PERIMETER SCHOLARS INTERNATIONAL April 5-23, 2010, Course on "Quantum Spin Simulations"

Anders W. Sandvik, Boston University

PART2: Exact diagonalization studies

Studies of small spin chains

Using basis states incorporating conservation laws (symmetries)

- magnetization conservation, momentum states, parity, spin inversion
- discussion without group theory
 - only basic quantum mechanics and common sense needed

Key elements of an actual program implementation

• pseudocode segments; actual programs available for practice

How to characterize different kinds of ground states

- critical ground state of the Heisenberg chain
- quantum phase transition to a valence-bond solid in a J₁-J₂ chain

Complete diagonalization of the hamiltonian

To find the ground state (maybe excitations, T>0 properties) of the Heisenberg S=1/2 chain

$$H = J \sum_{i=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} = J \sum_{i=1}^{N} [S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + S_{i}^{z} S_{i+1}^{z}],$$

$$= J \sum_{i=1}^{N} [S_{i}^{z} S_{i+1}^{z} + \frac{1}{2} (S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+})]$$

Simplest way; enumerate the states

• construct the hamiltonian matrix using bits

$$\begin{aligned} |0\rangle &= |\downarrow,\downarrow,\downarrow,\downarrow,\ldots,\downarrow\rangle \quad (=0\dots000) \\ |1\rangle &= |\uparrow,\downarrow,\downarrow,\ldots,\downarrow\rangle \quad (=0\dots001) \\ |2\rangle &= |\downarrow,\uparrow,\downarrow,\ldots,\downarrow\rangle \quad (=0\dots010) \\ |3\rangle &= |\uparrow,\uparrow,\downarrow,\ldots,\downarrow\rangle \quad (=0\dots011) \end{aligned}$$

 $H_{ij} = \langle i|H|j\rangle$ $i, j = 0, \dots, 2^N - 1$

bit representation perfect for S=1/2 systems

- use >1 bit/spin for S>1/2, or integer vector
- construct H by examining/flipping bits

Diagonalizing the matrix

- on the computer
- gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H, then

 $\langle n|A|n\rangle = [U^{T*}AU]_{nn}$

is the expectation value of some operator A in the n:th eigenstate

Use some "canned" diagonalization subroutine

- Useful subroutines available at http://gams.nist.gov
- Matrix U and eigenvalues delivered

Problem: Matrix size M=2^N becomes too large quickly

- maximum N≈20
- M^2 matrix elements to store, time to diagonalize ${}_{\sim}M^3$

Pseudocode; construction of the hamiltonian matrix

Let **a[i]** refer to the **i:th** bit of an **intege**r **a**

Define a function **flip**(a,i,j)

- "flips" (0 \leftrightarrow 1) bits i and j of the integer a
- In F90 the bit-level function ieor(a,2**i) can be used to flip bit i of a
- bits i and j can be flipped using ieor(a,2**i+2**j)

The S=1/2 Heisenberg chain hamiltonian can be constructed according to:

do $a = 0, 2^{N} - 1$ do i = 0, N - 1 j = mod(i + 1, N)if (a[i] = a[j]) then $H(a, a) = H(a, a) + \frac{1}{4}$ else $H(a, a) = H(a, a) - \frac{1}{4}$ $b = flip(a, i, j); H(a, b) = \frac{1}{2}$ endif enddo enddo

j is the "right" nearest-neighbor of i

periodic boundary conditions

Using conservation laws (symmetries) for block-diagonalization

We can choose the basis in such a way that the H becomes block-diagonal

- the blocks can be diagonalized individually
- we can reach larger N (but not much larger, N≈40 is max)

Simplest example; magnetization conservation:

- blocks correspond to fixed values of m_z
- no H matrix elements between states of different m_z
- \bullet block-diagonalization just amounts to including states with only given m_z

Number of states in the largest block $(m_z = 0)$:

$\frac{N!}{(N/2)!(N/2)!}$

Other symmetries (conserved quantum numbers)

- can be used to further split the blocks
- but more complicated
 - basis states have to be constructed to obey symmetries

$$m_z = \sum^N S_i^z$$

i=1

Pseudocode: using magnetization conservation

Constructing the basis in the block of n[↑] spins ↑ Store state-integers in ordered list **s**_a, **a=1,....,M**

do
$$s = 0, 2^N - 1$$

if $(\sum_i s[i] = n_{\uparrow})$ then $a = a + 1; s_a = s$ endif
enddo
 $M = a$

Example; N=4, n₁=2

$$S_3 = 6$$
 (0110)

$$S_4 = 9$$
 (1001)

s₅=10 (1010)

S₆=12 (1100)

How to locate a state (given integer s) in the list?

• stored map $s \rightarrow a$ would be too big for $s=0,...,2^{N-1}$

• instead, we search the list sa (here simplest way)

```
subroutine findstate(s, b)
b_{\min} = 1; b_{\max} = M
do
b = b_{\min} + (b_{\max} - b_{\min})/2
if (s < s<sub>b</sub>) then
b_{\max} = b - 1
elseif (s > s<sub>b</sub>) then
b_{\min} = b + 1
else
exit
endif
enddo
```

Finding the location **b** of a state-integer **s** in the list

using bisection in the ordered list

Pseudocode; hamiltonian construction

- recall: states labeled a=1,...,M
- corresponding state-integers (bit representation) stored as s_a
- bit i, $s_a[i]$, corresponds to S^{z_i}

loop over states **do** a = 1, M**do** i = 0, N - 1loop over sites $j = \mathbf{mod}(i+1, N)$ if $(s_a[i] = s_a[j])$ then check bits of state-integers $H(a,a) = H(a,a) + \frac{1}{4}$ else $H(a,a) = H(a,a) - \frac{1}{4}$ $s = \mathbf{flip}(s_a, i, j)$ state with bits i and j flipped call findstate(s, b) $H(a,b) = H(a,b) + \frac{1}{2}$ endif enddo enddo