The spin stiffness at criticality

For a quantum-critical point with dynamic exponent z :

$$
\rho_{s} \sim L^{-(d+z-2)}
$$

$\mathrm{d}=2, \mathrm{z}=1 \rightarrow$ plot $\mathrm{L} \rho_{\mathrm{s}}$ vs g for different L

- curves should cross (size independence) at gc_{c}
- x - and y-stiffness different in this model

Finite-size scaling in agreement with $z=1, g_{c} \approx 1.9094$

Valence-bond basis and resonating valence-bond states

As an alternative to single-spin \uparrow and \downarrow states, we can use singlets and triplet pairs

static dimers (complete basis)

arbitrary singlets (overcomplete in singlet subspace)

one triplet in the "singlet soup" (overcomplete in triplet subspace)

In the valence-bond basis (b,c) one normally includes pairs connecting two groups of spins - sublattices A and B (bipartite system, no frustration)

arrows indicate the order of the spins in the singlet definition

$$
(a, b)=\left(\uparrow_{a} \downarrow_{b}-\downarrow_{a} \uparrow_{b}\right) / \sqrt{2} \quad a \in A, b \in B
$$

Superpositions, "resonating valence-bond" (RVB) states

$$
\left|\Psi_{s}\right\rangle=\sum_{\alpha} f_{\alpha}\left|\left(a_{1}^{\alpha}, b_{1}^{\alpha}\right) \cdots\left(a_{N / 2}^{\alpha}, b_{N / 2}^{\alpha}\right)\right\rangle=\sum_{\alpha} f_{\alpha}\left|V_{\alpha}\right\rangle
$$

Coefficients $\mathrm{f}_{\mathrm{a}}>0$ for bipartite (unfrustrated) Heisenberg systems

Calculating with valence-bond states

All valence-bond basis states are non-orthogonal

- the overlaps are obtained using transposition graphs (loops)

$\left\langle V_{\beta}\right|$

$\left\langle V_{\beta} \mid V_{\alpha}\right\rangle$

$\left|V_{\alpha}\right\rangle$

$\rightarrow\left\langle V_{\beta} \mid V_{\alpha}\right\rangle=2^{N_{\text {loop }}-N / 2}$
This replaces the standard overlap for an orthogonal basis; $\langle\beta \mid \alpha\rangle=\delta_{\alpha \beta}$
Many matrix elements can also be expressed using the loops, e.g.,

$$
\frac{\left\langle V_{\beta}\right| \mathbf{S}_{i} \cdot \mathbf{S}_{j}\left|V_{\alpha}\right\rangle}{\left\langle V_{\beta} \mid V_{\alpha}\right\rangle}= \begin{cases}0, & \text { for } \lambda_{i} \neq \lambda_{j} \\ \frac{3}{4} \phi_{i j}, & \text { for } \lambda_{i}=\lambda_{j}\end{cases}
$$

λ_{i} is the loop index (each loop has a label), staggered phase factor

$$
\phi_{i j}= \begin{cases}-1, & \text { for } i, j \text { on different sublattices } \\ +1, & \text { for } i, j \text { on the same sublattice }\end{cases}
$$

More complicated cases derived in: K.S.D. Beach and A.W.S., Nucl. Phys. B 750, 142 (2006)

Solution of the frustrated chain at the Majumdar-Ghosh point

$$
H=\sum_{i=1}^{N}\left[J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}+J_{2} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2}\right]
$$

We will show that these are eigenstates when $J_{2} / J_{1}=1 / 2$
Write H in terms of singlet projectors

$\left|\Psi_{A}\right\rangle=|(1,2)(3,4)(5,6) \cdots\rangle$ $\left|\Psi_{B}\right\rangle=|(N, 1)(2,3)(4,5) \cdots\rangle$

$$
H=-\sum_{i=1}^{N}\left(C_{i, i+1}+g C_{i, i+2}\right)+N \frac{1+g}{4}, \quad C_{i j}=-\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\frac{1}{4}\right)
$$

Useful valence-bond results (easy to prove, just write as \uparrow and \downarrow spins)
(a)

Act with one "segment" of the terms of H on a VB state ($\mathrm{J}_{1}=1, \mathrm{~J}_{2}=\mathrm{g}$) :
(b)

$=\frac{1}{2}>0$ $\xrightarrow{+}+\frac{1}{4}$

$=\left(\frac{1}{2}+\frac{\mathrm{g}}{2}\right)>0$
$\rightarrow 0+\left(\frac{1}{4}-\frac{g}{2}\right)$

Eigenstate for $\mathbf{g = 1 / 2}$; one can also show that it's the lowest eigenstate (more difficult)

Amplitude-product states

Good variational ground state for bipartite models can be constructed

$$
\left|\Psi_{s}\right\rangle=\sum_{\alpha} f_{\alpha}\left|\left(a_{1}^{\alpha}, b_{1}^{\alpha}\right) \cdots\left(a_{N / 2}^{\alpha}, b_{N / 2}^{\alpha}\right)\right\rangle=\sum_{\alpha} f_{\alpha}\left|V_{\alpha}\right\rangle
$$

Let the wave-function coefficients be products of "amplitudes" (real positive numbers)

$$
f_{\alpha}=\prod_{\mathbf{r}} h(\mathbf{r})^{n_{\alpha}(\mathbf{r})}, \quad \text { Liang, Doucot, Anderson (PRL, 1990) }
$$

r is the bond length $(n(r)=$ number of length r bonds)
The amplitudes $h(r)$ are adjustable parameters

- use some optimization method to minimize $\mathrm{E}=<\mathrm{H}>$

Variational QMC method

Given $h(r)$, one can study the state using
Monte Carlo sampling of bonds

- elementary two-bond moves
- Metroplois accept/reject
- loop updates when spins are included
- more efficient

2D Heisenberg results

- $h(r)=1 / r^{3}$
- good ground state properties
- error in $\mathrm{E}<0.1 \%$, error in $\mathrm{m}_{\mathrm{s}}<1 \%$

Projector Monte Carlo in the valence-bond basis

Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

$(-H)^{\mathrm{n}}$ projects out the ground state from an arbitrary state

$$
(-H)^{n}|\Psi\rangle=(-H)^{n} \sum_{i} c_{i}|i\rangle \rightarrow c_{0}\left(-E_{0}\right)^{n}|0\rangle
$$

S=1/2 Heisenberg model

$$
H=\sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=-\sum_{\langle i, j\rangle} H_{i j}, \quad H_{i j}=\left(\frac{1}{4}-\vec{S}_{i} \cdot \vec{S}_{j}\right)
$$

Project with string of bond operators

$$
\sum_{\left\{H_{i j}\right\}} \prod_{p=1}^{n} H_{i(p) j(p)}|\Psi\rangle \rightarrow r|0\rangle \quad \text { (r irrelevant) }
$$

Action of bond operators

$$
\begin{aligned}
H_{a b}|\ldots(a, b) \ldots(c, d) \ldots\rangle & =|\ldots(a, b) \ldots(c, d) \ldots\rangle \\
H_{b c}|\ldots(a, b) \ldots(c, d) \ldots\rangle & =\frac{1}{2}|\ldots(c, b) \ldots(a, d) \ldots\rangle
\end{aligned}
$$

Simple reconfiguration of bonds (or no change; diagonal)

- no minus signs for $A \rightarrow B$ bond 'direction' convetion
- sign problem does appear for frustrated systems

Expectation values: $\langle A\rangle=\langle 0| A|0\rangle$

Strings of singlet projectors

$$
P_{k}=\prod_{p=1}^{n} H_{i_{k}(p) j_{k}(p)}, \quad k=1, \ldots, N_{b}^{n} \quad\left(N_{b}=\text { number of interaction bonds }\right)
$$

We have to project bra and ket states

$$
\begin{aligned}
\sum_{k} P_{k}\left|V_{r}\right\rangle & =\sum_{k} W_{k r}\left|V_{r}(k)\right\rangle \rightarrow\left(-E_{0}\right)^{n} c_{0}|0\rangle \\
\sum_{g}\left\langle V_{l}\right| P_{g}^{*} & =\sum_{g}\left\langle V_{l}(g)\right| W_{g l} \rightarrow\langle 0| c_{0}\left(-E_{0}\right)^{n}
\end{aligned}
$$

6-spin chain example:

More efficient ground state QMC algorithm \rightarrow larger lattices

Loop updates in the valence-bond basis

AWS and H. G. Evertz, ArXiv:0807.0682

Put the spins back in a way compatible with the valence bonds

$$
\left(a_{i}, b_{i}\right)=\left(\uparrow_{i} \downarrow_{j}-\downarrow_{i} \uparrow_{j}\right) / \sqrt{2}
$$

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods (world-line and stochastic series expansion methods)

- good valence-bond trial wave functions can be used
- larger systems accessible
- sample spins, but measure using the valence bonds

J-Q model: T=0 results obtained with valence-bond QMC

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Two different models: $\mathbf{J}-\mathbf{Q}_{\mathbf{2}}$ and $\mathbf{J}-\mathbf{Q}_{\mathbf{3}}$
bond-singlet projector

$$
\begin{aligned}
& H_{1}=-J \sum_{\langle i j\rangle} C_{i j} \\
& H_{2}=-Q_{2} \sum_{\langle i j k l\rangle} C_{k l} C_{i j} \\
& H_{3}=-Q_{3} \sum_{\langle i j k l m n\rangle} C_{m n} C_{k l} C_{i j}
\end{aligned}
$$

$$
C_{i j}=\frac{1}{4}-\mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Studies of $\mathrm{J}-\mathrm{Q}_{2}$ model and $\mathrm{J}-\mathrm{Q}_{3}$ model on $\mathrm{L} \times \mathrm{L}$ lattices with L up to 64
Exponents $\boldsymbol{\eta}_{\mathbf{s}}, \boldsymbol{\eta}_{\mathrm{d}}$, and \mathbf{v} from the squared order parameters
$D^{2}=\left\langle D_{x}^{2}+D_{y}^{2}\right\rangle$,
$D_{x}=\frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}}$,
$D_{y}=\frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}$
$M^{2}=\langle\vec{M} \cdot \vec{M}\rangle$
$\vec{M}=\frac{1}{N} \sum_{i}(-1)^{x_{i}+y_{i}} \vec{S}_{i}$

Using coupling ratio

$$
q=\frac{Q_{p}}{Q_{p}+J}, \quad p=2,3
$$

- AF order for $q \rightarrow 0$
- VBS order for $q \rightarrow 1$
$J-Q_{2}$ model; $q_{c}=0.961(1)$

$$
\begin{aligned}
\eta_{s} & =0.35(2) \\
\eta_{d} & =0.20(2) \\
\nu & =0.67(1)
\end{aligned}
$$

$J-Q_{3}$ model; $q_{c}=0.600(3)$

$$
\begin{aligned}
\eta_{s} & =0.33(2) \\
\eta_{d} & =0.20(2) \\
\nu & =0.69(2)
\end{aligned}
$$

Exponents universal (within error bars)

- still higher accuracy desired (in progress)
- there may be log-corrections (see arXiv:1001.4296)

Columnar or plaquette VBS?

QMC sampled state in the valence-bond basis

$$
|0\rangle=\sum_{k} c_{k}\left|V_{k}\right\rangle
$$

Joint probability distribution $P\left(D_{x}, D_{y}\right)$ of x and y columnar VBS order parameters

$$
\begin{aligned}
D_{x} & =\frac{\left\langle V_{k}\right| \frac{1}{N} \sum_{i=1}^{N}(-1)^{x_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{x}}\left|V_{p}\right\rangle}{\left\langle V_{k} \mid V_{p}\right\rangle} \\
D_{y} & =\frac{\left\langle V_{k}\right| \frac{1}{N} \sum_{i=1}^{N}(-1)^{y_{i}} \mathbf{S}_{i} \cdot \mathbf{S}_{i+\hat{y}}\left|V_{p}\right\rangle}{\left\langle V_{k} \mid V_{p}\right\rangle}
\end{aligned}
$$

critical

4 peaks expected in VBS phase

- Z4-symmetry unbroken in finite system

VBS fluctuations in the theory of deconfined quantum-critical points
> plaquette and columnar VBS "degenerate" at criticality
$>Z_{4}$ "lattice perturbation" irrelevant at critical point

- and in the VBS phase for $L<\Lambda \sim \xi^{a}, a>1$ (spinon confinement length)
> emergent U(1) symmetry
$>$ ring-shaped distribution expected for $L<\wedge$

No sign of cross-over to Z_{4} symmetric order parameter seen in the $\mathrm{J}-\mathrm{Q}_{2}$ model - length \wedge > 32

AWS, Phys. Rev. Lett (2007)

Order parameter histograms $\mathrm{P}\left(\mathrm{D}_{\mathrm{x}}, \mathrm{D}_{\mathrm{y}}\right), \mathrm{J}-\mathrm{Q}_{3}$ model

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

This model has a more robust VBS phase

- can the symmetry cross-over be detected?

VBS symmetry cross-over

- Z4-sensitive order parameter
$D_{4}=\int r d r \int d \phi P(r, \phi) \cos (4 \phi)$
Finite-size scaling gives $U(1)$ (deconfinement) length-scale
$\Lambda \sim \xi^{a} \sim q^{-a \nu}$

