
Potential problem:
The normalization constants Nm can become very large (think of E0m)

Generate |γm> first, normalize to get Nm+1

〈φm−1|H|φm〉 = Nm

〈φm|H|φm〉 = am

〈φm+1|H|φm〉 = Nm+1

The H-matrix is

am = 〈φm|H|φm〉
Nm = 〈γm|γm〉−1/2

Solution:
generate the normalized basis directly
• start with |φ0> arbitrary, normalized, and then

The definition of Nm is different, and no bm:

|φ1〉 =
1

N1

(
H|φ0〉 − a0|φ0〉

)
.

|φm+1〉 =
1

Nm+1

(
H|φm〉 − am|φm〉 −Nm|φm−1〉

)
=

|γm+1〉
Nm+1

34Thursday, April 15, 2010

Lanczos basis generation in practice
Here: generate the orthogonal basis {φm} directly

The coefficients φm(a) are stored as Λ+1 vectors of size M
• may store only the vectors φm-1 and φm to generate φm+1

• but basis has to be re-generated when computing expectation values
• stabilization by “re-orthogonalization” (later) requires storage of all φm

The main computational effort is in acting with the hamiltonian; H|φm>
• implement as a subroutine hoperation(φ,γ), where |γ>=H|φ>
• state normalization implemented as normalize(φ,n)

• φ = vector to normalize, n = <φ|φ> before normalization

|φm〉 =
M∑

a=1

φm(a)|a〉, m = 0, . . . ,Λ

in a given symmetry block of size M

35Thursday, April 15, 2010

call hoperation(φ0, φ1)
a0 = 〈φ0|φ1〉; φ1 = φ0 − a0|φ1〉
call normalize(φ1, n1)

second state

Pseudocode; Lanczos basis generation

Note: the H-matrix can be constructed and diagonalized after each step
• follow evolution of energy versus Λ
• stop based on some convergence criterion on E0 (or higher energy)
• expectation values converge slower than energies

Generate the rest of the states
do m = 1, Λ − 1

call hoperation(φm, φm+1)
am = 〈φm|φm+1〉
φm+1 = φm+1 − amφm − nmφm−1
call normalize(φm+1, nm+1)

enddo

Initial random state
do i = 1, M

φ0(i) = random[0− 1]
enddo
call normalize(φ0, n0)

36Thursday, April 15, 2010

The subroutine hoperation(φ,γ) implements

H|φ〉 = |γ〉 =
M∑

a=1

M∑

b=1

φ(a)〈b|H|a〉|b〉

We do not want to store H as an M×M matrix (too big). Two options:
• carry out the operations on the fly; only the vectors are stored
• store H in a compact form; only non-0 elements (sparse matrix)
Storing H speeds up the Lanczos iterations
• but may require a lot of memory

Compact storage of H: For each a=1,M
• ea is the number of non-0 elements
• labels i=sa+1,sa+ea will refer to these matrix elements;
• H(i) contains the values of the matrix elements
• B(i) contains the corresponding “target” state index b
• The hamiltonian is symmetric

•store only elements with b ≤ a (divide diagonal elements by 2)

〈b|H|a〉

〈b|H|a〉
sa =

a−1∑

c=1

ea

in a given symmetry block (M = block size)

|φ〉 =
M∑

a=1

φ(a)|a〉

37Thursday, April 15, 2010

subroutine hoperation(φ, γ)
γ = 0; i = 0
do a = 1, M

do j = 1, ea

i = i + 1
γ(B(i)) = γ(B(i)) + H(i)φ(a)
γ(a) = γ(a) + H(i)φ(B(i))

enddo
enddo

Pseudocode; hamiltonian operation with compact storage

Further storage compactification possible
• small number of different elements
• use mapping
• many operations on |a> give same |b>

• add up all contributions before storing

〈b|H|a〉 → integer

H|φ〉 = |γ〉 =
M∑

a=1

M∑

b=1

φ(a)〈b|H|a〉|b〉

38Thursday, April 15, 2010

Operator expectation values
Diagonalizing the tri-diagonal matrix → eigenstates in the Lanczos basis
• eigenvectors vn, energies En

• only some number of low-energy states (<< Λ) are correct eigenstates of H

ψn(a) =
Λ∑

m=0

vn(m)φm(a), a = 1, . . . ,M

To compute expectation values we normally go back to the original basis

Then evaluate the scalar product

〈ψn|O|ψn〉 = 〈ψn|ψO
n 〉 =

M∑

a=1

ψn(a)ψO
n (a)

To compute first construct〈ψn|O|ψn〉

ψO
n (b) =

M∑

a=1

ψn(a)〈b|O|a〉

O|ψn〉 = |ψO
n 〉 =

M∑

a=1

ψn(a)O|a〉

=
M∑

a=1

M∑

b=1

ψn(a)|b〉〈b|O|a〉

=
M∑

b=1

ψO
n (b)|b〉

<b|O|a> done exactly as when
constructing of the H matrix

39Thursday, April 15, 2010

Convergence properties of the Lanczos method
Example; 24-site chain
mz = 0, k = 0, p = 1, z= 1
block size M=28416

Ground state converges first, then successively excited states
Loss of orthogonality: accumulation of numerical error → basis becomes non-orthogonal
• higher states collapse down onto lower ones
• can be cured with re-orthogonalization

Example; 16-site chain
mz = 0, k = 0, p = 1, z= 1
block size M=212
• (a) non-orthogonality
• (b) re-orthogonalized

40Thursday, April 15, 2010

Re-orthogonalization procedure

|φm〉 →
|φm〉 − q|φi〉

1− q2
, q = 〈φi|φm〉

For each state generated, remove all components of prior states, i=1,...,m
• easy if we work with the normalized basis and all states are stored

Pseudocode: modify state generation
do m = 1, Λ − 1

call hoperation(φm, φm+1)
am = 〈φm|φm+1〉; φm+1 = φm+1 − amφm − nmφm−1
call normalize(φm+1, nm+1)
do i = 1, m

q = 〈φm+1|φi〉; φm+1 = (φm+1 − qφi)/(1 − q2)
enddo

enddo

Note: the Lanczos method can only generate a single state of a multiplet
• some random linear combination of degenerate states

HΛ|Ψ〉 =
∑

m!=i,j

cmEΛ
m|ψm〉 + Em

i,j(ci|ψi〉 + cj |ψj〉)
Example: 2 degenerate states i, j:

The mixing of the duplet is determined by ci, cj of the initial state
41Thursday, April 15, 2010

