Monte Caro simulations

Monte Carlo methods - based on random numbers

- Stanislav Ulam's terminology
- his uncle frequented the Casino in Monte Carlo

Random (pseudo random) number generator on the computer

- Less glamorous than roulette tables or cards, but faster...
- $>10^{9}$ random numbers per second

Monte Carlo simulations in statistical physics

- normally refers to importance sampling of configurations (e.g., spins)
- generating configurations with probability equal to the Boltzmann probability
- MC simulations show clearly how phase transitions can happen when $\mathrm{N} \rightarrow \infty$

Monte Carlo simulation of the Ising model

The Metropolis algorithm

[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]
Generate a series of configurations (Markov chain); $\mathrm{C}_{1} \rightarrow \mathrm{C}_{2} \rightarrow \mathrm{C}_{3} \rightarrow \mathrm{C}_{4} \rightarrow \ldots$

- C_{n+1} obtained by modifying (updating) C_{n}
- changes satisfy the detailed-balance principle

$$
\frac{P_{\text {change }}(A \rightarrow B)}{P_{\text {change }}(B \rightarrow A)}=\frac{W(B)}{W(A)} \quad W(A)=\mathrm{e}^{-E(A) / T}
$$

Starting from any configuration, such a stochastic process leads to configurations distributed according to W

- the process has to be ergodic
- any configuration reachable in principle
- it takes some time to reach equilibrium

Metropolis algorithm for the Ising model. For each update perform:

- select a spin i at random; consider flipping it $\sigma_{i} \rightarrow-\sigma_{i}$
- compute the ratio $\mathrm{R}=\mathrm{W}\left(\sigma_{1}, \ldots .-\sigma_{\mathrm{i}}, \ldots, \sigma_{\mathrm{N}}\right) / \mathrm{W}\left(\sigma_{1, \ldots .} \sigma_{\mathrm{i}, \ldots,}, \sigma_{\mathrm{N}}\right)$
- for this we need only the spins neighboring i
- generate random number $0<r \leq 1$; accept flip if $\mathrm{r}<\mathrm{R}$ (go back to old config else)

$$
\begin{aligned}
& P_{\text {change }}(A \rightarrow B)=P_{\text {select }}(B \mid A) P_{\text {accept }}(B \mid A) \\
& P_{\text {select }}=1 / N, \quad P_{\text {accept }}=\min [W(B) / W(A), 1]
\end{aligned}
$$

These probabilities satisfy detailed balance

Symmetry breaking (magnetic phase transition) for $\mathrm{h}=\mathbf{0}$

A magnetized state, $<m>\neq 0$, breaks a symmetry (E invariant under all $\boldsymbol{\sigma}_{\mathbf{i}} \rightarrow \boldsymbol{-} \boldsymbol{\sigma}_{\mathbf{i}}$)

- strictly, mathematically we must have $<m>=0$
- symmetry breaking (phase transition) can take place when $N \rightarrow \infty$
- how can we understand the symmetry breaking for N large but finite?

Time series of simulation data; magnetization vs simulation "time" for $\mathbf{T}<\mathbf{T}_{c}$

There is a characteristic "reversal" time between $\mathrm{m}>0$ and $\mathrm{m}<0$ configurations

- reversal time diverges for $\mathrm{N} \rightarrow \infty$
- the symmetry can be broken on practical time scales for finite (large) N
- also mechanism of phase transitions in real magnets (and other systems)

Another way to look at it: magnetization distribution

- probability distrubution (histogram) of m during the simulation

- no probability to fluctuate between $\mathrm{m}<0$ and $\mathrm{m}>0$ peaks for $\mathrm{N} \rightarrow \infty$
- have to go through low-probability $m \approx 0$ configurations

Why this peak structure? balance between

- large number of $m \approx 0$ configurations with high energy
- small number of $|m| \approx 1$ configuration with low energy
- entropy dominates at hight T, internal energy at low T

$$
F=E-S T
$$

Binder ratios and cumulants

Consider the dimensionless ratio

$$
R_{2}=\frac{\left\langle m^{4}\right\rangle}{\left\langle m^{2}\right\rangle^{2}}
$$

We can compute R_{2} exactly for $\mathrm{N} \rightarrow \infty$

- for $\mathrm{T}_{<\mathrm{c}}$: $\mathrm{P}(\mathrm{m}) \rightarrow \delta\left(\mathrm{m}-\mathrm{m}^{*}\right)+\delta\left(\mathrm{m}+\mathrm{m}^{*}\right)$ $\mathrm{m}^{\star}=\mid$ peak m -value \mid $R_{2} \rightarrow 1$

- for $T>T_{c}: P(m) \rightarrow \exp \left[-m^{2} / a(N)\right]$ $a(\mathrm{~N}) \sim \mathrm{N}^{-1}$
$\mathbf{R}_{2} \rightarrow 3$ (properties of Gaussian integrals)
The Binder cumulant is defined as (n -component order parameter; $\mathrm{n}=1$ for Ising)

$$
U_{2}=\frac{3}{2}\left(\frac{n+1}{3}-\frac{n}{3} R_{2}\right) \rightarrow \begin{cases}1, & T<T_{c} \\ 0, & T>T_{c}\end{cases}
$$

2D Ising model; MC results

 Curves for different L normally cross each other close to T_{c}

Extrapolate crossing for sizes L and 2L to infinite size

- converges faster than single-size T_{c} defs.

Computing expectation values and their statistical errors

Definition: Monte Carlo sweep = N spin-flip attempts

- a natural unit of simulation "time"
- "measure" observables after every (or every n) sweep

Boltzmann probability accounted for at sampling stage \rightarrow

$$
\bar{Q}=\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} Q_{i}, \quad N_{s}=\text { number of samples }
$$

is the estimate for the true expectation value;

$$
\bar{Q} \rightarrow\langle Q\rangle, \quad\left(N_{s} \rightarrow \infty\right)
$$

Statistical errors (error bars): $\langle Q\rangle=\bar{Q} \pm \sigma_{Q}$

- the measurements are not statistically independent
- independent only after a number of sweeps >> autocorrelation time

Divide the simulation into B "bins", M sweeps in each bin; $N_{s}=B M$

- bin averages: $\bar{Q}_{b}, b=1, \ldots, B$

$$
\bar{Q}=\frac{1}{B} \sum_{b=1}^{B} \bar{Q}_{b}, \quad \sigma_{Q}^{2}=\frac{1}{B(B-1)} \sum_{b=1}^{B}\left(\bar{Q}_{b}-\bar{Q}\right)^{2}
$$

If M is sufficiently large (>> autocorrelation time) the average and error are statistically sounds (corresonding to independent Gaussian-distributed data) - probability of true value being "inside the error bars" $\approx 2 / 3$

Autocorrelation functions

- characterization of how measurements become statistically independent

$$
A_{Q}(t)=\frac{\langle Q(i+t) Q(i)\rangle-\langle Q\rangle^{2}}{\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2}}, \quad\left(\rightarrow \mathrm{e}^{-t / \Theta}, t \rightarrow \infty\right)
$$

the autocorrelation time Θ grows as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$ (diverges for $\mathrm{N} \rightarrow \infty, \mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$)

This problem can be largely overcome by using cluster algorithms

- for standard Ising, XY, Heisenberg,...
- but not in all cases, e.g., in the presence of external fields, frustrated systems,...

