Exact diagonalization of 2D systems (simple square lattice)

Label lattice sites and bonds

- hamiltonian construction very similar to 1D chains using site and bond maps

2D momentum states ($\mathrm{L}_{x} \times \mathrm{L}_{\mathrm{y}}$ lattice)

$$
\begin{aligned}
& |a(\mathbf{k})\rangle=\left|a\left(k_{x}, k_{y}\right)\right\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{x=1}^{L_{x}} \sum_{y=1}^{L_{y}} \mathrm{e}^{-i\left(k_{x} x+k_{y} y\right)} T_{y}^{y} T_{x}^{x}|a\rangle \\
& k_{\gamma}=\frac{2 \pi}{L_{\gamma}} m_{\gamma}, \quad m_{\gamma}=0,1, \ldots, L_{\gamma}-1, \quad \gamma=x, y
\end{aligned}
$$

In this case it is very difficult to construct a real-valued basis

- use complex momentum states
- reflection (and/or rotation) symmetries can be used for special momenta

Using reflection symmetries (LxL lattice)

$$
\begin{aligned}
& \left(\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right) \\
& \left(\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)
\end{aligned}
$$

General form of the momentum state with other symmetries

$$
\left|a^{\sigma}(\mathbf{k},\{q\})\right\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r_{x}=1}^{L_{x}} \sum_{r_{x}=1}^{L_{x}} \mathrm{e}^{-i\left(k_{x} x+k_{y} y\right)} T_{y}^{r_{y}} T_{x}^{r_{x}} Q|a\rangle
$$

Using three reflections; $\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{d}}$

$$
Q= \begin{cases}1, & \text { general } \mathbf{k} \\ \left(1+p_{x} P_{x}\right), & \mathbf{k}=\left(0, k_{y}\right),\left(\pi, k_{y}\right) \\ \left(1+p_{y} P_{y}\right), & \mathbf{k}=\left(k_{x}, 0\right),\left(k_{x}, \pi\right) \\ \left(1+p_{e} P_{e}\right)\left(1+p_{d} P_{d}\right), & k_{x}= \pm k_{y} \\ \left(1+p_{d} P_{d}\right)\left(1+p_{y} P_{y}\right)\left(1+p_{x} P_{x}\right), & \mathbf{k}=(0,0),(\pi, \pi), p_{x}=p_{y}\end{cases}
$$

Lanczos results for the 2D Heisenberg model

Ground state and lowest spin-S excitations on 4×4 and 6×6 lattices

A fundamental aspect of the Néel state: Quantum-rotor excitations

- lowest-energy excitations of finite lattices
- not captured by spin-wave theory
- correspond to global rotations of the Neel order (frozen in spin-wave theory)

Consider sublattices as two big spins

- $S_{A}, S_{B} \sim N / 2$
- effective interactions $J_{A B} \sim S_{A} \cdot S_{B} / N$
- leads to $\Delta_{\mathrm{s}}=\mathrm{E}_{\mathrm{s}}-\mathrm{E}_{0} \sim \mathrm{~S}(\mathrm{~S}+1) / \mathrm{N}$
- $S=$ total spin of the excitation

staggered spin correlations show signs of order in the ground state -but larger
systems required
to confirm (QMC)

Corrections to quantum-rotor energies seen for small systems

- quantum rotor energies should be good for $\mathrm{S} \ll \mathrm{N}$

