik, Kawashima, PRB (2009)
$\eta_s = 1 - \frac{32}{\pi^2 N} + \cdots$ $\eta_d = 0.2492 \times N - 1 + \cdots$	$M^{2}L^{(l+\eta_{s})}, D^{2}L^{(l+\eta_{s})}, D^{2$	0	$ \begin{array}{c} $	

J₁-J₂ Heisenberg model with SU(N) spins Ferromagnetic 2nd-neighbor couplings enhance Neel order Kaul & Sandvik (2011)

 $H = \sum_{\langle i,j \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j$

 $=J_2 < 0$

 $=J_1 > 0$

$$H = -rac{J_1}{N} \sum_{\langle ij
angle} P_{ij} - rac{J_2}{N} \sum_{\langle \langle ij
angle
angle} \Pi_{ij}$$

There is Neel order for all N>4
Neel - VBS transition accessible with QMC for large N

Conclusion: Trends for large N show excellent agreement QMC results predict size of the next 1/N corrections

Joint probability distribution P(D_x,D_y) of x and y VBS order The squared order parameter cannot distinguish between: $D^{2} = \langle D_{x}^{2} + D_{y}^{2} \rangle, \quad D_{x} = \frac{1}{N} \sum_{i=1}^{N} (-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}}, \quad D_{y} = \frac{1}{N} \sum_{i=1}^{N} (-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}$ Nature of the VBS fluctuations in the J-Q model - SU(2) columnar ____ plaquette J-Q₂ model, J=0, L=128 the VBS "angle" is fluctuating Magnitude of D has formed but

VBS fluctuations in the theory of deconfined quantum-critical points [Senthil et al., 2004]

- \succ plaquette and columnar VBS are almost degenerate
- > tunneling barrier seperating the two
- barrier increases with increasing system size L
- barrier decreases as the critical point is approached

- > emergent U(1) symmetry
- ring-shaped distribution expected in the VBS phase for small systems
- $L < \Lambda \sim \xi^a$, a>1 (spinon confinement length)

Creating a more rubust VBS order - the J-Q₃ model

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

can the symmetry cross-over be detected?

$$q = 0.635$$

 $(q_c \approx 0.60)$
 $L = 32$

F

$$q = 0.85$$

 $L = 32$

$SU(4): a = 0.5 \pm 0.2$	$\sim (q - q_c)^{-(1+a)\nu}$ $a = 0.20 \pm 0.05$ $SU(3): a = 0.6 \pm 0.2$	Finite-size scaling gives U(1 $\Lambda \sum c^{1+a}$	$D_4 = \int r dr \int d\phi P(r,\phi$	Analysis of the VBS syn J. Lou, A.W. Sandvik, N. Kawashima, Z4-sensitive VBS order paral
$0 \frac{1}{5} \frac{10}{L^{1/(1+a)\nu}} \frac{15}{(q-q_c)/q_c} \frac{1}{25}$	$D_{4}L^{(l+\eta_{d})}$ $D_{4}L^{(l+\eta_{d})}$ $L = 1$) (deconfinement) length-scale	$\cos(4\phi)$	nmetry cross-over (J-Q ₃ model) PRB (2009)

10⁵ measurements

building 100×10⁵ measurements

L=128: 10⁵ measurements require > 1 day of computation

The simulations take a long time to rotate the VBS angle

25

Wednesday, February 1, 12		$\rightarrow \langle W^2 \rangle = \text{constant}$	$ \rho_s \propto L^{-1}, \ \chi \propto L^{-1} $	$z=1,\beta \propto L \rightarrow$	At at a critical point	$= 2\beta\rho_s + \frac{4N}{\beta}\chi$	$\langle W^2 \rangle = \langle W_x^2 \rangle + \langle W_y^2 \rangle + \langle W_\tau^2 \rangle$	 The above studies were based on s claimed signs of phase coexisten 	One can never, strictly speaking, rul • but are there any real signs of the second se	Kuklov, Matsumoto, Prokof'ev, Svistun Deconfined Criticality: Generic First-Order	Jiang, Nyfeler, Chandrasekharan, Wiese From an antiferromagnet to a valence bond	Could the transition be first
Ν	L/a	$3.1 \begin{bmatrix} \bullet & \bullet & \bullet \\ 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \end{bmatrix}$		< W 	7 ² >	3.4 Jiang et a. (2008)	Linear divergence (first-order)?	caling of winding numbers ce (finite spin stiffness and susceptibility)	le out a very weak first-order transition his in the J-Q model?	ov, Troyer, PRL 101, 050405 (2008) Transition in the SU(2) Symmetry Case	e, JSTAT, P02009 (2008) d solid: evidence for a first order phase transition	-order?

Phase coexistence leads to $U_2 \rightarrow -\infty$ at 1st-order trans	U ₂ < 0 at a first-order transition • no signs of U ₂ <0 in SSE QMC results for L up to 256	Binder ratio $Q_2 = \langle m^4 \rangle$ $Q_2 = \langle m^2 \rangle^2$ Binder cumulant $U_2 = (5 - 3Q_2)/2$ Size independent (curve crossings) at criticality	I at'e look at a wall know
$P(m) = \begin{pmatrix} T < T_c \\ T < T_c \\ T < T_c \\ T = T$	0.00 0.02 0.0 Example: Scalar order pa	0.8 - 0.8 - 0.6	n cinnal of a firct-order tra
$P(m) = T_c$	4 0.06 0.08 1/Q 0.06 0.08 rameter at classical transition		neition.

Any signs of coexistence in the standard J-Q VBS distributions? L=128 data close to the transition

J/Q=0.040

Conclusions

Large-scale QMC calculations of the J-Q model

- scaling behavior consistent with a continuous Neel-VBS transition
- with weak scaling corrections; maybe logarithmic
- no signatures of first-order behavior
- cannot be ruled out as a matter of principle, but seems unlikely
- emergent U(1) symmetric VBS order parameter

SU(N) J-Q model and J₁-J₂ Heisenberg model

critical correlation exponents approach large-N results

Relation to deconfined quantum-criticality of Senthil et al.

- Main features in good agreement
- z=1 scaling
- "large" anomalous dimension η_{spin}
- emergent U(1) symmetry
- NCCP^{N-1} field theory for large N

[Senthil et al. (PRB 2004), Kaul & Sachdev (PRB 2008)]

- no log-corrections found analytically
- difficult to extend to N=2 (3,4) in analytical work
- could there be log-corrections for N=2 (or general "small" N)?
- claimed recently by Nogueira & Sudbo (arXiv 2011)