Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012

Anders W. Sandvik, Boston University

Lecture 1
 Stochastic Series Expansion Algorithms for Quantum Spin Systems

Lecture 2
Ground State Projector Monte Carlo and the Valence Bond Basis for $S=1 / 2$ Systems

Lecture 3

Quantum Monte Carlo simulations of "deconfined" quantum criticality

Review article on quantum spin systems ArXiv:1101.3281

Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012

Tutorials
 Programs and instructions available at http://physics.bu.edu/~sandvik/trieste12/

Instructor: Ying Tang, Boston University

Day 1

SSE code for 1D and 2D S=1/2 Heisenberg model

- become familiar with programs and how to use them
- do some runs and test finite-size scaling behavior
- make a small addition to the program and test it

Day 2

Ground state projector Monte Carlo code for
1D and 2D S=1/2 Heisenberg model and 1D J-Q chain

- become familiar with programs and how to use them
- check convergence and compare with SSE (Heisenberg)
- Investigate valence-bond-solid in J-Q chain

Introduction: Why study quantum spin systems?

Solid-state physics

- localized electronic spins in Mott insulators (e.g., high-Tc cuprates)
- large variety of lattices, interactions, physical properties
- search for "exotic" quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)

- some spin hamiltonians can be engineered (ongoing efforts)
- some bosonic systems very similar to spins (e.g., "hard-core" bosons)

Quantum information theory / quantum computing

- possible physical realizations of quantum computers using interacting spins
- many concepts developed using spins (e.g., entanglement)

Generic quantum many-body physics

- testing grounds for collective quantum behavior, quantum phase transitions
- identify "Ising models" of quantum many-body physics

Particle physics / field theory / quantum gravity

- some quantum-spin phenomena have parallels in high-energy physics
- e.g., spinon confinement-deconfinement transition
- spin foams, string nets: models to describe "emergence" of space-time and elementary particles

Mott insulators; origins of the Heisenberg antiferromagnet Hubbard model (half-filling; one electron per site)

$$
H=-t \sum_{\langle i, j\rangle} \sum_{\sigma=\uparrow, \downarrow} c_{i, \sigma}^{+} c_{j, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}=H_{t}+H_{U}
$$

U>>t : use degenerate perturbation theory (e.g., Schiff)
Treat H_{t} as a perturbation to the ground states of H_{u}

- $\mathrm{U}=\infty$, one particle on every site; 2^{N} degenerate spin states
- degeneracy lifted in order $\mathrm{t}^{2} / \mathrm{U}-1$ doubly-occupied site, $\mathrm{d}=1$
- leads to the Heisenberg model

$$
H_{m n}^{\mathrm{eff}}=\sum_{i} \frac{\langle n| H_{t}|i\rangle\langle i| H_{t}|m\rangle}{E_{0}-E_{i}} \quad \begin{array}{r}
|i\rangle: d=1 \\
|m\rangle,|n\rangle: d=0
\end{array}
$$

Exchange mechanism

$$
H=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i j\rangle}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right] \quad J=\frac{4 t^{2}}{U}
$$

Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012

Stochastic Series Expansion Algorithms for Quantum Spin Systems

Anders W. Sandvik, Boston University

Outline

- Path integrals in quantum statistical mechanics
- The series-expansion representation
- Stochastic Series Expansion (SSE) algorithm for the Heisenberg model
- The valence-bond basis for $\mathrm{S}=1 / 2$ systems
- Ground-state projector algorithm with valence bonds

Reference: AIP Conf. Proc. 1297, 135 (2010); arXiv:1101.3281 Detailed lecture notes on quantum spin models and methods

Path integrals in quantum statistical mechanics

We want to compute a thermal expectation value

$$
\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left\{A \mathrm{e}^{-\beta H}\right\}
$$

where $\beta=1 / \mathrm{T}$ (and possibly $\mathrm{T} \rightarrow 0$). How to deal with the exponential operator?
"Time slicing" of the partition function

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\operatorname{Tr}\left\{\prod_{l=1}^{L} \mathrm{e}^{-\Delta_{\tau} H}\right\} \quad \Delta_{\tau}=\beta / L
$$

Choose a basis and insert complete sets of states;

$$
Z=\sum_{\alpha_{0}} \sum_{\alpha_{1}} \cdots \sum_{\alpha_{L}-1}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle
$$

Use approximation for imaginary time evolution operator. Simplest way

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

Leads to error $\propto \Delta_{\tau}$. Limit $\Delta_{\tau} \rightarrow 0$ can be taken

Example: hard-core bosons

$$
H=K=-\sum_{\langle i, j\rangle} K_{i j}=-\sum_{\langle i, j\rangle}\left(a_{j}^{\dagger} a_{i}+a_{i}^{\dagger} a_{j}\right) \quad n_{i}=a_{i}^{\dagger} a_{i} \in\{0,1\}
$$

Equivalent to $\mathrm{S}=1 / 2 \mathrm{XY}$ model

$$
H=-2 \sum_{\langle i, j\rangle}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)=-\sum_{\langle i, j\rangle}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right), \quad S^{z}= \pm \frac{1}{2} \sim n_{i}=0,1
$$

"World line" representation of

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

$Z=\sum_{\{\alpha\}} W$

world line moves for Monte Carlo sampling

Expectation values

$$
\langle A\rangle=\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} A\left|\alpha_{0}\right\rangle
$$

We want to write this in a form suitable for MC importance sampling

$$
\begin{aligned}
& \qquad\langle A\rangle=\frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})} \longrightarrow \begin{array}{l}
\langle A\rangle=\langle A(\{\alpha\})\rangle_{W} \\
\\
\text { For any quantity diagonal in the } \\
\text { occupation numbers (spin z): }
\end{array}
\end{aligned} \begin{aligned}
W(\{\alpha\}) & =\text { weight } \\
& A(\{\alpha\})
\end{aligned}=\text { estimator }
$$

$$
A(\{\alpha\})=A\left(\alpha_{n}\right) \text { or } A(\{\alpha\})=\frac{1}{L} \sum_{l=0}^{L-1} A\left(\alpha_{l}\right)
$$

Kinetic energy (here full energy). Use

$$
K \mathrm{e}^{-\Delta_{\tau} K} \approx K \quad K_{i j}(\{\alpha\})=\frac{\left\langle\alpha_{1}\right| K_{i j}\left|\alpha_{0}\right\rangle}{\left\langle\alpha_{1}\right| 1-\Delta_{\tau} K\left|\alpha_{0}\right\rangle} \in\left\{0, \frac{1}{\Delta_{\tau}}\right\}
$$

Average over all slices \rightarrow count number of kinetic jumps

$$
\left\langle K_{i j}\right\rangle=\frac{\left\langle n_{i j}\right\rangle}{\beta}, \quad\langle K\rangle=-\frac{\left\langle n_{K}\right\rangle}{\beta} \quad\langle K\rangle \propto N \rightarrow\left\langle n_{K}\right\rangle \propto \beta N
$$

There should be of the order $\beta \mathrm{N}$ "jumps" (regardless of approximation used)

Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

$$
\mathrm{e}^{-\Delta_{\tau} H}=\mathrm{e}^{-\Delta_{\tau} K} \mathrm{e}^{-\Delta_{\tau} V}+\mathcal{O}\left(\Delta_{\tau}^{2}\right) \rightarrow\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{l}\right\rangle \approx \mathrm{e}^{-\Delta_{\tau} V_{l}}\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} K}\left|\alpha_{l}\right\rangle
$$

Product over all times slices \rightarrow

$$
\left.W(\{\alpha\})=\Delta_{\tau}^{n_{K}} \exp \left(-\Delta_{\tau} \sum_{l=0}^{L-1} V_{l}\right)\right\} P_{\mathrm{acc}}=\min \left[\Delta_{\tau}^{2} \exp \left(-\frac{V_{\mathrm{new}}}{V_{\text {old }}}\right), 1\right]
$$

The continuous time limit

Limit $\Delta_{T} \rightarrow 0$: number of kinetic jumps remains finite, store events only

Special methods (loop and worm updates) developed for efficient sampling of the paths in the continuum
(a)

local updates (problem when $\Delta_{T} \rightarrow 0$?)

- consider probability of inserting/removing events within a time window
\Leftarrow Evertz, Lana, Marcu (1993), Prokofev et al (1996) Beard \& Wiese (1996)

Series expansion representation

Start from the Taylor expansion $\mathrm{e}^{-\beta H}=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} H^{n}$
(approximation-free method from the outset)

$$
Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle
$$

Similar to the path integral; $1-\Delta \tau H \rightarrow H$ and weight factor outside
For hard-core bosons the (allowed) path weight is $W\left(\{\alpha\}_{n}\right)=\beta^{n} / n$!
For any model, the energy is

$$
\begin{aligned}
E & =\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n+1}}\left\langle\alpha_{0}\right| H\left|\alpha_{n}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle \\
& =-\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^{n}}{n!} \frac{n}{\beta} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle=\frac{-\langle n\rangle}{\beta} \\
C= & \text { one more "slice" to sum over here }
\end{aligned}
$$

From this follows: narrow n-distribution with $\langle n\rangle \propto N \beta, \quad \sigma_{n} \propto \sqrt{N \beta}$

Fixed-length scheme

- n fluctuating \rightarrow varying size of the configurations
- the expansion can be truncated at some $\mathrm{n}_{\max }=\mathrm{L}$ (exponentially small error)
- cutt-off at $n=L$, fill in operator string with unit operators $\mathrm{H}_{0}=1$

$$
\begin{aligned}
& \mathrm{n}=10 \quad \begin{array}{ll|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{H}_{4} & \mathrm{H}_{7} & \mathrm{H}_{1} & \mathrm{H}_{6} & \mathrm{H}_{2} & \mathrm{H}_{1} & \mathrm{H}_{8} & \mathrm{H}_{3} & \mathrm{H}_{3} & \mathrm{H}_{5}
\end{array} \Longrightarrow \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{M}=14 & \mathrm{H}_{4} & \mathrm{I} & \mathrm{H}_{7} & \mathrm{I} & \mathrm{H}_{1} & \mathrm{H}_{6} & \mathrm{I} & \mathrm{H}_{2} & \mathrm{H}_{1} & \mathrm{H}_{8} & \mathrm{H}_{3} & \mathrm{H}_{3} & \mathrm{I} & \mathrm{H}_{5} \\
\hline
\end{array}
\end{aligned}
$$

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

$$
\binom{L}{n}^{-1}=\frac{n!(L-n)!}{L!}
$$

Here n is the number of $\mathrm{H}_{\mathrm{i}}, \mathrm{i}>0$ instances in the sequence of L operators

$$
Z=\sum_{\{\alpha\}_{L}} \sum_{\left\{H_{i}\right\}} \frac{(-\beta)^{n}(L-n)!}{L!}\left\langle\alpha_{0}\right| H_{i(L)}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H_{i(2)}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H_{i(1)}\left|\alpha_{0}\right\rangle
$$

Stochastic Series expansion (SSE): $\mathrm{S}=1 / 2$ Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H=J \sum_{b=1}^{N_{b}} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
\begin{aligned}
& H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \\
& H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right) . \\
& H=-J \sum_{b=1}^{N_{b}}\left(H_{1, b}-H_{2, b}\right)+\frac{J N_{b}}{4}
\end{aligned}
$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$
\begin{aligned}
\left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{1, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{2, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} \\
\left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{1, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{2, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2}
\end{aligned}
$$

Partition function

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty}(-1)^{n_{2}} \frac{\beta^{n}}{n!} \sum_{S_{n}}\langle\alpha| \prod_{p=0}^{n-1} H_{a(p), b(p)}|\alpha\rangle \quad \begin{aligned}
& \begin{array}{l}
\mathrm{n}_{2}=\text { number of } a(\mathrm{i})=2 \\
\text { (off-diagoonal operators) } \\
\text { in the sequence }
\end{array}
\end{aligned}
$$

Index sequence: $S_{n}=[a(0), b(0)],[a(1), b(1)], \ldots,[a(n-1), b(n-1)]$

For fixed-length scheme

$$
Z=\sum_{\alpha} \sum_{S_{L}}(-1)^{n_{2}} \frac{\beta^{n}(L-n)!}{L!}\langle\alpha| \prod_{p=0}^{L-1} H_{a(p), b(p)}|\alpha\rangle \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

Propagated states: $|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i), b(i)}|\alpha\rangle$

$$
\begin{array}{rlrrrrrrrr}
i & = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5(i) & = & -1 & +1 & -1 & -1 & +1 & -1 & +1 & +1
\end{array}
$$

	p	$a(p)$	$b(p)$	$s(p)$
0000000	11	1	2	4
00000000	10	0	0	0
- 0 O 0 O 0	9	2	4	9
0000000	8	2	6	13
00000000	7	1	3	6
- ○ ○ ○ ○ ○ O O	6	0	0	0
- ○ ○ ○ ○ ○ ○ ○	5	0	0	0
00000000	4	1	2	4
000000	3	2	6	13
000000	2	0	0	0
000000	1	2	4	9
	0	1	7	14

$\mathrm{W}>0$ (n_{2} even) for bipartite lattice Frustration leads to sign problem

In a program:
$s(p)=$ operator-index string

- $s(p)=2 * b(p)+a(p)-1$
- diagonal; $s(p)=$ even
- off-diagonal; $s(p)=$ off
$\sigma(i)=$ spin state, $i=1, \ldots, N$
- only one has to be stored

SSE effectively provides a discrete representation of the time continuum

- computational advantage; only integer operations in sampling

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

44	18
40	-
36	31
32	14
28	19
24	-
20	-
16	46
12	34
8	-
4	38
0	35
$l=0$	

45	30
41	-
37	7
33	15
29	6
25	-
21	-
17	47
13	2
9	-
5	39
1	3
$1=1$	

46	16	47	17
42	-	43	-
38	4	39	5
34	12	35	0
30	45	31	36
26	-	27	-
22	-	23	-
18	44	19	28
14	32	15	33
10	-	11	-
6	29	7	37
2	13	3	1
$l=2$,

$X()=$ vertex list

- operator at $\mathrm{p} \rightarrow \mathrm{X}(\mathrm{v})$ $v=4 p+l, l=0,1,2,3$
- links to next and previous leg

Spin states between operations are redundant; represented by links

- network of linked vertices will be used for loop updates of vertices/operators

Monte Carlo sampling scheme

Change the configuration; $\left(\alpha, S_{L}\right) \rightarrow\left(\alpha^{\prime}, S_{L}^{\prime}\right)$

$$
W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

$$
P_{\text {accept }}=\min \left[\frac{W\left(\alpha^{\prime}, S_{L}\right)}{W\left(\alpha, S_{L}\right)} \frac{P_{\text {select }}\left(\alpha^{\prime}, S_{L}^{\prime} \rightarrow \alpha, S_{L}\right)}{P_{\text {select }}\left(\alpha, S_{L} \rightarrow \alpha^{\prime}, S_{L}^{\prime}\right)}, 1\right]
$$

Diagonal update: $[0,0]_{p} \leftrightarrow[1, b]_{p}$

Attempt at $p=0, \ldots, L-1$. Need to know $\mid a(p)>$

- generate by flipping spins when off-diagonal operator

$$
\begin{aligned}
& P_{\text {select }}(a=0 \rightarrow a=1)=1 / N_{b}, \quad\left(b \in\left\{1, \ldots, N_{b}\right\}\right) \\
& P_{\text {select }}(a=1 \rightarrow a=0)=1
\end{aligned}
$$

n is the current power

$$
\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} \quad \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}
$$

$$
\text { - } n \rightarrow n+1(a=0 \rightarrow a=1)
$$

$$
\text { - } \mathrm{n} \rightarrow \mathrm{n}-1 \quad(\mathrm{a}=1 \rightarrow \mathrm{a}=0)
$$

Acceptance probabilities

$$
\begin{aligned}
& P_{\text {accept }}([0,0] \rightarrow[1, b])=\min \left[\frac{\beta N_{b}}{2(L-n)}, 1\right] \\
& P_{\text {accept }}([1, b] \rightarrow[0,0])=\min \left[\frac{2(L-n+1)}{\beta N_{b}}, 1\right]
\end{aligned}
$$

Pseudocode: Sweep of diagonal updates

do $p=0$ to $L-1$
if $(s(p)=0)$ then
$b=\operatorname{random}\left[1, \ldots, N_{b}\right]$
if $\sigma(i(b))=\sigma(j(b))$ cycle
if $\left(\operatorname{random}[0-1]<P_{\text {insert }}(n)\right)$ then $s(p)=2 b ; n=n+1$ endif
elseif $(\bmod [s(p), 2]=0)$ then
if $\left(\operatorname{random}[0-1]<P_{\text {remove }}(n)\right)$ then $s(p)=0 ; n=n-1$ endif
else
$b=s(p) / 2 ; \sigma(i(b))=-\sigma(i(b)) ; \sigma(j(b))=-\sigma(j(b))$
endif
enddo

- To insert operator, bond b generated at random among 1,..., N_{b}
- can be done only if connected spins i(b),j(b) are anti-parallel
- if so, do it with probability Pinsert(n)
- Existing diagonal operator can always be removed
- do it with probability $P_{\text {remove }}(n)$
- If off-diagonal operator, advance the state
- extract bond b, flip spins at i(b),j(b)

Pseudocode: Sweep of loop updates

constructing all loops, flip probability 1/2

```
do }\mp@subsup{v}{0}{}=0\mathrm{ to }4L-1 step 
    if (X(vo)<0) cycle
    v=\mp@subsup{v}{0}{}
    if (random[0-1]< < 
        traverse the loop; for all v in loop, set X(v)=-1
    else
        traverse the loop; for all v}\mathrm{ in loop, set X(v)=-2
        flip the operators in the loop
    endif
enddo
```

construct and flip a loop

```
v= vo
do
    X(v) = -2
    p=v/4;s(p)= flipbit}(s(p),0
    v}=\mp@code{flipbit (v,0)
    v=X(\mp@subsup{v}{}{\prime});X(\mp@subsup{v}{}{\prime})=-2
    if (v= vo) exit
enddo
```

- by flipping bit 0 of $s(p)$, the operator changes from diagonal to offdiagonal, or vise versa

We also have to modify the stored spin state after the loop update

- we can use the information in $\mathrm{V}_{\text {first }}$) and X 0 to determine spins to be flipped
- spins with no operators, $\mathrm{V}_{\text {first }}(\mathrm{i})=-1$, flipped with probability $1 / 2$

```
do \(i=1\) to \(N\)
    \(v=V_{\text {first }}(i)\)
    if \((v=-1)\) then
        if \((\) random \([0-1]<1 / 2) \sigma(i)=-\sigma(i)\)
    else
        if \((X(v)=-2) \sigma(i)=-\sigma(i)\)
    endif
enddo
```

$\mathrm{v}=\mathrm{V}_{\text {first }}(\mathrm{i})$ is the location of the first vertex leg on site i

- flip the spin if $X(v)=-2$
- (do not flip it if $X(v)=-1$)
- no operation on i if $v_{\text {firsst }}(\mathrm{i})=-1$; then it is flipped with probability $1 / 2$

Constructing the linked vertex list

Traverse operator list $s(p), p=0, \ldots, L-1$

- vertex legs $v=4 p, 4 p+1,4 p+2,4 p+3$

Use arrays to keep track of the first and last (previous) vertex leg on a given spin

- $V_{\text {first }}(i)=$ location v of first leg on site i
- $V_{\text {last }}(i)=$ location v of last (currently) leg
- these are used to create the links
- initialize all elements to -1


```
\(V_{\text {first }}(:)=-1 ; V_{\text {last }}(:)=-1\)
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) cycle
    \(v_{0}=4 p ; b=s(p) / 2 ; s_{1}=i(b) ; s_{2}=j(b)\)
    \(v_{1}=V_{\text {last }}\left(s_{1}\right) ; v_{2}=V_{\text {last }}\left(s_{2}\right)\)
    if \(\left(v_{1} \neq-1\right)\) then \(X\left(v_{1}\right)=v_{0} ; X\left(v_{0}\right)=v_{1}\) else \(V_{\text {first }}\left(s_{1}\right)=v_{0}\) endif
    if \(\left(v_{2} \neq-1\right)\) then \(X\left(v_{2}\right)=v_{0} ; X\left(v_{0}\right)=v_{2}\) else \(V_{\text {first }}\left(s_{2}\right)=v_{0}+1\) endif
    \(V_{\text {last }}\left(s_{1}\right)=v_{0}+2 ; V_{\text {last }}\left(s_{2}\right)=v_{0}+3\)
```

enddo
creating the last links across the "time" boundary

```
do }i=1\mathrm{ to }
    f= V (first
    if (f\not=-1) then l= V last (i); X(f)=l;X(l)=f endif
enddo
```

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n

- increase L if n is close to current L
- e.g., L=n+n/3

Example

- 16×16 system, $\beta=16 \Rightarrow$
- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work?

Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow \propto$

- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

\Leftarrow Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit ($\mathrm{T} \rightarrow 0$)

