N-site Hubbard model (e.g, square lattice); half-filling

e cannot be solved exactly for N>2 (can in 1D), numerically up to N=20

e one can identify “spin excitations” and “charge excitations”

¢ low-energy effective spin model (Heisenberg) can be derived 44 & 4
H=—t Z Z ¢ oCio +U Z ni g, = Hy + Hy O0—0—0—0—
(i,5) o=T,1 ‘ —O0—0—0—0O—
U>>t : use degenerate perturbation theory (e.g., Schiff)
e U=00, One particle on every site; 2N degenerate spin states SRR
e degeneracy lifted in order t°/U (1 doubly-occupied site, d=1) e =7 o =
* leads to the Heisenberg model
e =% (n| Hyli) (i He|m) i) d=1
2 . Ey — E, im),|n): d=0
charge gap ~ U Exchange mechanism
U t | OQ—D
¥ 12" spin states >0 — OO — t2/U
| OO0
Spin band overlaps with other @O—® no fluctuation

states for finite U when N—

e only low-energy states of the Heisenberg model (up to E<<U) are relevant
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The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

H = JZS S —JZSZSZ 5(S7S7 + 5751

Does the Iong range “staggered” order survive quantum fluctuations?
e order parameter staggered (sublattice) magnetization

Z ¢S, i = Tit¥i (2D square lattice)

ms:%(ﬁA—ﬁB) % s

If there is order (ms>0), the direction of the vector is fixed (N=c0)
e conventionally this is taken as the z direction

1 o . . \
— N;@@ﬁ — |<Sz>\

® For S— (classical limit) <ms>—S
e what happens for small S (especially S=1/2)?

Tuesday, April 6, 2010
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Spin-wave theory

Perturbation around the exact S— « (classical) Néel state

¢ spins have complicated commutation relations

®* map spins—bosons; simpler commutation rules, but complicated form of H
¢ simple lowest-order form in an 1/S expansion (linear spin-wave theory)

spins )N N U N W

ARARARARIEE S == o o .
________ - @0 — — 0 — —
physical subspace : ni:a;raié{O,l,...,QS}

bosons

Lowest-order mapping (also exact for S=1/2 in physical subspace):
i € ] sublattice: S?7 =S5 —n,, SZ.+ = v2Sa;, S; =V 25&;-F
¢ € | sublattice: S7 =n; — .5, St = \/QSCL;L, S, =+V25a;.

1

Off-diagonal and diagonal Heisenberg terms:

(S;FSJ-_ + SZ-_S;-L) — S(a;a; + aja;“),
2

785 — =57 + S(n; + ny) — ox]

e the boson interaction term is neglected, because lower by factor 1/S

* in linear spin-wave theory the constraints on n; are completely neglected

(i,j on different sublattices)
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Linear spin-wave hamiltonian (2D square lattice)

H=—2NS>J + 4SJZm + 84 (aia; + afaf).

=1 (7)
We can diagonalize this model (write it in terms of boson number operators)
e details in tutorial (and related homework)

—1/2 E :ezkr ap = —1/2 E :e—zkr

Substitute (Fourler transform) in the hamlltonlan —
H = —2N52J+4SJan + QSJnyk axd_x + aka k)

< e = [eos(kz) + cos(k )]
Now eliminate aa and a+a+ operators

e accomplished with Bogolubov transformation:
ax = COSh(@k>ak + sinh(@k)atk
Ak = COSh(@k)Ozk — Sinh(@k)afk

These operators satisfy standard boson commutation relations
e we can choose the angles Ok to suit our needs (to diagonalize) —

2 cosh(Oy ) sinh(By)
cosh?®(Oy) + sinh?(Oy)

p— ”yk_
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After some manipulations we can cast the hamiltonian in the form
H = FEy + Zw(k)afgak,
k

with zero-point energy (per spin)

Bo_ _25/ e g2y

N N —~14/1-~
The sum can be evaluated, e.g., by converting to an integral (N— o)
e evaluate numerically, e.g., using Mathematica (or Matlab, Maple...)

The ground state |0> has no spin waves o

k 4 -~
(Bogolubov bosons) By 4
e elementary excitatios a*«|0> Yy

The dispersion relation is

Wk — 4Sq]\/1 —’yﬁ.

— velocity ¢ = 2v/285
Gapless excitations at
k=(0,0) and k=(rt,m)

¢ we are using the Brillouin zone of the full lattice
¢ can also “fold” the zone to correspond to 2-site unit cell

Tuesday, April 6, 2010 14




The ground state has no spin waves
¢ but it has some density of the original a-bosons
e this density is directly related to the sublattice magnetization

N
1
— 9 _ Ta.l0) =9 — — *a.
(ms) = S = (0la; a;[0) = S N;waz a; 0)
________ (5 =1/2)
bosons - e ® — — 0 — —

Using the Bogolubov transformation gives
1
(ms) =S — zk: sinh?(Oy).

and one can show with some manipulations that

1
2sinh?(Oy) = —1

N

Numerical evaluation gives <ms>=0.3034 for S=1/2

Conclusion: Linear spin-wave theory predicts an ordered ground state

¢ the quantum fluctuations reduce the order by 40% from the classical value
e this turns out to be very close to the true value (obtained with QMC)

* it’'s not clear a priory why spin-wave theory should work, but it does here

¢ not always the case (reliable only when <ms. is large)
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