
C(r) = 〈Si · Si+r〉(−1)r

Letʼs look at the (staggered) spin correlation function
Spin correlations in the Heisenberg chain

versus the distance r and at r=N/2 versus system size N
Theory (bosonization, conformal field theory) predicts (for large r, N)

C(r) ∝ ln1/2(r/r0)
r

Plausible based on N up to 32
• other methods for larger N
Power-law correlations are 
a sign of a “critical” state; 
at the boundary between
• ordered (antiferromagnetic) 
• disordered (spin liquid) 
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Excitations of the Heisenberg chain

B. Lake et al., Nature Materials 4 329-334 (2005)

Neutron scattering experiments 
• quasi-one-dimensional KCuF3

• the ground state is a singlet (S=0)  for even N
• the first excited state is a triplet (S=1)
• can be understood as pair of “spinons”
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= J2

= J1

Heisenberg chain with frustrated interactions

For the special point J2/J1=0.5, this model has an exact solution

H =
N∑

i=1

[
J1Si · Si+1 + J2Si · Si+2

]

 Singlet-product states

|ΨA〉 = |(1, 2)(3, 4)(5, 6) · · · 〉
|ΨB〉 = |(1, N)(3, 2)(5, 4) · · · 〉

(a, b) = (↑a↓b − ↓a↑b)/
√

2It is not hard to show that these are
eigenstates of H (we will do later)
The system has this kind of order (with fluctuations, no exact solution)
for all J2/J1>0.2411..... This is a quantum phase transition between
• a critical state
• a valence-bond-solid (VBS) state
The symmetry is not broken for finite N
• the ground state is a superposition of the two ordered states

|Ψ0〉 ∼ |ΨA〉+ |ΨB〉, |Ψ1〉 ∼ |ΨA〉 − |ΨB〉
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The VBS state can be detected in finite systems using “dimer” correlations

D(r) = 〈BiBi+r〉 = 〈(Si · Si+1)(Si+r · Si+1+r)〉

It is not easy to detect the transition this way 
• “infinite-order” transition; exponential (slow) growth of the VBS order
• much larger systems are needed for observing a sharp transition
• other properties can be used to accurately determine the critical point gc

-level crossings [K. Okamoto and K. Nomura, Phys. Lett. A 169, 443 (1992)]

Results from Lanczos diagonaization; different coupling ratios g=J2/J1
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Determining the transition point using level crossings

Lowest excitation for the g=0 Heisenberg chain is a triplet
• this can be expected for all g<gc

The VBS state is 2-fold degenerate for infinite N 
• and for any N at g=1/2
• these two states are singlets
• gap between them closes exponentially as N→∞
• the lowest excitation is the second singlet

|Ψ0〉 ∼ |ΨA〉+ |ΨB〉
|Ψ1〉 ∼ |ΨA〉 − |ΨB〉

The two lowest excited state should cross at gc

Extrapolating point for different N up to 32 gives gc=0.2411674(2)

N = 16
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Heisenberg chains with long-range interactions

The spin-rotational symmetry cannot be spontaneously broken 
in 1D Heisenberg systems with short-range interactions
• with long-range interactions magnetic (e.g., Neel) order can form

H =
N/2∑

r=1

(−1)r−1Jr

∑

i=1

Si · Si+r J1 = λ, Jr>1 =
1
rα

Consider power-law decaying unfrustrated antiferromagnetic interactions
[N. Laflorencie, I. Affleck, and M. Berciu, JSTAT (2006)] 

Phase transition between
• critritical state
• Neel-ordered  state 

Transition curve αc(λ)
• varying critical exponents

The critical (or “quasi-long-range 
ordered”) phase has the normal 
Heisenberg chain critical 
fluctuations/correlations
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Jr ∝
1
rα

(Jr > 0), except for : J2 = −g (< 0)

Combining long-range interactions and frustration [AWS, PRL 2010 ]

Un-frustrated power-law decaying Jr, frustrating J2

For α→∞ the system reduces to the J1-J2 chain with g=J2/J1

(convenient normalization of un-frustrated terms)J1 +
N/2∑

r=3

Jr = 1

Technically challenging
• QMC sign problem
• long-range interactions

• DMRG difficulties
• What can Lanczos tell?
(g,α-1) phase diagram
• Laflorencie et al. model
• other phases from Lanczos

H =
N/2∑

r=1

(−1)r−1Jr

N∑

i=1

Si · Si+r
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Lanczos results for
ground state and 
excitation energies

Similar to the J1-J2 chain
for large α (>2)
• singlet-triplet crossing
• rounded E0 maximum

Different curve shapes
for small α (<2)
• sharp breaks
• avoided level crossings
• indicative of 1st order 

phase transition
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Analysis of the ground state energy curve E0(g)
Characterize the sharpness of the maximum
by the second derivative versus chain length

d2E0(g)
dg2

(at the peak value gpeak)

Exponentially divergent peak curvature for α<2
• First-order transition due to avoided level crossing
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For α>1.8
• singlet-triplet 

crossing at 
frustrated coupling 
gcross < gpeak

• indicative of same 
QLRO-VBS2 
transition as in 
standard  J1-J2 
chain

How do the singlet-triplet crossing point gcross and gpeak move with L?

For α<1.8
• the two special points coincide when L→∞
•  what is the nature of the transition
•  Neel state expected for small g
•  Is it a Neel-VBS transition?
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Spin correlations C(r)
• staggered (Neel) for g<gc

• period 4 for g>gc (critical?) 
Dimer correlations D(r)
• short-ranged for g<gc

• period-2 VBS for g>gc

C(r) = 〈Si · Si+r〉

D(r) = 〈(Si · Si+1)(Si+r · Si+1+r)〉

α = 1.0

m(q) =
1
N

N−1∑

r=0

e−iqrC(r) [or D(r)]

1st order transition
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