
N-site Hubbard model (e.g, square lattice); half-filling
• cannot be solved exactly for N>2 (can in 1D), numerically up to N≈20
• one can identify “spin excitations” and “charge excitations”
• low-energy effective spin model (Heisenberg) can be derived

H = −t
∑

〈i,j〉

∑

σ=↑,↓
c+
i,σcj,σ + U

∑

i

ni,↑ni,↓ = Ht + HU

≈ U

U>>t : use degenerate perturbation theory (e.g., Schiff)
• U=∞, one particle on every site; 2N degenerate spin states
• degeneracy lifted in order t2/U (1 doubly-occupied site, d=1)
• leads to the Heisenberg model

• =↑ ◦ =↓

Exchange mechanism!

Heff
mn =

∑

i

〈n|Ht|i〉〈i|Ht|m〉
E0 − Ei

|i〉 : d = 1
|m〉, |n〉 : d = 0

Spin band overlaps with other 
states for finite U when N→∞
• only low-energy states of the Heisenberg model (up to E<<U) are relevant
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The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

\

H = J
∑

〈ij〉

!Si · !Sj = J
∑

〈ij〉

[Sz
i Sz

j + 1
2 (S+

i S−
j + S−

i S+
j )]

Does the long-range “staggered” order survive quantum fluctuations?
• order parameter: staggered (sublattice) magnetization

!ms =
1
N

(
!SA − !SB

)

!ms =
1
N

N∑

i=1

φi
!Si, φi = (−1)xi+yi (2D square lattice)

If there is order (ms>0), the direction of the vector is fixed (N=∞)
• conventionally this is taken as the z direction

〈ms〉 =
1
N

N∑

i=1

φi〈Sz
i 〉 = |〈Sz

i 〉|

• For S→∞ (classical limit) <ms>→S
• what happens for small S (especially S=1/2)?
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Spin-wave theory
Perturbation around the exact S→∞ (classical) Néel state
• spins have complicated commutation relations
• map spins→bosons; simpler commutation rules, but complicated form of H
• simple lowest-order form in an 1/S expansion (linear spin-wave theory) 

i ∈ ↑ sublattice : Sz
i = S − ni, S+

i =
√

2Sai, S−i =
√

2Sa+
i

i ∈ ↓ sublattice : Sz
i = ni − S, S+

i =
√

2Sa+
i , S−i =

√
2Sai.

Lowest-order mapping (also exact for S=1/2 in physical subspace):

(S = 1/2)

physical subspace : ni = a+
i ai ∈ {0, 1, . . . , 2S}

• the boson interaction term is neglected, because lower by factor 1/S

• in linear spin-wave theory the constraints on ni are completely neglected

(S+
i S−j + S−i S+

j )→ S(aiaj + a+
i a+

j ),

Sz
i Sz

j → −S2 + S(ni + nj)− ninj .

Off-diagonal and diagonal Heisenberg terms:

(i,j on different sublattices)
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Substitute (Fourier transform) in the hamiltonian →

γk = [cos(kx) + cos(ky)]
H = −2NS2J + 4SJ

∑

k

nk + 2SJ
∑

k

γk(aka−k + a+
k a+
−k),

Linear spin-wave hamiltonian (2D square lattice)

H = −2NS2J + 4SJ
N∑

i=1

ni + SJ
∑

〈ij〉

(aiaj + a+
i a+

j ).

We can diagonalize this model (write it in terms of boson number operators)
• details in tutorial (and related homework)

ak = N−1/2
∑

r

eik·rar, ar = N−1/2
∑

k

e−ik·rak,

Now eliminate aa and a+a+ operators
• accomplished with Bogolubov transformation:

αk = cosh(Θk)ak + sinh(Θk)a+
−k

ak = cosh(Θk)αk − sinh(Θk)α+
−k

These operators satisfy standard boson commutation relations
• we can choose the angles Θk to suit our needs (to diagonalize) →

2 cosh(Θk) sinh(Θk)
cosh2(Θk) + sinh2(Θk)

= γk.
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After some manipulations we can cast the hamiltonian in the form

H = E0 +
∑

k

ω(k)α+
k αk,

with zero-point energy (per spin)

The sum can be evaluated, e.g., by converting to an integral (N→∞)
• evaluate numerically, e.g., using Mathematica (or Matlab, Maple...)

kx

ky

ω("k)

S = 1/2

ωk = 4SJ
√

1− γ2
k.

The dispersion relation is

Gapless excitations at
k=(0,0) and k=(π,π)
• we are using the Brillouin zone of the full lattice 
• can also “fold” the zone to correspond to 2-site unit cell

The ground state |0> has no spin waves
(Bogolubov bosons)
• elementary excitatios a+k|0> 

→ velocity c = 2
√

2S

E0

N
= −2SJ

N

∑

k

γ2
k

1 +
√

1− γ2
k

− 2S2J
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The ground state has no spin waves
• but it has some density of the original a-bosons
• this density is directly related to the sublattice magnetization

(S = 1/2)

〈ms〉 = S − 1
N

∑

k

sinh2(Θk).

Using the Bogolubov transformation gives

and one can show with some manipulations that

2 sinh2(Θk) =
1√

1− γ2
k

− 1

Numerical evaluation gives <ms>=0.3034 for S=1/2

Conclusion: Linear spin-wave theory predicts an ordered ground state
• the quantum fluctuations reduce the order by 40% from the classical value
• this turns out to be very close to the true value (obtained with QMC)
• it’s not clear a priory why spin-wave theory should work, but it does here
• not always the case (reliable only when <ms> is large) 

 〈ms〉 = S − 〈0|a+
i ai|0〉 = S − 1

N

N∑

i=1

〈0|a+
i ai|0〉
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