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We generalize the classical Bass model of innovation diffusion to include a new class of agents—
Luddites—that oppose the spread of innovation. Our model also incorporates ignorants, suscepti-
bles, and adopters. When an ignorant and a susceptible meet, the former is converted to a susceptible
at a given rate, while a susceptible spontaneously adopts the innovation at a constant rate. In re-
sponse to the rate of adoption, an ignorant may become a Luddite and permanently reject the
innovation. Instead of reaching complete adoption, the final state generally consists of a population
of Luddites, ignorants, and adopters. The evolution of this system is investigated analytically and
by stochastic simulations. We determine the stationary distribution of adopters, the time needed
to reach the final state, and the influence of the network topology on the innovation spread. Our
model exhibits an important dichotomy: when the rate of adoption is low, an innovation spreads
slowly but widely; in contrast, when the adoption rate is high, the innovation spreads rapidly but
the extent of the adoption is severely limited by Luddites.

PACS numbers: 05.40.-a, 02.50.-r, 89.75.-k, 89.65.-s

I. INTRODUCTION

Models of innovation diffusion seek to understand how
new ideas, products, or practices spread within a soci-
ety through various channels [1]. Innovation may refer
to new technologies or deviations from existing social
norms. Rather than a single theory, innovation diffusion
represents a theoretical framework that encompasses a
range of social models in which the term “diffusion” can
mean contagion, imitation, and social learning [2–4].

Many of the traditional approaches [5] to innovation
diffusion modeling are based on a mean-field approxima-
tion and are referred to as aggregate models. An influ-
ential example is the seminal Bass model [6–12], where
innovation spreads as the result of either an adopter con-
verting a susceptible (contagion), or through external in-
fluences on susceptibles (advertising and mass media).
The basic outcome of the Bass model is that the time de-
pendence of the fraction of adopters exhibits a sigmoidal
shape [1, 6–9, 13]. Thus significant adoption arises only
after some latency period, after which complete adoption
is quickly achieved.

While the Bass and related models have been success-
ful in fitting historic data [14], there are several limita-
tions of these approaches:

• The predictive power of the Bass model is uncer-
tain [15, 16].

• Aggregate models are based on infinitely large, ho-
mogeneous populations [12, 13] and cannot account
for sample-specific differences and related fluctua-
tion phenomena.

• Bass-like models do not account for behavioral pat-
terns that result from social reinforcement and
“bandwagon” pressure [17–19, 21].

• Aggregate models assume a “pro-innovation bias”
and thus cannot reproduce phenomena such as in-
complete adoption [1, 17, 20, 21].

We are particularly interested in situations where in-
novation can be accompanied by controversy, suspicion,
or rejection within some social circles, potentially leading
to incomplete adoption. As an example, mobile phones
are owned by 90% of Americans [22] as of 2014, but their
use is accompanied by continued health and safety con-
cerns [23]. Similarly, the coverage of the measles, mumps
and rubella vaccine in the United Kingdom reached
92.7% in 2013–14, below the target level of 95% cover-
age for herd immunity. This incomplete adoption level
may result from doubts about vaccine effectiveness and
safety concerns promulgated by anti-vaccination move-
ments [24, 25]. Such doubts seem to persist even in the
face of their apparently negative consequences, such as
the measles epidemic that seemed to have its inception
in Disneyland at the start of 2015.

Motivated by these facts, we introduce a model
for the diffusion of an innovation, using a statistical
physics approach [26], in which we account for the com-
peting role of “Luddites” in hindering the spread of
the innovation. Agents may either be Luddites (op-
posed to innovation), “Ignorants” (no knowledge of
the innovation), “Susceptibles” (receptive to innova-
tion), or “Adopters” of the innovation. We dub this
the LISA (Luddites/Ignorants/Susceptibles/Adopters)
model. The main new feature of the LISA model is the
existence of agents that reject the innovation in response
to the spread of adoption. We use the term “Luddites”
in reference to the 19th-century Luddism movement in
which English textile artisans protested against newly de-
veloped labor-saving machinery [27]. We are interested in
determining how Luddism limits the final level of adop-
tion and how the presence of Luddites leads to a trade-off
between adoption levels and adoption times scales.
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The LISA model is defined in the next section, while
the behavior of the model in the mean-field limit and on
complete graphs is investigated in Section III. Section IV
focuses on the model dynamics on random graphs and
on a one-dimensional regular lattice. For all these sub-
strates, we investigate how Luddism affects the final level
of adoption and the time scale of adoption. We also eluci-
date a dichotomy between the cases of slow but relatively
universal adoption for low values of an intrinsic innova-
tion rate, and the rapid but limited spread of innovation
that occurs in the opposite limit. Our conclusions are
presented in Section V.

II. THE LISA MODEL

As a helpful preliminary, let us review the simpler two-
state Bass model of innovation diffusion. Here a popu-
lation consists of two types of agents: susceptibles S or
adopters A. In the Bass model, susceptibles can become
adopters via either of two processes:

(a) Contagion-driven conversion: a susceptible con-
verts to an adopter by interacting with another
adopter, as represented by the process S + A →
A+A.

(b) Spontaneous adoption: a susceptible converts to an
adopter, S → A.

The characteristic feature of the Bass model is that the
adopter density exhibits a sigmoidal time dependence,
in which the time derivative of this density has a sharp
peak (corresponding to an inflection point in the time de-
pendence of the density itself), before complete adoption
eventually occurs [1, 6–9, 13].

FIG. 1: (Color online) Schematic depiction of the LISA
model. An ignorant I can become a Luddite L with rate
rȦ (in a mean-field setting); an ignorant can also become
a susceptible S by contagion with rate proportional to the
susceptible density. A susceptible spontaneously becomes an
adopter at rate γ.

Our LISA model is a four-state system that consists
of a population of N individuals that can each be in the
states of Luddite (L), ignorant (I), susceptible (S), or
adopter (A). Ignorant agents may either be persuaded to
become susceptible, and thence reach the adopter state,
or they may become a Luddite and permanently oppose
the spread of the innovation. Specifically, the elemental
steps of our LISA model are the following (see Fig. 1):

(a) Contagion-driven conversion: An ignorant agent
becomes susceptible by interacting with another

susceptible agent. That is, I + S → S + S with
rate 1.

(b) Spontaneous adoption: A susceptible agent spon-
taneously becomes an adopter, S → A with rate γ
[32].

(c) Luddism: Ignorants may permanently reject the
innovation and become Luddites, I → L, with a
rate proportional to the change in the density of
adopters in its neighborhood.

The Luddism mechanism outlined above incorporates
two aspects of negative behavior towards innovation.
The first represents a fear of innovation or its conse-
quences, as in the case of the historical Luddism move-
ment, where the introduction of labor-saving machinery
caused fear over job security [27]. The second is that of
non-conformity; agents may oppose the innovation sim-
ply due to its rapid increase in popularity [21]. We model
this feature by defining the rate at which the Luddite
density increases to be proportional to the adoption rate,
with constant of proportionality denoted by r, the Lud-
dism parameter.

The multistage progression I → S → A may also be
viewed as a type of social reinforcement mechanism in
which adoption follows from a succession of prompts from
neighbors [18, 19]. The combination of this multistage
progression to adoption, together with the Luddite mech-
anism, arguably represents the simplest generalization of
the Bass model that gives rise to non-trivial long-time
state with incomplete adoption of an innovation.

III. MEAN-FIELD DESCRIPTIONS

We first consider the LISA model in the mean-field
limit, where agents are perfectly mixed. The densi-
ties of each type of agent are given by (L, I, S,A) =
(NL, NI , NS , NA)/N , where NX is the number of agents
of type X ∈ {L, I,S,A}, and N is the total number of
agents. We consider the limit N →∞, so that all densi-
ties are continuous variables and all fluctuations are neg-
ligible. In this setting, the evolution of the agent densities
is described by the rate equations:

L̇ = rȦI ≡ (α− 1)SI,

İ = −(1 + γr)SI ≡ −αSI,
Ṡ = S(I − γ),

Ȧ = γS,

(1)

where the dot denotes the time derivative and we define
α ≡ 1 + γr. Since the total density is conserved, i.e.,
L + I + S + A = 1, the sum of these rate equations
equals zero. A natural initial condition is a population
that consists of a small density of susceptible agents that
initiate the dynamics, while all other agents are ignorant;
that is, I(0) = 1− S(0) = I0 and L(0) = A(0) = 0.
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To solve these rate equations, it is useful to introduce
the modified time variable dτ = S(t) dt, which linearize
the rate equations to

L′ = (α− 1)I,

I ′ = −αI,
S′ = I − γ,
A′ = γ,

(2)

with solution

L =
α− 1

α
I0(1− e−ατ ),

I = I0e
−ατ ,

S =
I0
α

(1− e−ατ ) + 1− I0 − γτ,

A = γτ.

(3)

There are two basic regimes of behavior that are con-
trolled by the adoption rate γ, as illustrated in Fig. 2:

(a) Gradual but extensive adoption. When γ < I0, the
density of susceptibles S varies non-monotonically
in time and reaches a maximum value Sinc at an
“inception” time tinc, after which S decays to 0.
This non-monotonicity leads to a sigmoidal curve
for the adopter density, with A increasing rapidly
for t . tinc and increasing very slowly for t & tinc.
The rescaled inception time τinc is determined by
the criterion S′ = 0, or equivalently, I(τinc) = γ.
This gives

τinc =
1

α
ln(I0/γ) . (4)

(b) Rapid but sparse adoption. When γ > I0, the sus-
ceptibles quickly become adopters, leaving behind
a substantial static population of ignorants and a
small fraction of adopters, as well as Luddites.

Numerical simulations of the LISA model on a large com-
plete graph and numerical integration of the rate equa-
tions (1), illustrated in Fig. 2, give results that are vir-
tually indistinguishable.

We can express the densities in terms of the physical
time t by inverting dτ = S(t)dt to give t =

∫ τ
0
dτ ′/S(τ ′).

Substituting S(τ) from the third of Eqs. (3) and taking
the limits of low adoption, γ � 1 and α ≈ 1, we have [33]

t =

∫ τ

0

dτ ′

1− I0e−τ ′ ≈ τ + ln
[
1− I0e−τ

]
. (5)

In particular, the physical inception time tinc is,

tinc ≈
∫ ln(I0/γ)

0

dτ ′

1− I0e−τ ′ ≈ ln

[
I0

(1− I0)γ

]
(6)

and therefore grows as ln(1/γ).
The stationary state is reached when all susceptibles

disappear, so that no further reactions can occur. This
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FIG. 2: (Color online) Evolution of a realization of the LISA
model on a complete graph of 106 nodes with I0 = 0.8 and
Luddism parameter r = 0.9. (a) γ = 0.3 (slow but exten-
sive adoption) (b) γ = 1 (rapid but sparse adoption). Evenly
distributed samples of the stochastic simulation (2) are in-
distinguishable from the solution of Eq. (1) (solid line). The
completion times for (a) and (b) are 60 and 17 respectively.

gives the criterion S(τ∞) = 0 which defines the value of
τ∞. By solving the third line of Eq. (3), we obtain

τ∞ =
1

γ
− I0r

α
+

1

α
W0

(
−I0
γ
eI0r−α/γ

)
, (7)

where W0(z) is the principal branch of the Lambert func-
tion W (z), which is defined as the solution of z = WeW .
Here τ∞ is a decreasing function of the adoption rate γ,
with τ∞ ∼ 1/γ in the high and low adoption rate regimes.

We now determine the final densities by substituting
τ∞ into Eqs. (3). For small adoption rate (γ � 1), this
gives

A∞ = 1−O(γ),

I∞ → 0,

L∞ ≈ (α− 1)I0 = O(γ).
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Similarly, the densities at the inception time are ob-
tained by substituting τinc into Eqs. (3). This yields
A(τinc)+S(τinc) = 1−[(α−1)I0+γ]/α. Since (α−1)I0 ∼
O(γ), when γ � 1 and r is finite, here the stationary
density of adopters approximately equals the sum of the
adopter and susceptible densities at the inception time,
A∞ ≈ A(τinc) + S(τinc). Hence, in the low adoption rate
regime (when r is finite), we can infer the final level of
adoption from the adopter and susceptible densities at
the inception time, i.e., well before the stationary state.
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FIG. 3: (Color online) Dependences of the final-state densi-
ties L∞, I∞ and A∞ for a complete graph of 104 nodes and
I0 = 0.9. In the top panel r = 0.9 while γ varies, whereas
in the bottom panel γ = 0.3 while r varies. Simulations (2)
in complete agreement with (3) with substitution (7) (solid
line).

The dependence of the final densities for different pa-
rameter ranges is shown in Fig. 3. Again simulation re-
sults for the complete graph are indistinguishable from
numerical integration of the rate equations. Interestingly,
L∞ varies non-monotonically on γ when the initial state
consists mostly of ignorants and the fixed rate of Lud-
dism r is not too high, as in Fig. 3 (top). This non-
monotonic dependence on γ can be understood by not-
ing that dL∞/dγ ∼ r(1 − e−1/γ) > 0 for γ � 1 and
dL∞/dγ ∼ −e−1/γ/γ2 < 0 for γ � 1. We therefore ex-
pect that L∞ is peaked for an intermediate value of γ on a
range between the slow and quick adoption regimes. It is
also worth noting that in the absence of Luddites, com-
plete adoption is almost, but not completely achieved,
since the final densities of adopters and ignorants are

A∞ ≈ 1− I∞ and I∞ ≈ e−1/γ , see Fig.3 (bottom).
To assess the role of finite-N fluctuations on the dy-

namics, we simulate the LISA model on complete graphs
of N nodes using the Gillespie algorithm [28]. At
long times we find that the densities of each species,
NX/N , fluctuates around the corresponding mean-field
density, with a root-mean-square fluctuation of ampli-
tude ∼ N−1/2, as expected from general properties of
this class of reaction processes [30]. We also find that
the probability distribution of NX/N is a Gaussian of
width of order N−1/2 that is centered on the mean-field
density. We also estimate the completion time TC for the
system to reach its final state by the physical criterion
that S(t = TC) = 1/N . That is, completion is defined
by the presence of a single susceptible remaining in the
population [19]. By linearizing the rate equations (1)
around S∞ = 0, the density of susceptibles asymptoti-
cally vanishes as S(t) ∼ e−(γ−I∞)t. Hence, we estimate
the mean completion time to be TC ≈ (ln N)/(γ − I∞).
This prediction is confirmed by our simulations.

IV. LISA MODEL ON RANDOM GRAPHS AND
LATTICES

We now consider the behavior of the LISA model on
Erdős-Rényi random graphs and one-dimensional lat-
tices. We are particularly interested in uncovering dy-
namics that are characterized by genuine non mean-field
effects.

A graph with N nodes can be represented by its N×N
adjacency matrix A = [Aij ], where Aij = 1 if nodes i and
j are connected and 0 otherwise. We implement the LISA
model on such a graph using the Gillespie algorithm [28].
The propensity for a susceptible to become an adopter
is γ, independent of the local environment. The propen-
sity for an ignorant node i to become susceptible if it has
si susceptible neighbors is si/N . The propensity of an
ignorant node i to become a Luddite is rγsi/ki, where
ki =

∑
j Aij is the degree (number of neighbors) of node

i, and si/ki is the fraction of nodes in the neighborhood
of i that are in the susceptible state. Thus the propen-
sity of i to become a Luddite is proportional to the sum
of its susceptible neighbors’ propensities to adopt. This
rate encodes node i’s local knowledge of the rate of adop-
tion. These reaction rates approach those of the complete
graph, described in Section III, as the average degree of
the graph increases.

A. Erdős-Rényi random graphs

We first study the LISA model on the class of Erdős-
Rényi (ER) random graphs in which an edge between
any two nodes occurs with a fixed probability p. This
construction leads to a binomial degree distribution for
the ER graph in which each node has, on average, k =
p(N−1) neighbors [29]. Under the assumption of no cor-
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relations between the degrees of neighboring nodes, the
adjacency matrix may be written as Aij ≈ kikj/(Nk) ≈
k/N . The LISA dynamics on ER graphs can now be ap-
proximately described by a natural generalization of the
mean-field theory in which there are suitably defined re-
action rates. In particular, if Si is the probability that a
node i is susceptible and Ij is the probability that a node
j is ignorant, then the density of susceptibles S evolves
as

Ṡi = Si

[∑
j

(Aij/N)Ij − γ
]
≈ S

[
(k/N)I − γ

]
,

since each susceptible interacts with k of its N neighbors
on average. Thus on the ER graph there is a rescaling of
the rate of the two-body contagion process I+S → S+S,
whereas the rates of the remaining one-body processes re-
main unaltered. Hence we obtain the effective rate equa-
tions

L̇ = γrSI ≡
(
β − k

N

)
SI,

İ = −
(
γr +

k

N

)
SI ≡ −βSI,

Ṡ = S

(
k

N
I − γ

)
,

Ȧ = γS,

(8)

where, for later convenience, we define β ≡ γr + (k/N).
As in the case of the mean-field dynamics, the above

equations predict two regimes of behavior (see Fig. 4):

(a) Slow but extensive adoption (γ < kI0/N). Here
the density of S’s peaks at a inception time tinc ∼
ln(1/γ) before vanishing.

(b) Rapid but sparse adoption (γ > kI0/N). The den-
sity of S’s vanishes quickly so that the density of
adopters and Luddites quickly reach their steady-
state values.

The simulation results presented in Fig. 4 indicate that
the mean-field approximation (8) correctly captures the
main qualitative features of the dynamics on large ER
graphs. When γ < kI0/N , the densities of A and L are
characterized by a sigmoidal time dependence, whereas
the density of S has a peak at the inception time tinc, with
time evolution that is slower than on complete graphs,
since each agent has now a finite neighborhood.

The stationary state can be determined by again not-
ing that (8) becomes linear in terms of the variable

τ =
∫ t
0
S(t′)dt′. Thus proceeding as in Section III, we

find the steady state by the condition S(τ∞) = 0. This
yields

I∞ = I0e
−βτ∞

L∞ =
β − k/N

β
(I0 − I∞)

A∞ = γτ∞,

(9)
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FIG. 4: (Color online) The evolution, averaged over 100 re-
alizations, of the LISA model on an ER graph with N = 103

nodes, k = 10, and I0 = 0.8. (a) γ = 0.002, such that
γ < (k/N)I0 and (b) γ = 0.1 such that γ > (k/N)I0. Shown
are the evenly distributed samples of the stochastic simula-
tion (2) and the solution of Eq. (8) (solid line). The Luddism
parameter r = 0.9.

where now

τ∞ =
k

Nγβ
+ (1− I0)

r

β

+
1

β
W0

(
−kI0
Nγ

e−(1−I0)r−k/(Nγ)
)
. (10)

It is instructive to compare the predictions (9) with
the results of stochastic simulations, and also compare
with the equivalent results for the complete graph. Fig-
ure 5 shows simulation results for the stationary den-
sities as a function of the mean degree. These results
confirm that the mean-field predictions correctly capture
the functional dependence of the steady state on the vari-
ous parameters. However, the mean-field predictions (9)
are quantitatively accurate only when k/N is large. If
k/N � 1, the neighborhood of each agent represents a
small fraction of the entire network, and resulting large
demographic fluctuations invalidate the assumptions un-
derlying the derivation of (9). The dependence on γ and
r are qualitatively similar to those observed on complete
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FIG. 5: (Color online) Dependence of the final densities
L∞, I∞ and A∞ on the average degree for ER graphs with
N = 103 nodes. The simulation (2) represents an average
over 40 model realizations for 30 randomly generated net-
works. Parameters are γ = 0.005, r = 0.9, and I0 = 0.9. The
mean-field predictions (9) (solid line) match the simulation
for k & 20 (see main text).

graphs.

The influence of demographic fluctuations can be
heuristically assessed by viewing ER graphs of mean de-
gree k as a meta-population that consists of N/k patches
each comprising a well-mixed population of size k. Ac-
cording to this picture, when N � k � 1, the number
of agents in each of the N/k components fluctuates in
a range of k1/2 about its average value. Since these are
independent fluctuations, the noise in the whole popula-
tion should have an amplitude ∼ (N/k)1/2 k1/2 = N1/2,
which leads to fluctuations in the densities of order
N−1/2. This prediction is confirmed by our simulations—
we find that NA(∞)/N has a Gaussian probability dis-
tribution around A∞ with a width that decays as N−1/2.
The same behavior is observed for L∞ and I∞ but not
for S∞ as S∞ = 0 is a requirement for the completion of
the dynamics.

The mean-field steady state predictions (9) are sum-
marized in Fig. 6, where we plot the mean-field steady
state predictions corresponding to each pair of steady
state densities being equal. For example, the solid curve
corresponds to parameter values for which A∞ = I∞.
This carves up the (γ, r) parameter space into regions
corresponding to different orderings of the steady state
densities, labelled with Roman numerals in Fig. 6. We
can use these orderings to interpret, from a marketing
perspective, whether or not these would be considered
successful campaigns. In this context, the most desirable
outcome would be region (I), where adopters form the
largest steady-state group and Luddites form the small-
est. Whilst adopters also form the largest group in region
(II), Luddites form the second largest group and so this
region could be considered a controversial success — de-
spite the majority adopting, a significant number of peo-
ple have responded negatively. Conversely, regions (III)
and (IV) could both be considered controversial failures

because Luddites form the largest groups. Regions (V)
and (VI) represent ineffective campaigns because igno-
rants form the largest steady state groups.
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FIG. 6: (Color online) The mean-field steady state predic-
tions (9) over the parameter space (γ, r) for k/N = 0.025 and
I0 = 0.9. The contours L∞ = I∞, L∞ = A∞, and I∞ = A∞
split the domain into six regions which characterize the inno-
vation (see main text).

In summary, we have shown that the LISA dynamics
on ER graphs can be accurately approximated by using
mean-field assumptions, provided that the average degree
is sufficiently high (see Fig. 5).

B. One-dimensional lattices

Recent controlled experiments have shown that innova-
tion may spread more efficiently on clustered graphs and
lattices than on random networks [17]. To understand the
effect of regular topology on the spread of an innovation,
and where the mean-field approximation breaks down,
we investigate the LISA dynamics on one-dimensional
lattices.

The two regimes of behavior predicted by the mean-
field description (8) on ER random graphs (see Sec-
tion IV A) also occur on one-dimensional lattices, despite
the difference in topology. Specifically with k = 2 we ob-
serve slow adoption for γ < (2/N)I0 and fast adoption
for γ > (2/N)I0. From simulations, illustrated in Fig.7,
we observe the following three regimes:

(A) When γ � 2I0/N , there is slow adoption as well
as a time-scale separation. First, almost all I’s
are converted to S’s [31] in a time of the order of
N2. When the lattice consists almost entirely of
S’s, these become adopters after a mean time of the
order of γ−1. As a consequence, when γ � N−1 the
size of the adopter domains grows abruptly after a
time of order ∼ N2 + γ−1, when all ignorants have
disappeared and the entire lattice is covered with
adopters.

(B) When γ ∼ 2I0/N , the domains of adopters grow
initially nearly linearly in time, whereas the average
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size of I clusters remains approximately constant
and of a comparable size to A domains.

(C) When γ � (2/N)I0, adoption occurs quickly and
the final state is reached in a time of order O(1/γ).
The final adopter density is limited by the forma-
tion of Luddites at the ends of ignorant domains
which prevent further conversion within each do-
main.
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FIG. 7: (Color online) Final simulated average proportions of
adopters (red 2), ignorants (green 2) and Luddites (blue 2)
for varying values of γ, averaged over 100 simulations. The-
oretical predictions using ignorant domain length (see Ap-
pendix A for details) are overlaid (solid line). Parameters are
N = 1000, r = 0.5. Initially ignorants and susceptibles are
randomly distributed, with densities I0 = 0.8 and S0 = 0.2.
The three regimes discussed in the text are separated by
dashed lines corresponding to regions where (2/N)I0 � γ and
(2/N)I0 � γ. Typical realizations of the model for N = 100
in each of the three regimes are given (bottom). On the ver-
tical axis the iteration corresponds to a single step of the
Gillespie algorithm, with one reaction taking place per itera-
tion.

While the mean-field approximation (8) predicts the
correct regimes of behavior, the agreement is only qual-
itative. In Fig. 8 we compare typical simulations of the

LISA model on a one-dimensional lattice with the mean-
field predictions of (8) for the case of k = 2. The simu-
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FIG. 8: (Color online) Time dependence of the densities in
each state for a one-dimensional lattice of size N = 105 av-
eraged over 100 realizations. The corresponding mean-field
predictions from Eq. (8) with k = 2 (solid line) deviate dra-
matically from the simulation samples (2). The parameters
are γ = 0.005, r = 0.9, and I0 = 0.8.

lations and mean-field predictions (8) systematically de-
viate; the latter always overestimates the final density
of adopters and underestimates the final density of ig-
norants. This can be attributed to the topological con-
straints on one-dimensional lattices. Initially the lattice
comprises of contiguous domains of ignorants that are
separated by domains of one or more neighboring sus-
ceptibles. Since ignorants can only become susceptible
if a neighbor is susceptible, domains of ignorants shrink
at their interfaces with susceptibles. Crucially, the evo-
lution of an ignorant-susceptible interface ceases if either
the susceptible at the interface adopts or the ignorant
at the interface becomes a Luddite. Thus in one dimen-
sion both Luddites and adopters act as barriers to the
spread of adoption, an effect that is not captured by the
mean-field description.

Since domains of ignorants decrease in size and evolve
independently, we can determine analytically the ex-
pected final length of ignorant domains 〈x〉 and hence
the final fractions of each type of agent. The details
of these calculations are given in Appendix A. Briefly,
we first determine the probability Pn(m) that a domain
of ignorants of initial length n shrinks by m. We then
use Pn(m) to calculate the expected final length of ig-
norant domains 〈x〉 and the final fraction of ignorants.
Since Luddites only form at the boundaries of ignorant
domains, we are able also to determine the expected fi-
nal fraction of Luddites and hence, using the conserva-
tion relation L + I + S + A = 1, the final fraction of
adopters. The resulting final fractions of each type of
agent are plotted in Fig. 7 and agree extremely well with
the corresponding numerical simulations. In principle,
this method allows us to derive explicit formulas for the
final fractions of each agent; however, in practice these
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formulas prove cumbersome.

V. DISCUSSION & CONCLUSION

Innovations are often accompanied by societal debates
and controversies that may lead to divisions between
adopters of an innovation and those who permanently
reject that innovation. Consequently, innovations are
rarely adopted by the whole population, as various exam-
ples, ranging from technology to medicine, demonstrate.
Classical models of innovation diffusion, such as that pro-
posed by Bass, assume a “pro-innovation bias” and pre-
dict the complete adoption of innovations.

Motivated by these considerations we have introduced
a multi-stage generalization of the Bass model, the LISA
model, that does not unavoidably lead to complete adop-
tion. The main new feature of our model is the introduc-
tion of Luddites that permanently oppose the spread of
innovation in their neighborhood. In the LISA model, ig-
norant individuals can successively become susceptibles
and then adopters, or turn to Luddism in response to a
high rate of adoption and permanently reject the inno-
vation.

We carried out a detailed analysis of the properties
of the LISA model on complete graphs and Erdős-Rényi
random graphs, as well as on one-dimensional lattices. In
particular, we focused on the steady states and comple-
tion time (time to reach stationarity). We showed that
significant insights can be gained from a simple mean-
field analysis that aptly captures the qualitative aspects
of the two basic regimes of the LISA dynamics. When
the rate of adoption is low, the population slowly con-
verges to a final state that consists of a high concentra-
tion of adopters. In the converse case, the stationary
state is reached much more quickly, but the final fraction
of adopters is much lower and is severely limited by the
significant densities of Luddites and ignorants.

Since most models of innovation diffusion are formu-
lated at mean-field level, an important aspect of this work
has also been to reveal the limitations of the mean-field
approximation. In particular, for Erdős-Rényi random
graphs with low mean degree and one-dimensional lat-
tices, the mean-field approximation proves inaccurate.
This is due to the formation of Luddites which isolate
domains of ignorants from the innovation, an effect par-
ticularly apparently in one dimension. It would be worth-
while to investigate the LISA model on modular net-
works, where Luddism has the potential to block the
spread of innovation to entire communities. In addi-
tion to the work described in this paper, we also found
that the mean-field approximation proves better on two-
dimensional lattices than on one-dimensional lattices.

In summary, the LISA model is a simple, but non-
trivial, innovation diffusion model that accounts for the
possibility that the promotion of an innovation may be
tempered by the alienation of some individuals. These
in turn affect the spread of the innovation. Interestingly,

our model outlines two possible marketing scenarios: If
one is interested in reaching a high level of adoption then
this can only be achieved over long time scales, since the
rate of adoption must be low. However, if the priority is
to attain a finite level of adoption as quickly as possible
regardless of the alienation that this may cause, then a
high rate of adoption is preferable.
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Appendix A: Analysis of one-dimensional dynamics

In this appendix we describe the calculation of the fi-
nal fractions of each type of agent on one-dimensional
lattices. These results are compared with simulations in
Fig. 7 of Section IV B.

1. Analysis of ignorant domains

Initially, the nodes on the one-dimensional lattice are
either ignorant, with probability I0, or susceptible, with
probability S0 = 1 − I0. Thus the initial configuration
consists of connected domains of ignorant nodes bordered
by susceptibles. Moreover, since ignorants can only be-
come susceptible if a neighbor is susceptible, domains of
ignorants only evolve at their ignorant-susceptible inter-
faces. We will refer to these as “active interfaces”. At an
active interface one of three events can occur:

• The ignorant node becomes susceptible, thus reduc-
ing the domain length by one, with probability

pS =
1/N

1/N + rγ/2 + γ
.

• The ignorant node becomes a Luddite, thus reduc-
ing the length of the domain by one and causing
the interface to become inactive, with probability

pL =
rγ/2

1/N + rγ/2 + γ
.

• The susceptible node becomes an adopter, thereby
terminating the interface evolution, with probabil-
ity

pA =
γ

1/N + rγ/2 + γ
.
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For an isolated ignorant node with two susceptible
neighbors, these probabilities respectively become

p̂S =
2/N

2/N + rγ + γ
,

p̂L =
rγ

2/N + rγ + γ
,

p̂A =
γ

2/N + rγ + γ
.

Let Qn(m) be the probability that a domain of igno-
rants of initial length n with a single ignorant-susceptible
interface has a final length n−m, with 0 ≤ m ≤ n. We
can determine Qn(m) as follows: If the final length of
ignorants is n−m, with 0 < m < n, then either m igno-
rant nodes must become susceptible before a susceptible
node at the interface adopts, or m − 1 ignorant nodes
must become susceptible before an ignorant node at the
interface becomes a Luddite. These events occur with
probabilities pAp

m
S and pLp

m−1
S respectively. Using sim-

ilar reasoning for the cases m = 0 and m = n, we thus
find

Qn(m) =


pA if m = 0

pAp
m
S + pLp

m−1
S if 0 < m < n

pnS + pLp
n−1
S if m = n

. (A1)

By summing over m, it can be shown that Qn(m) is nor-
malized.

We now consider the case where a connected region
of n ignorant nodes initially has two ignorant-susceptible
interfaces. The probability Pn(m) that a region of ig-
norants of initial length n with two active interfaces has
final length n−m is given by the recursion relation

Pn(m) = Qn(m)pA +Qn−1(m− 1)pL

+ Pn−1(m− 1)pS , (A2)

where the termsQn(m) are given by (A1). Equation (A2)
captures the three possible events that can occur at the
interface. If a susceptible node at the interface adopts,
which occurs with probability pA, then the region of ig-
norants only has one remaining active interface left and
there will be n−m remaining ignorants with probability
Qn(m), as given in (A1). If an ignorant node at the in-
terface becomes a Luddite, which occurs with probability
pL, then again the region of ignorants will only have one
active interface. Since there will be one ignorant less the
probability there will be n − m remaining ignorants is
Qn−1(m− 1). Finally, if an ignorant node at the bound-
ary becomes susceptible, which occurs with probability
pS , then the probability that there are n −m ignorants
remaining is the same as if we had started with n − 1
ignorant nodes, i.e. Pn−1(m− 1).

To solve the recursion relation (A2) we need Pn(0) and
P1(1). The probability that a region of ignorants of initial
length n remains of length n is given by

Pn(0) =

{
pAp̂A if n = 1
p2A if n > 1

.

Also, the probability that a single ignorant node that
initially has two susceptible neighbors becomes a suscep-
tible or Luddite is given by

P1(1) = p̂A(pL + pS) + p̂L + p̂S .

Thus the solution to the recursion relation (A2) for 0 <
m < n− 1 is given by

Pn(m) = (m+ 1)p2Ap
m
S + 2mpApLp

m−1
S

+ (m− 1)p2Lp
m−2
S .

For m = n− 1 we have

Pn(n− 1) = pA [p̂A + (n− 1)pA] pn−1S

+ 2(n− 1)pApLp
n−2
S + (n− 2)p2Lp

n−3
S ,

and for m = n we have

Pn(n) = [p̂A(pL + pS) + p̂L + p̂S ] pn−1S

+ (n− 1)
(
pAp

n
S + 2pLp

n−1
S + p2Lp

n−2
S

)
.

Again it is possible to check, by summing (A2) over m
and solving the resulting recursion relation, that Pn(m)
is normalized.

We can use Pn(m) to calculate the expected final
length of ignorant domains 〈x〉. First note that since I0 is
the initial probability of being ignorant, the probability
that a domain of ignorants initially has length n > 0 is
given by p0(n) = In−10 S0 for large N . Thus we find that

〈x〉 =

N∑
n=0

np0(n)−
N∑
n=0

p0(n)

n∑
l=0

lPn(l).

In principle, we may use the above to obtain an explicit
expression for 〈x〉. In practice, however, we use the solu-
tions to (A2) to calculate 〈x〉 numerically.

2. Calculation of population densities

Initially, the mean number of ignorants is given by I0N
and so dividing by the mean length of ignorant domains,
1/(1 − I0), yields the expected number of ignorant do-
mains, (1 − I0)I0N . Thus the final density of ignorants
is

I∞ = (1− I0)I0〈x〉.

The probability that an ignorant domain survives is

q = 1−
∞∑
n=0

p0(n)Pn(n).

Surviving ignorant domains have two interfaces, which
are either ignorant-adopter or ignorant-Luddite, with
probabilities pA/(pL+pA) and pL/(pL+pA), respectively.
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Thus the expected number of Luddites at the interfaces
of non-vanishing ignorant domains is given by

η+ =
2pL

pL + pA
q(1− I0)I0N. (A3)

It is also possible for Luddites to arise when a domain
vanishes. By identifying the terms in Pn(n) that result
in Luddites, it is possible to determine that the expected
number of Luddites that arise when a domain of initial
size n > 1 vanishes is given by

ln = (p̂ApL + p̂L) pn−1S + (n− 1)
(
2pLp

n−1
S + p2Lp

n−2
S

)
and l1 = p̂ApL + p̂L. Thus the expected number of Lud-
dites that arise from domains of ignorants that vanish

is

η0 = (1− I0)I0N

∞∑
n=0

p0(n)ln. (A4)

Summing Eqs. (A3) and (A4) and dividing by N we ar-
rive at the final density of Luddites

L∞ = I0(1− I0)

(
2pL

pL + pA
q +

∞∑
n=0

p0(n)ln

)
.

Since the dynamics cease when S = 0, the number of
adopters can be found using the conservation law A∞ =
1− L∞ − I∞.
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