Potential problem:

The normalization constants N_{m} can become very large (think of $E_{0} m$)
Solution:
generate the normalized basis directly

- start with l| $\phi_{0}>$ arbitrary, normalized, and then

$$
\begin{aligned}
& \left|\phi_{1}\right\rangle=\frac{1}{N_{1}}\left(H\left|\phi_{0}\right\rangle-a_{0}\left|\phi_{0}\right\rangle\right) \\
& \left|\phi_{m+1}\right\rangle=\frac{1}{N_{m+1}}\left(H\left|\phi_{m}\right\rangle-a_{m}\left|\phi_{m}\right\rangle-N_{m}\left|\phi_{m-1}\right\rangle\right)=\frac{\left|\gamma_{m+1}\right\rangle}{N_{m+1}}
\end{aligned}
$$

The definition of N_{m} is different, and no b_{m} :

$$
\begin{aligned}
a_{m} & =\left\langle\phi_{m}\right| H\left|\phi_{m}\right\rangle \\
N_{m} & =\left\langle\gamma_{m} \mid \gamma_{m}\right\rangle^{-1 / 2}
\end{aligned}
$$

Generate $\mid \gamma_{m}>$ first, normalize to get N_{m+1}
The H-matrix is

$$
\begin{aligned}
\left\langle\phi_{m-1}\right| H\left|\phi_{m}\right\rangle & =N_{m} \\
\left\langle\phi_{m}\right| H\left|\phi_{m}\right\rangle & =a_{m} \\
\left\langle\phi_{m+1}\right| H\left|\phi_{m}\right\rangle & =N_{m+1}
\end{aligned}
$$

Lanczos basis generation in practice

Here: generate the orthogonal basis $\left\{\phi_{\mathrm{m}}\right\}$ directly

$$
\left|\phi_{m}\right\rangle=\sum_{a=1}^{M} \phi_{m}(a)|a\rangle, \quad m=0, \ldots, \Lambda
$$

in a given symmetry block of size M
The coefficients $\phi_{m}(a)$ are stored as $\Lambda+1$ vectors of size M

- may store only the vectors ϕ_{m-1} and ϕ_{m} to generate ϕ_{m+1}
- but basis has to be re-generated when computing expectation values
- stabilization by "re-orthogonalization" (later) requires storage of all ϕ_{m}

The main computational effort is in acting with the hamiltonian; HI $\Phi_{m}>$

- implement as a subroutine hoperation (ϕ, γ), where $|\gamma\rangle=H \mid \phi>$
- state normalization implemented as normalize(ϕ, n)
- $\phi=$ vector to normalize, $\mathrm{n}=\langle\phi \mid \phi\rangle$ before normalization

Pseudocode; Lanczos basis generation

Initial random state

```
do i=1,M
    \phi0}(i)=\operatorname{random}[0-1
enddo
call normalize( }\mp@subsup{\phi}{0}{},\mp@subsup{n}{0}{}
```

second state

```
call hoperation( }\mp@subsup{\phi}{0}{},\mp@subsup{\phi}{1}{}
a}=\langle\mp@subsup{\phi}{0}{}|\mp@subsup{\phi}{1}{}\rangle;\mp@subsup{\phi}{1}{}=\mp@subsup{\phi}{0}{}-\mp@subsup{a}{0}{}|\mp@subsup{\phi}{1}{}
call normalize( ( }\mp@subsup{|}{1}{},\mp@subsup{n}{1}{}
```

Generate the rest of the states

```
do }m=1,\Lambda-
    call hoperation( }\mp@subsup{\phi}{m}{},\mp@subsup{\phi}{m+1}{}
    am}=\langle\mp@subsup{\phi}{m}{}|\mp@subsup{\phi}{m+1}{}
    \phim+1}=\mp@subsup{\phi}{m+1}{}-\mp@subsup{a}{m}{}\mp@subsup{\phi}{m}{}-\mp@subsup{n}{m}{}\mp@subsup{\phi}{m-1}{
    call normalize( }\mp@subsup{\phi}{m+1}{},\mp@subsup{n}{m+1}{}
enddo
```

Note: the H-matrix can be constructed and diagonalized after each step - follow evolution of energy versus \wedge

- stop based on some convergence criterion on E_{0} (or higher energy)
- expectation values converge slower than energies

The subroutine hoperation (ϕ, γ) implements

$$
H|\phi\rangle=|\gamma\rangle=\sum_{a=1}^{M} \sum_{b=1}^{M} \phi(a)\langle b| H|a\rangle|b\rangle \quad|\phi\rangle=\sum_{a=1}^{M} \phi(a)|a\rangle
$$

in a given symmetry block ($\mathrm{M}=$ block size)
We do not want to store H as an $M \times M$ matrix (too big). Two options:

- carry out the operations on the fly; only the vectors are stored
- store H in a compact form; only non-0 elements (sparse matrix) Storing H speeds up the Lanczos iterations
- but may require a lot of memory

Compact storage of H: For each $a=1, M$

- e_{a} is the number of non-0 elements $\langle\mathbf{b}| \mathbf{H}|\mathbf{a}\rangle$
- labels $i=s_{a}+1, s_{a}+e_{a}$ will refer to these matrix elements;
- $H(i)$ contains the values of the matrix elements $\langle\mathbf{b}| \mathbf{H}|\mathbf{a}\rangle$

- $B(i)$ contains the corresponding "target" state index b
- The hamiltonian is symmetric -store only elements with $\mathrm{b} \leq \mathrm{a}$ (divide diagonal elements by 2)

Pseudocode; hamiltonian operation with compact storage

```
subroutine hoperation \((\phi, \gamma)\)
\(\gamma=0 ; i=0\)
do \(a=1, M\)
    do \(j=1, e_{a}\)
        \(i=i+1\)
        \(\gamma(B(i))=\gamma(B(i))+H(i) \phi(a)\)
        \(\gamma(a)=\gamma(a)+H(i) \phi(B(i))\)
    enddo
enddo
```

$$
H|\phi\rangle=|\gamma\rangle=\sum_{a=1}^{M} \sum_{b=1}^{M} \phi(a)\langle b| H|a\rangle|b\rangle
$$

Further storage compactification possible

- small number of different elements
- use mapping $\langle\mathbf{b}| \mathbf{H}|\mathbf{a}\rangle \rightarrow$ integer
- many operations on la> give same lb>
- add up all contributions before storing

Operator expectation values

Diagonalizing the tri-diagonal matrix \rightarrow eigenstates in the Lanczos basis

- eigenvectors v_{n}, energies E_{n}
- only some number of low-energy states $(\ll \Lambda)$ are correct eigenstates of H

To compute expectation values we normally go back to the original basis

$$
\psi_{n}(a)=\sum_{m=0}^{\Lambda} v_{n}(m) \phi_{m}(a), \quad a=1, \ldots, M
$$

To compute $\left\langle\psi_{\mathbf{n}}\right| \mathrm{O}\left|\psi_{\mathbf{n}}\right\rangle$ first construct

$$
\begin{aligned}
O\left|\psi_{n}\right\rangle=\left|\psi_{n}^{O}\right\rangle & =\sum_{a=1}^{M} \psi_{n}(a) O|a\rangle \\
& =\sum_{a=1}^{M} \sum_{b=1}^{M} \psi_{n}(a)|b\rangle\langle b| O|a\rangle \quad \begin{array}{l}
\quad \text { ebIOla> done exactly as when } \\
\text { constructing of the H matrix }
\end{array} \\
& =\sum_{b=1}^{M} \psi_{n}^{O}(b)|b\rangle \quad \psi_{n}^{O}(b)=\sum_{a=1}^{M} \psi_{n}(a)\langle b| O|a\rangle
\end{aligned}
$$

Then evaluate the scalar product

$$
\left\langle\psi_{n}\right| O\left|\psi_{n}\right\rangle=\left\langle\psi_{n} \mid \psi_{n}^{O}\right\rangle=\sum_{a=1}^{M} \psi_{n}(a) \psi_{n}^{O}(a)
$$

Convergence properties of the Lanczos method

Example; 24-site chain $m_{z}=0, k=0, p=1, z=1$ block size $M=28416$

Ground state converges first, then successively excited states
Loss of orthogonality: accumulation of numerical error \rightarrow basis becomes non-orthogonal

- higher states collapse down onto lower ones
- can be cured with re-orthogonalization

Example; 16-site chain $m_{z}=0, k=0, p=1, z=1$ block size $M=212$

- (a) non-orthogonality
- (b) re-orthogonalized

Re-orthogonalization procedure

For each state generated, remove all components of prior states, $i=1, \ldots, m$

- easy if we work with the normalized basis and all states are stored

$$
\left|\phi_{m}\right\rangle \rightarrow \frac{\left|\phi_{m}\right\rangle-q\left|\phi_{i}\right\rangle}{1-q^{2}}, \quad q=\left\langle\phi_{i} \mid \phi_{m}\right\rangle
$$

Pseudocode: modify state generation

```
do \(m=1, \Lambda-1\)
    call hoperation \(\left(\phi_{m}, \phi_{m+1}\right)\)
    \(a_{m}=\left\langle\phi_{m} \mid \phi_{m+1}\right\rangle ; \phi_{m+1}=\phi_{m+1}-a_{m} \phi_{m}-n_{m} \phi_{m-1}\)
    call normalize \(\left(\phi_{m+1}, n_{m+1}\right)\)
    do \(i=1\), \(m\)
        \(q=\left\langle\phi_{m+1} \mid \phi_{i}\right\rangle ; \phi_{m+1}=\left(\phi_{m+1}-q \phi_{i}\right) /\left(1-q^{2}\right)\)
    enddo
enddo
```

Note: the Lanczos method can only generate a single state of a multiplet

- some random linear combination of degenerate states

Example: 2 degenerate states i, j :

$$
H^{\Lambda}|\Psi\rangle=\sum_{m \neq i, j} c_{m} E_{m}^{\Lambda}\left|\psi_{m}\right\rangle+E_{i, j}^{m}\left(c_{i}\left|\psi_{i}\right\rangle+c_{j}\left|\psi_{j}\right\rangle\right)
$$

The mixing of the duplet is determined by $\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}$ of the initial state

