Diagonal update; pseudocode implementation

```
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) then
        \(b=\operatorname{random}\left[1, \ldots, N_{b}\right]\); if \(\sigma(i(b))=\sigma(j(b))\) cycle
        if \(\left(\right.\) random \(\left.[0-1]<P_{\text {insert }}(n)\right)\) then \(s(p)=2 b ; n=n+1\) endif
    elseif \((\bmod [s(p), 2]=0)\) then
        if \(\left(\operatorname{random}[0-1]<P_{\text {remove }}(n)\right)\) then \(s(p)=0 ; n=n-1\) endif
    else
        \(b=s(p) / 2 ; \sigma(i(b))=-\sigma(i(b)) ; \sigma(j(b))=-\sigma(j(b))\)
    endif
enddo
```

i(b),j(b) sites on bond b

Local off-diagonal update

(a)

(b)

Switch the type ($\mathrm{a}=1 \leftrightarrow \mathrm{a}=2$) of two operators on the same spins

- constraints have to be satisfied
- inefficient, cannot change the winding number

Operator-loop update

Many spins and operators can be changed simultaneously

Pseudocode

moving horizontally
in the list corresponds
to changing v even \leftrightarrow odd

- flipbit $(v, 0)$ flips bit 0 of v
- a given loop is only constructed once
- vertices can be erased
- $X(v)<0=$ erased
- $X(v)=-1$ not flipped loop
- $X(v)=-2$ flipped loop
constructing all loops, flip probability $1 / 2$

```
do }\mp@subsup{v}{0}{}=0\mathrm{ to }4L-1 step 
    if (X(vo)<0) cycle
    v = v _ { 0 }
    if (random[0-1]< \frac{1}{2}) then
        traverse the loop; for all v in loop, set X(v)=-1
    else
        traverse the loop; for all v}\mathrm{ in loop, set }X(v)=-
        flip the operators in the loop
    endif
enddo
```

construct and flip a loop

```
v= vo
do
    X(v)=-2
    p=v/4;s(p)= flipbit (s(p),0)
    v}=\mp@code{flipbit (v,0)
    v=X(\mp@subsup{v}{}{\prime});X(\mp@subsup{v}{}{\prime})=-2
    if (v=\mp@subsup{v}{0}{}) exit
enddo
```


Constructing the linked vertex list

Traverse operator list $s(p), p=0, \ldots, L-1$

- vertex legs $v=4 p, 4 p+1,4 p+2,4 p+3$

Use arrays to keep track of the first and last (previous) vertex leg on a given spin

- $V_{\text {first }}(i)=$ location v of first leg on site i
- $V_{\text {last }}(i)=$ location v of last (currently) leg
- these are used to create the links
- initialize all elements to -1


```
\(V_{\text {first }}(:)=-1 ; V_{\text {last }}(:)=-1\)
do \(p=0\) to \(L-1\)
    if \((s(p)=0)\) cycle
    \(v_{0}=4 p ; b=s(p) / 2 ; s_{1}=i(b) ; s_{2}=j(b)\)
    \(v_{1}=V_{\text {last }}\left(s_{1}\right) ; v_{2}=V_{\text {last }}\left(s_{2}\right)\)
    if \(\left(v_{1} \neq-1\right)\) then \(X\left(v_{1}\right)=v_{0} ; X\left(v_{0}\right)=v_{1}\) else \(V_{\text {first }}\left(s_{1}\right)=v_{0}\) endif
    if \(\left(v_{2} \neq-1\right)\) then \(X\left(v_{2}\right)=v_{0} ; X\left(v_{0}\right)=v_{2}\) else \(V_{\text {first }}\left(s_{2}\right)=v_{0}+1\) endif
    \(V_{\text {last }}\left(s_{1}\right)=v_{0}+2 ; V_{\text {last }}\left(s_{2}\right)=v_{0}+3\)
enddo
```

creating the last links across the "time" boundary

```
do \(i=1\) to \(N\)
    \(f=V_{\text {first }}(i)\)
    if \((f \neq-1)\) then \(l=V_{\text {last }}(i) ; X(f)=l ; X(l)=f\) endif
enddo
```

We also have to modify the stored spin state after the loop update

- we can use the information in $\mathrm{V}_{\text {first }}$) and $\mathrm{X}($) to determine spins to be flipped
- spins with no operators, $\mathrm{V}_{\text {first }}(\mathrm{i})=-1$, flipped with probability $1 / 2$

```
do \(i=1\) to \(N\)
    \(v=V_{\text {first }}(i)\)
    if \((v=-1)\) then
        if \((\) random \([0-1]<1 / 2) \sigma(i)=-\sigma(i)\)
    else
        if \((X(v)=-2) \sigma(i)=-\sigma(i)\)
    endif
enddo
```

v is the location of the first
vertex leg on spin i

- flip it if $X(v)=-2$
- (do not flip it if $X(v)=-1$)
- no operation on if $V_{\text {first }}(\mathrm{i})=-1$

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n

- increase L if n is close to current L
- e.g., $L=n+n / 3$

Example; 16×16 system, $\beta=16 \Rightarrow$

- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work?

Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow \quad x$

- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

\Leftarrow Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit ($\mathrm{T} \rightarrow 0$)

Properties of the Heisenberg chain; large-scale SSE results

Magnetic susceptibility

 anomalous behavior as $\mathrm{T} \rightarrow 0$- low-T results seem to disagree with known $\mathrm{T}=0$ value obtained using the Bethe Ansatz method
- Reason: logarithmic correction at low $\mathrm{T}>0$
Eggert, Affleck, Takahashi,
PRL 73, 332 (1994)

$$
\chi(T)=\frac{1}{2 \pi c}+\frac{1}{4 \pi c \ln \left(T_{0} / T\right)}
$$

- Low-T form expected based on low-energy field theory
- For the standard chain
$c=\pi J / 2, \quad T_{0} \approx 7.7$
- Other interactions \rightarrow same form, different parameters

Long chains needed for studying low-T behavior (T < finite-size gap)

T=0 spin correlations

Low-energy field theory prediction

$$
C(r)=A \frac{(-1)^{r}}{r} \ln \left(\frac{r}{r_{0}}\right)^{1 / 2}
$$

SSE: converge to $\mathrm{T}=0$ limit

- β dependence of $C(N / 2), N=4096 \Rightarrow$
- $\mathrm{C}(\mathrm{r})$ vs r and and $\mathrm{r}=\mathrm{N} / 2 \downarrow$

Ladder systems

E. Dagotto and T. M. Rice, Science 271, 618 (1996)

Coupled Heisenberg chains; $L_{x} \times L_{y}$ spins, $L_{y} \rightarrow \infty$, L_{x} finite

- systems with even and odd L_{y} have qualitatively different properties
- spin gap $\Delta>0$ for L_{y} even, $\Delta \rightarrow 0$ when $L_{x} \rightarrow \infty$
- critical state, similar to single chain, for odd L_{y}
- the 2D limit is approached in different ways

Consider anisotropic couplings; J_{x} and J_{y}

- the correct physics for all J_{y} / J_{x} can be understood based on large J_{y} / J_{x}
- short-range valence bond states

