PERIMETER SCHOLARS INTERNATIONAL April 5-23, 2010, Course on
 Quantum spin simulations

Anders W. Sandvik, Boston University

Part 1: Introduction to quantum spin systems

- what they are, where they come from, why study them
- some simple analytical calculations (details in tutorials)
- related classical physics (phase transitions)

Part 2: Exact diagonalization studies (small systems)

- use of symmetries
- full diagonalization (all states), the Lanczos method (low-energy states)
- Physics of spin chains

Part 3: Quantum Monte Carlo methods and applications

- $\mathrm{T}>0$: path integrals (background), stochastic series expansion (algorithms)
- studying ground states in the valence-bond basis
- quantum phase transitions in two-dimensional systems

Classical spin models

Lattice models with "spin" degrees of freedom at the vertices

Classified by type of spin:

- Ising model: discrete spins, normally two-state $\sigma_{i}=-1,+1$
- XY model: planar vector spins (normally of length $\mathrm{S}=1$)
- Heisenberg model: 3-dimensional vector spins ($\mathrm{S}=1$)

Statistical mechanics

- spin configurations C
- energy E(C)
- some quantity $\mathbf{Q (C)}$
- temperature $\mathrm{T}_{\left(\mathrm{k}_{\mathrm{B}}=1\right)}$

$$
\begin{aligned}
& \langle Q\rangle=\frac{1}{Z} \sum_{C} Q(C) \mathrm{e}^{-E(C) / T} \\
& Z=\sum_{C} \mathrm{e}^{-E(C) / T}
\end{aligned}
$$

$$
\begin{aligned}
E & =\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j} \quad \text { (Ising) } \\
E & =\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}=\sum_{\langle i j\rangle} J_{i j} \cos \left(\Theta_{i}-\Theta_{j}\right) \\
E & =\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j} \quad \text { (XY) }
\end{aligned}
$$

Quantum spins

 Commutation relations:

$$
\begin{aligned}
& {\left[S_{i}^{x}, S_{i}^{y}\right]=i \hbar S_{i}^{z} \quad(\text { we set } \hbar=1)} \\
& {\left[S_{i}^{x}, S_{j}^{y}\right]=\left[S_{i}^{x}, S_{j}^{z}\right]=\ldots=\left[S_{i}^{z}, S_{j}^{z}\right]=0 \quad(i \neq j)}
\end{aligned}
$$

Ladder (raising and lowering) operators:

$$
\begin{aligned}
& S_{i}^{+}=S_{i}^{x}+i S_{i}^{y}, \quad S_{i}^{-}=S_{i}^{x}-i S_{i}^{y} \\
& S_{i}^{+}\left|S_{i}^{z}\right\rangle=\sqrt{S(S+1)-S_{i}^{z}\left(S_{i}^{z}+1\right)}\left|S_{i}^{z}+1\right\rangle \\
& S_{i}^{-}\left|S_{i}^{z}\right\rangle=\sqrt{S(S+1)-S_{i}^{z}\left(S_{i}^{z}-1\right)}\left|S_{i}^{z}-1\right\rangle
\end{aligned}
$$

Spin (individual) squared operator: $S_{i}^{2}\left|S_{i}^{z}\right\rangle=S(S+1)\left|S_{i}^{z}\right\rangle$
$\mathrm{S}=1 / 2$ spins; very simple rules

$$
\begin{array}{ll}
\left|S_{i}^{z}=+\frac{1}{2}\right\rangle=\left|\uparrow_{i}\right\rangle, & \left|S_{i}^{z}=-\frac{1}{2}\right\rangle=\left|\downarrow_{i}\right\rangle \\
S_{i}^{z}\left|\uparrow_{i}\right\rangle=+\frac{1}{2}\left|\uparrow_{i}\right\rangle & S_{i}^{-}\left|\uparrow_{i}\right\rangle=\left|\downarrow_{i}\right\rangle \\
S_{i}^{z}\left|\downarrow_{i}\right\rangle=-\frac{1}{2}\left|\downarrow_{i}\right\rangle & S_{i}^{+}\left|\uparrow_{i}\right\rangle=0 \\
\left.\downarrow_{i}\right\rangle=\left|\uparrow_{i}\right\rangle & S_{i}^{-}\left|\downarrow_{i}\right\rangle=0
\end{array}
$$

Quantum spin models

Ising, XY, Heisenberg hamiltonians

- the spins always have three (x, y, z) components
- interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components

$$
\begin{align*}
H & =\sum_{\langle i j\rangle} J_{i j} S_{i}^{z} S_{j}^{z}=\frac{1}{4} \sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j} \\
H & =\sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right]=\frac{1}{2} \sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right] \tag{XY}\\
H & =\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}=\sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right]
\end{align*}
$$

Quantum statistical mechanics

$$
\begin{aligned}
& \text { uantum statistical mechanics } \\
& \langle Q\rangle=\frac{1}{Z} \operatorname{Tr}\left\{Q \mathrm{e}^{-H / T}\right\} \quad Z=\operatorname{Tr}\left\{\mathrm{e}^{-H / T}\right\}=\sum_{n=0}^{M-1} \mathrm{e}^{-E_{n} / T}
\end{aligned}
$$

Large size M of the Hilbert space; $M=2^{N}$ for $S=1 / 2$

- difficult problem to find the eigenstates and energies
- we are also interested in the ground state ($\mathrm{T} \rightarrow 0$)
- for classical systems the ground state is often trivial

Why study quantum spin systems?

Solid-state physics

- localized electronic spins in Mott insulators (e.g., high-Tc cuprates)
- large variety of lattices, interactions, physical properties
- search for "exotic" quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)

- spin hamiltonians can (?) be engineered
- some bosonic systems very similar to spins (e.g., "hard-core" bosons)

Quantum information theory / quantum computing

- possible physical realizations of quantum computers using interacting spins
- many concepts developed using spins (e.g., entanglement)

Generic quantum many-body physics

- testing grounds for collective quantum behavior, quantum phase transitions
- identify "Ising models" of quantum many-body physics

Particle physics / field theory / quantum gravity

- some quantum-spin phenomena have parallels in high-energy physics
- e.g., spinon confinement-deconfinement transition
- spin foams (?)
> Learning about quantum spin physics and computations will be very useful for research in many subfields of theoretical physics

Lecture contents and goals

Quantum spin systems discussed from a computational perspective

- Thorough introduction before details of computational methods
- including some analytical calculations and related classical physics

Models

- $S=1 / 2$ Heisenberg model and its extensions, 1D, 2D lattices

Methods

- finite-lattice methods; exact diagonalization, quantum Monte Carlo
- primarily focusing on "unbiased" (numerically exact) methods
- some discussion of variational methods
- algorithms and implementations in detail

Physics

- illustrative results for key models and phenomena
- various types of ordered and disordered ground states
- quantum phase transitions

Goals

- introduce essential spin models and physical phenomena
- to cover enough computational details to write your own code
- overview of the field; from the basics to current research

Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO_{2} planes, localized spins on Cu sites

- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J $\approx 1500 \mathrm{~K}$

$$
\underset{\mathrm{ns}, \ldots}{H}=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$

Ladder systems

- even/odd effects

non-magnetic impurities/dilution
- dilution-driven phase transition

Doping the cuprates (e.g., $\mathrm{La} \rightarrow \mathrm{Sr}$) \Rightarrow holes in the copper-oxygen planes

- Hubbard model; "hopping" t, doubly-occupied site costs energy U
- t-J model; U large, exclude doubly-occupied sites \Rightarrow spin interaction
- Do we have to keep the O sites? \Rightarrow 3-band Hubbard model
- Very difficult quantum many-body problems; no consensus yet

Origin of antiferromagnetic interactions

Insights from a simple system: the 2-site Hubbard model

$$
H_{12}=-t\left(c_{2 \uparrow}^{\dagger} c_{1 \uparrow}+c_{1 \uparrow}^{\dagger} c_{2 \uparrow}+c_{2 \downarrow}^{\dagger} c_{1 \downarrow}+c_{1 \downarrow}^{\dagger} c_{2 \downarrow}\right)+U\left(n_{1 \uparrow} n_{1 \downarrow}+n_{2 \uparrow} n_{2 \downarrow}\right)
$$

2-particle subspace (half-filled band)
-6 states in the Hilbert space: $|\uparrow \downarrow\rangle, \quad|\downarrow \uparrow\rangle,|\uparrow \uparrow\rangle, \quad|\downarrow \downarrow\rangle, \quad|02\rangle, \quad|20\rangle$

- details of the solution in tutorial

U large, 2 lowest states

$$
\begin{aligned}
& \text { double-occupation } \\
& \text { in the around state }
\end{aligned}
$$

- total-spin singlet (S=0)
- small gap to $\mathrm{S}=1$ states
- one-to-one with states of 2-site Heisenberg

$$
\begin{aligned}
\Delta & =J \rightarrow \frac{4 t^{2}}{U} \\
\left|\psi_{0}\right\rangle & =\frac{1}{\sqrt{2+8 t^{2} / U^{2}}}\left[|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle+\frac{2 t}{U}(|20\rangle+|02\rangle)\right] \rightarrow \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \\
\left|\psi_{1-}\right\rangle & =|\downarrow \downarrow\rangle, \quad\left|\psi_{1+}\right\rangle=|\uparrow \uparrow\rangle, \quad\left|\psi_{10}\right\rangle \frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle)
\end{aligned}
$$

