N -site Hubbard model (e.g, square lattice); half-filling

- cannot be solved exactly for $N>2$ (can in 1D), numerically up to $N \approx 20$
- one can identify "spin excitations" and "charge excitations"
- low-energy effective spin model (Heisenberg) can be derived

$$
H=-t \sum_{\langle i, j\rangle} \sum_{\sigma=\uparrow, \downarrow} c_{i, \sigma}^{+} c_{j, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}=H_{t}+H_{U}
$$

U>>t : use degenerate perturbation theory (e.g., Schiff)
$\bullet \mathrm{U}=\infty$, one particle on every site; 2^{N} degenerate spin states

- degeneracy lifted in order $\mathrm{t}^{2} / \mathrm{U}$ (1 doubly-occupied site, $\mathrm{d}=1$)
- leads to the Heisenberg model

$$
H_{m n}^{\mathrm{eff}}=\sum_{i} \frac{\langle n| H_{t}|i\rangle\langle i| H_{t}|m\rangle}{E_{0}-E_{i}} \quad \begin{array}{r}
|i\rangle: d=1 \\
|m\rangle,|n\rangle: d=0
\end{array}
$$

charge gap $\approx U$
Exchange mechanism
2^{N} spin states

Spin band overlaps with other

states for finite U when $\mathbf{N} \rightarrow \infty$

- only low-energy states of the Heisenberg model (up to $\mathrm{E} \ll \mathrm{U}$) are relevant

The antiferromagnetic (Néel) state and quantum fluctuations

The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

$$
H=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i j\rangle}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right]
$$

Does the long-range "staggered" order survive quantum fluctuations?

- order parameter: staggered (sublattice) magnetization

$$
\begin{aligned}
& \vec{m}_{s}=\frac{1}{N} \sum_{i=1}^{N} \phi_{i} \vec{S}_{i}, \quad \phi_{i}=(-1)^{x_{i}+y_{i}} \quad(2 \mathrm{D} \text { square lattice) }) \\
& \vec{m}_{s}=\frac{1}{N}\left(\vec{S}_{A}-\vec{S}_{B}\right) \quad \rightarrow
\end{aligned}
$$

If there is order $\left(m_{s}>0\right)$, the direction of the vector is fixed ($\mathrm{N}=\infty$)

- conventionally this is taken as the z direction

$$
\left\langle m_{s}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} \phi_{i}\left\langle S_{i}^{z}\right\rangle=\left|\left\langle S_{i}^{z}\right\rangle\right|
$$

- For $S \rightarrow \infty$ (classical limit) $<m_{s}>\rightarrow S$
- what happens for small S (especially $S=1 / 2$)?

Spin-wave theory

Perturbation around the exact $\mathrm{S} \rightarrow \infty$ (classical) Néel state

- spins have complicated commutation relations
- map spins \rightarrow bosons; simpler commutation rules, but complicated form of H
- simple lowest-order form in an 1/S expansion (linear spin-wave theory)
spins
bosons

physical subspace : $n_{i}=a_{i}^{+} a_{i} \in\{0,1, \ldots, 2 S\}$
Lowest-order mapping (also exact for $\mathrm{S}=1 / 2$ in physical subspace):
$i \in \uparrow$ sublattice : $\quad S_{i}^{z}=S-n_{i}, \quad S_{i}^{+}=\sqrt{2 S} a_{i}, \quad S_{i}^{-}=\sqrt{2 S} a_{i}^{+}$
$i \in \downarrow$ sublattice : $\quad S_{i}^{z}=n_{i}-S, \quad S_{i}^{+}=\sqrt{2 S} a_{i}^{+}, \quad S_{i}^{-}=\sqrt{2 S} a_{i}$.

Off-diagonal and diagonal Heisenberg terms:

$$
\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) \rightarrow S\left(a_{i} a_{j}+a_{i}^{+} a_{j}^{+}\right),
$$

$$
S_{i}^{z} S_{j}^{z} \rightarrow-S^{2}+S\left(n_{i}+n_{j}\right)-n<x_{i}
$$

(i,j on different sublattices)

- the boson interaction term is neglected, because lower by factor 1/S
- in linear spin-wave theory the constraints on n_{i} are completely neglected

Linear spin-wave hamiltonian (2D square lattice)

$$
H=-2 N S^{2} J+4 S J \sum_{i=1}^{N} n_{i}+S J \sum_{\langle i j\rangle}\left(a_{i} a_{j}+a_{i}^{+} a_{j}^{+}\right) .
$$

We can diagonalize this model (write it in terms of boson number operators)

- details in tutorial (and related homework)

$$
a_{\mathbf{k}}=N^{-1 / 2} \sum_{\mathbf{r}} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{r}} a_{\mathbf{r}}, \quad a_{\mathbf{r}}=N^{-1 / 2} \sum_{\mathbf{k}} \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{r}} a_{\mathbf{k}}
$$

Substitute (Fourier transform) in the hamiltonian \rightarrow

$$
\begin{aligned}
& H=-2 N S^{2} J+4 S J \sum_{\mathbf{k}} n_{\mathbf{k}}+2 S J \sum_{\mathbf{k}} \gamma_{\mathbf{k}}\left(a_{\mathbf{k}} a_{-\mathbf{k}}+a_{\mathbf{k}}^{+} a_{-\mathbf{k}}^{+}\right), \\
& \gamma_{\mathbf{k}}=\left[\cos \left(k_{x}\right)+\cos \left(k_{y}\right)\right]
\end{aligned}
$$

Now eliminate aa and $a^{+} a^{+}$operators

- accomplished with Bogolubov transformation:

$$
\begin{aligned}
\alpha_{\mathbf{k}} & =\cosh \left(\Theta_{\mathbf{k}}\right) a_{\mathbf{k}}+\sinh \left(\Theta_{\mathbf{k}}\right) a_{-\mathbf{k}}^{+} \\
a_{\mathbf{k}} & =\cosh \left(\Theta_{\mathbf{k}}\right) \alpha_{\mathbf{k}}-\sinh \left(\Theta_{\mathbf{k}}\right) \alpha_{-\mathbf{k}}^{+}
\end{aligned}
$$

These operators satisfy standard boson commutation relations

- we can choose the angles Θ_{k} to suit our needs (to diagonalize) \rightarrow

$$
\frac{2 \cosh \left(\Theta_{\mathbf{k}}\right) \sinh \left(\Theta_{\mathbf{k}}\right)}{\cosh ^{2}\left(\Theta_{\mathbf{k}}\right)+\sinh ^{2}\left(\Theta_{\mathbf{k}}\right)}=\gamma_{\mathbf{k}}
$$

After some manipulations we can cast the hamiltonian in the form

$$
H=E_{0}+\sum_{\mathbf{k}} \omega(\mathbf{k}) \alpha_{\mathbf{k}}^{+} \alpha_{\mathbf{k}}
$$

with zero-point energy (per spin)

$$
\frac{E_{0}}{N}=-\frac{2 S J}{N} \sum_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}^{2}}{1+\sqrt{1-\gamma_{\mathbf{k}}^{2}}}-2 S^{2} J
$$

The sum can be evaluated, e.g., by converting to an integral ($N \rightarrow \infty$)

- evaluate numerically, e.g., using Mathematica (or Matlab, Maple...)

The ground state $\mid 0>$ has no spin waves (Bogolubov bosons)

- elementary excitatios $a^{+} k \mid 0>$

The dispersion relation is

$$
\begin{aligned}
& \omega_{\mathbf{k}}=4 S J \sqrt{1-\gamma_{\mathbf{k}}^{2}} \\
& \rightarrow \text { velocity } c=2 \sqrt{2} S
\end{aligned}
$$

Gapless excitations at $k=(0,0)$ and $k=(\pi, \pi)$

- we are using the Brillouin zone of the full lattice
- can also "fold" the zone to correspond to 2 -site unit cell

The ground state has no spin waves

- but it has some density of the original a-bosons
- this density is directly related to the sublattice magnetization

$$
\begin{aligned}
& \left\langle m_{s}\right\rangle=S-\langle 0| a_{i}^{+} a_{i}|0\rangle=S-\frac{1}{N} \sum_{i=1}^{N}\langle 0| a_{i}^{+} a_{i}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { bosons }
\end{aligned}
$$

Using the Bogolubov transformation gives

$$
\left\langle m_{s}\right\rangle=S-\frac{1}{N} \sum_{\mathbf{k}} \sinh ^{2}\left(\Theta_{\mathbf{k}}\right)
$$

and one can show with some manipulations that

$$
2 \sinh ^{2}\left(\Theta_{\mathbf{k}}\right)=\frac{1}{\sqrt{1-\gamma_{\mathbf{k}}^{2}}}-1
$$

Numerical evaluation gives $\left\langle m_{s}>=0.3034\right.$ for $S=1 / 2$
Conclusion: Linear spin-wave theory predicts an ordered ground state

- the quantum fluctuations reduce the order by 40% from the classical value
- this turns out to be very close to the true value (obtained with QMC)
- it's not clear a priory why spin-wave theory should work, but it does here
- not always the case (reliable only when $<\mathrm{m}_{\mathrm{s}}$ is large)

