Momentum states (translationally invariant systems)

A periodic chain (ring), translationally invariant

- eigenstates with a fixed momentum (crystal momentum)
- quantum number k

$$
T|n\rangle=\mathrm{e}^{i k}|n\rangle \quad k=m \frac{2 \pi}{N}, \quad m=0, \ldots, N-1,
$$

The operator T translates the state by one lattice spacing

- for a spin basis state

$$
T\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle=\left|S_{N}^{z}, S_{1}^{z}, \ldots, S_{N-1}^{z}\right\rangle
$$

$[\mathrm{T}, \mathrm{H}]=0 \rightarrow$ momentum blocks of H

- can use eigenstates of T with given k as basis
also $\left[T, m_{z}\right]=0 \rightarrow m_{z}$ blocks split into momentum blocks of H
- construct basis for given ($\mathrm{m}_{\mathrm{z}}, \mathrm{k}$)

We have to construct a complete basis of eigenstates of k or $\left(m_{z}, k\right)$

A momentum state can be constructed from a representative state la>

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|S_{1}^{z}, \ldots, S_{N}^{z}\right\rangle
$$

Convention: A representative la> must be la> represents all its translations a state with the the lowest binary-integer representation among all its translations

- If la> and lb> are representatives, then

$$
T^{r}|a\rangle \neq|b\rangle \quad r \in\{1, \ldots, N-1\}
$$

4-site examples
(0011) \rightarrow (0110),(1100),(1001)
$(0101) \rightarrow(1010)$

The sum can contain several copies of the same state (periodicity R):

$$
T^{R}|a\rangle=|a\rangle \text { for some } R
$$

- the total weight for the component la> in la(k)> is

$$
1+\mathrm{e}^{-i k R}+\mathrm{e}^{-i 2 k R}+\ldots+\mathrm{e}^{-i k(N / R-1) R}
$$

- vanishes (state incompatible with k) unless $k R=n 2 \pi$
- the total weight of the representative is then N/R

Condition for periodicity compatible with momentum $k=m 2 \pi / N$:

$$
k R=n 2 \pi \rightarrow \frac{m R}{N}=n \rightarrow m=n \frac{N}{R} \rightarrow \bmod (m, N / R)=0
$$

Construct ordered list of representatives for given \mathbf{k}

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}|a\rangle
$$

Normalization of a state $\operatorname{la}(\mathrm{k})>$ with periodicity R_{a}

$$
\langle a(k) \mid a(k)\rangle=\frac{1}{N_{a}} \times R_{a} \times\left(\frac{N}{R_{a}}\right)^{2}=1 \rightarrow N_{a}=\frac{N^{2}}{R_{a}}
$$

Pseudocode; basis construction

$$
\begin{aligned}
& \text { do } s=0,2^{N}-1 \\
& \quad \text { call checkstate }(s, R) \\
& \quad \text { if } R \geq 0 \text { then } a=a+1 ; s_{a}=s ; R_{a}=R \text { endif } \\
& \text { enddo } \\
& M=a
\end{aligned}
$$

$M=$ size of the H-block

Uses a subroutine checkstate(s,R)

- $R=$ periodicity if state-integer s is a new representative
- store in list $R_{\mathrm{a}}, a=1, \ldots, M$
- $R=-1$ if
- the magnetization is not the one currently considered
- some translation of Is> gives a state-integer smaller than s
- Is> is not compatible with the momentum

Translations of the representative; cyclic permutation
Define function cyclebits(t,N)

- cyclic permutations of first N bits of integer t
- F90 function ishiftc $(t,-1, N)$

The representative has the lowest state-integer among all its translations

Pseudocode; checkstate() subroutine

```
subroutine checkstate(s,R)
R=-1
if ( }\mp@subsup{\sum}{i}{}s[i]\not=\mp@subsup{n}{\uparrow}{})\mathrm{ return
t=s
do i=1,N
    t= cyclebits(t,N)
    if (t<s) then
        return
    elseif (t=s) then
        if (mod}(k,N/i)\not=0) return
        R=i; return
    endif
enddo
```

check the magnetization
check if translated state has lower integer representation
check momentum compatibility

- k is the integer corresponding to the momentum; $k=0, \ldots, N-1$
- momentum $=k 2 \pi / \mathrm{N}$

The Hamiltonian matrix. Write $S=1 / 2$ chain hamiltonian as

$$
H_{0}=\sum_{j=1}^{N} S_{j}^{z} S_{j+1}^{z}, \quad H_{j}=\frac{1}{2}\left(S_{j}^{+} S_{j+1}^{-}+S_{j}^{+} S_{j+1}^{-}\right), \quad j=1, \ldots, N
$$

Act with H on a momentum state; use $[\mathrm{H}, \mathrm{T}]=0$

$$
H|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r} H|a\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{j=0}^{N} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r} H_{j}|a\rangle
$$

$\mathrm{H}_{\mathrm{j}} \mid \mathrm{a}>$ is related to some representative: $H_{j}|a\rangle=h_{a}^{j} T^{-l_{j}}\left|b_{j}\right\rangle$

$$
H|a(k)\rangle=\sum_{j=0}^{N} \frac{h_{a}^{j}}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{\left(r-l_{j}\right)}\left|b_{j}\right\rangle
$$

Shift summation index r and use definition of momentum state

$$
\begin{aligned}
& H|a(k)\rangle=\sum_{j=0}^{N} h_{a}^{j} \mathrm{e}^{-i k l_{j}} \sqrt{\frac{N_{b_{j}}}{N_{a}}}\left|b_{j}(k)\right\rangle \quad \rightarrow \text { matrix elements } \\
& \langle a(k)| H_{0}|a(k)\rangle=\sum_{j=1}^{N} S_{j}^{z} S_{j}^{z}, \\
& \left\langle b_{j}(k)\right| H_{j>0}|a(k)\rangle=\mathrm{e}^{-i k l_{j}} \frac{1}{2} \sqrt{\frac{R_{a}}{R_{b_{j}}}}, \quad\left|b_{j}\right\rangle \propto T^{-l_{j}} H_{j}|a\rangle,
\end{aligned}
$$

Pseudocode; hamiltonian construction

First, some elements needed; recall

$$
H_{j}|a\rangle=h_{a}^{j} T^{-l_{j}}\left|b_{j}\right\rangle
$$

Finding the representative r of a state-integer s

- lowest integer among all translations

```
subroutine representative \((s, r, l)\)
\(r=s ; t=s ; l=0\)
do \(i=1, N-1\)
    \(t=\operatorname{cyclebits}(t, N)\)
    if \((t<r)\) then \(r=t ; l=i\) endif
enddo
```

$$
|r\rangle=T^{l}|s\rangle
$$

```
subroutine findstate \((s, b)\)
\(b_{\min }=1 ; b_{\max }=M\)
do
    \(b=b_{\min }+\left(b_{\max }-b_{\min }\right) / 2\)
    if \(\left(s<s_{b}\right)\) then
    \(b_{\max }=b-1\)
    elseif \(\left(s>s_{b}\right)\) then
        \(b_{\text {min }}=b+1\)
    else
        exit
    endif
    if \(\left(b_{\text {min }}>b_{\text {max }}\right.\) then
    \(b=-1 ;\) exit
    endif
enddo
```


Construct all the matrix elements

```
do \(a=1, M\)
    do \(i=0, N-1\)
        \(j=\bmod (i+1, N)\)
        if \(\left(s_{a}[i]=s_{a}[j]\right)\) then
                        \(H(a, a)=H(a, a)+\frac{1}{4}\)
        else
            \(H(a, a)=H(a, a)-\frac{1}{4}\)
            \(s=\operatorname{flip}\left(s_{a}, i, j\right)\)
            call representative \((s, r, l)\)
            call findstate \((r, b)\)
            if \((b \geq 0)\) then
                \(H(a, b)=H(a, b)+\frac{1}{2} \sqrt{R_{a} / R_{b}} \mathrm{e}^{i 2 \pi k l / N}\)
            endif
            endif
    enddo
enddo
```

Reflection symmetry (parity) Define a reflection (parity) operator

$$
P\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle=\left|S_{N}^{z}, \ldots, S_{2}^{z}, S_{1}^{z}\right\rangle
$$

Consider a hamiltonian for which $[H, P]=0$ and $[H, T]=0$; but note that $[P, T] \neq 0$
Can we still exploit both P and T at the same time? Consider the state

$$
|a(k, p)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}(1+p P)|a\rangle, \quad p= \pm 1
$$

This state has momentum k , but does it have parity p ? Act with P

$$
\begin{aligned}
P|a(k, p)\rangle & =\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{-r}(P+p)|a\rangle \\
& =p \frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{i k r} T^{r}(1+p P)|a\rangle=p|a(k, p)\rangle \text { if } k=0 \text { or } k=\pi
\end{aligned}
$$

$\mathrm{k}=0, \mathrm{~m}$ momentum blocks are split into $\mathrm{p}=+1$ and $\mathrm{p}=-1$ sub-blocks

- $[T, P]=0$ in the $\mathrm{k}=0, \mathrm{~m}$ blocks
- physically clear because $-k=k$ on the lattice for $k=0, \pi$
- we can exploit parity in a different way for other $\mathrm{k} \rightarrow$
- semi-momentum states

