Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

$$
\mathrm{e}^{-\Delta_{\tau} H}=\mathrm{e}^{-\Delta_{\tau} K} \mathrm{e}^{-\Delta_{\tau} V}+\mathcal{O}\left(\Delta_{\tau}^{2}\right) \rightarrow\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{l}\right\rangle \approx \mathrm{e}^{-\Delta_{\tau} V_{l}}\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} K}\left|\alpha_{l}\right\rangle
$$

Product over all times slices \rightarrow

$$
\left.W(\{\alpha\})=\Delta_{\tau}^{n_{K}} \exp \left(-\Delta_{\tau} \sum_{l=0}^{L-1} V_{l}\right)\right\} \quad P_{\mathrm{acc}}=\min \left[\Delta_{\tau}^{2} \frac{V_{\mathrm{new}}}{V_{\mathrm{old}}}, 1\right]
$$

The continuous time limit

Limit $\Delta_{T} \rightarrow 0$: number of kinetic jumps remains finite, store events only

Special methods (loop and worm updates) developed for efficient sampling of the paths in the continuum
(a)

local updates (problem when $\Delta_{T} \rightarrow 0$?) \bullet consider probability of inserting/removing events within a time window
\Leftarrow Evertz, Lana, Marcu (1993), Prokofev et al (1996) Beard \& Wiese (1996)

Series expansion representation

Start from the Taylor expansion $\mathrm{e}^{-\beta H}=\sum^{\infty} \underline{(-\beta)^{n}} H^{n} \quad$ (approximation-free

$$
Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle
$$

Similar to the path integral; $1-\Delta \tau H \rightarrow H$ and weight factor outside
For hard-core bosons the (allowed) path weight is $W\left(\{\alpha\}_{n}\right)=\beta^{n} / n$!
For any model, the energy is

$$
\begin{aligned}
& E=\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n+1}}\left\langle\alpha_{0}\right| H\left|\alpha_{n}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle \\
&=-\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^{n}}{n!} \frac{n}{\beta} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle=\frac{\langle n\rangle}{\beta} \\
& C=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}-\langle n\rangle \\
& \text { relabel terms to "get rid of" extra slice }
\end{aligned}
$$

From this follows: narrow n -distribution with $\langle n\rangle \propto N \beta, \quad \sigma_{n} \propto \sqrt{N \beta}$
Fixed-length scheme: cut-off at $\mathrm{N}=\mathrm{L}$, fill in with unit operators $\mathrm{H}_{0}=1$

$$
Z=\sum_{\{\alpha\}_{L}} \sum_{\left\{H_{i}\right\}} \frac{(-\beta)^{n}(L-n)!}{L!}\left\langle\alpha_{0}\right| H_{i(L)}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H_{i(2)}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H_{i(1)}\left|\alpha_{0}\right\rangle
$$

Here n is the number of $\mathrm{H}_{\mathrm{i}}, \mathrm{i}>0$ instances in the sequence of L operators

Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H=J \sum_{b=1}^{N_{b}} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
\begin{aligned}
& H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \\
& H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right) . \\
& H=-J \sum_{b=1}^{N_{b}}\left(H_{1, b}-H_{2, b}\right)+\frac{J N_{b}}{4}
\end{aligned}
$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$
\begin{array}{ll}
\left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{1, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{2, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} \\
\left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{1, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{2, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2}
\end{array}
$$

Partition function

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty}(-1)^{n_{2}} \frac{\beta^{n}}{n!} \sum_{S_{n}}\langle\alpha| \prod_{p=0}^{n-1} H_{a(p), b(p)}|\alpha\rangle \quad \begin{aligned}
& \begin{array}{l}
\mathrm{n}_{2}=\text { number of } \mathrm{a}(\mathrm{i})=2 \\
\text { (off-diagonal operators) } \\
\text { in the sequence }
\end{array}
\end{aligned}
$$

Index sequence: $S_{n}=[a(0), b(0)],[a(1), b(1)], \ldots,[a(n-1), b(n-1)]$

For fixed-length scheme

$$
Z=\sum_{\alpha} \sum_{S_{L}}(-1)^{n_{2}} \frac{\beta^{n}(L-n)!}{L!}\langle\alpha| \prod_{p=0}^{L-1} H_{a(p), b(p)}|\alpha\rangle \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

Propagated states: $|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i), b(i)}|\alpha\rangle$

$$
\begin{array}{rlrrrrrrrr}
i & = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\sigma(i) & = & -1 & +1 & -1 & -1 & +1 & -1 & +1 & +1
\end{array}
$$

00000000	11	1	2	4
- 0 ○ 0 0 0 0 0	10	0	0	0
00000000	9	2	4	9
00000000	8	2	6	13
00000000	7	1	3	6
00000000	6	0	0	0
00000000	5	0	0	0
0 - 00000	4	1	2	4
0000000	3	2	6	13
00000000	2	0	0	0
0000000	1	2	4	9
	0	1	7	14

$\mathrm{W}>0$ (n_{2} even) for bipartite lattice Frustration leads to sign problem

$$
\varrho_{0} \rightarrow 0_{0} \rightarrow 9_{0} \rightarrow Q_{0} \rightarrow Q_{0}
$$

$s(p)=$ operator-index string

- $s(p)=2 * b(p)+a(p)-1$
- diagonal; $s(p)=$ even
- off-diagonal; $s(p)=$ off
$\sigma(i)=$ spin state, $\mathrm{i}=1, \ldots, \mathrm{~N}$
- only one has to be stored

SSE effectively provides a discrete representation of the time continuum

- computational advantage; only integer operations in sampling

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

$X()=$ vertex list

- operator at $p \rightarrow X(v)$ $v=4 p+l, l=0,1,2,3$
- links to next and previous leg

Spin states between operations are redundant; represented by links

- network of linked vertices will be used for loop updates of vertices/operators

Monte Carlo sampling scheme

Change the configuration; $\left(\alpha, S_{L}\right) \rightarrow\left(\alpha^{\prime}, S_{L}^{\prime}\right)$

$$
W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

$$
P_{\text {accept }}=\min \left[\frac{W\left(\alpha^{\prime}, S_{L}\right)}{W\left(\alpha, S_{L}\right)} \frac{P_{\text {select }}\left(\alpha^{\prime}, S_{L}^{\prime} \rightarrow \alpha, S_{L}\right)}{P_{\text {select }}\left(\alpha, S_{L} \rightarrow \alpha^{\prime}, S_{L}^{\prime}\right)}, 1\right]
$$

Diagonal update: $[0,0]_{p} \leftrightarrow[1, b]_{p}$

$$
\begin{array}{lllllllll}
|\alpha(p+1)\rangle & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
|\alpha(p)\rangle & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \longleftrightarrow \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$P_{\text {select }}(a=1 \rightarrow a=0)=1$

$$
\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} \quad \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}
$$

n is the current power

- $\mathrm{n} \rightarrow \mathrm{n}+1(\mathrm{a}=0 \rightarrow \mathrm{a}=1)$
- $\mathrm{n} \rightarrow \mathrm{n}-1 \quad(\mathrm{a}=1 \rightarrow \mathrm{a}=0)$

Acceptance probabilities

$$
\begin{aligned}
& P_{\text {accept }}([0,0] \rightarrow[1, b])=\min \left[\frac{\beta N_{b}}{2(L-n)}, 1\right] \\
& P_{\text {accept }}([1, b] \rightarrow[0,0])=\min \left[\frac{2(L-n+1)}{\beta N_{b}}, 1\right]
\end{aligned}
$$

