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A FORTRAN Program for Cluster Enumeration 

S.  R e d n e r  I 
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A simple FORTRAN program based primarily on the algorithm of Martin is 
presented for enumerating isolated connected clusters of up to a given specified 
number of particles on the square lattice. A brief explanation of the workings of 
the program is also provided to facilitate its use by those interested in this 
problem. To order 15, the program enumerates clusters at an average rate of 
approximately 63,000/sec when implemented on an IBM 370/168 with the 
extended optimizing compiler. 
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Over the past  decade, there has been extensive work in applying series 
methods  to cluster statistical problems such as percolat ion and  lattice 
animals. (1) M a n y  of the series calculations that have been performed are 
based on cluster enumerat ion,  a problem of classic difficulty that was first 
posed in the context of graph theory. (2) The goal of the enumerat ion is to 
count  the number  of suitably normalized connected clusters of sites or 
bonds  on a regular lattice. Several groups have developed computer  pro- 
grams to accomplish this enumerat ion and have applied their techniques to 
a wide variety of problems. (3-8) However,  as yet, a listing of such a 
p rogram has not  been published, a l though a fairly detailed discussion of 
the algori thm underlying one part icular  enumerat ion  strategy has appeared 
in an article by Mart in  (9) in the D o m b  and Green series. 

In  this paper, we provide a F O R T R A N  program for cluster enumera-  
tion which is based primarily on Mart in 's  algorithm. (We assume that the 
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reader has some familiarity with that publication in what follows.) The 
program is short and simple, being only 36 lines long, and it is presented in 
an Appendix to serve as a useful resource to those interested in learning 
about, or using enumeration methods. 

For simplicity, the program given is for the enumeration of site 
clusters, defined as a group of nearest-neighbor occupied sites, on the 
square lattice. This program is sufficiently simple and flexible so that it can 
be easily generalized to treat bond or site enumeration on any regular 
lattice, as well as certain more specialized classes of enumeration problems. 
The key to the Martin algorithm is associating a unique labeling to each 
n-site cluster which is generated in a recursive way. This ensures that each 
cluster is counted only once, due to the uniqueness of the labeling, and that 
all possible clusters are generated, because of the recursive labeling. This 
labeling scheme will be evident in our program, as we shall explain below. 

To begin, we define some of the quantities and arrays used in the 
program. For convenience, the entire lattice is stored in the one- 
dimensional array, termed iocc. The dimension of this array determines the 
maximum cluster size that can fit on the lattice without wraparound 
problems (see Fig. 1). With the dimensions specified for all the arrays in 
line 1 of the program, clusters of up to 20 sites can be accommodated, The 
location of each lattice site that is still available for becoming part of the 
cluster is given the value 0 in iocc, while the location of a nonavailable site 
is given the value 1. There are several ways that nonavailability of a site can 
occur, and we will discuss this point in more detail below, 
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Schematic picture of the lattice, and a typical cluster at some intermediate stage of the 
enumeration is shown. Full circles are the cluster sites, while dotted circles are prohibited sites 
whose order is written. The arrows indicate the root to which each cluster site is attached. 
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The geometry of the lattice is defined through the adjacency vectors, 
iv, which give the nearest neighbors of any site. By changing these adja- 
cency vectors, and by increasing the dimensions of certain arrays as 
needed, the program can be modified to enumerate site or bond clusters on 
any lattice. For the values for iv given in line 2, the lattice is a 40 • 21 
rectangular grid. In parallel with the cluster storage mode described above, 
the locations of the cluster sites are also stored consecutively, in the array 
~. This will provide the sequential labeling scheme required by the Martin 
algorithm. The nth cluster site joins to the rest of the cluster by being 
attached to a particular "root" site already in the cluster whose order is 
between 1 and n - 1. The value ofjpt(n) gives the order of this root site to 
which the nth site is attached. 

As clusters are successively built, the array numb is updated to record 
the completion of each successful cluster. However, once a duster of a 
maximum predetermined size (nmax) is constructed, it then becomes neces- 
sary to remove cluster sites intermittently, in the reverse order that the sites 
were added, so that the enumeration proceeds to completion. This 
"backtracking" procedure is crucial to the success of the program, and is 
explained below. 

Once a jth-order site is removed, the location of that site becomes "j  
prohibited" (following Martin's nomenclature). This condition means that 
such a location becomes unavailable for the addition of another cluster site 
until a later stage is reached in the enumeration where the j-prohibited sites 
are "freed." Such a restriction is required so that the same cluster is not 
generated from a different labeling of the sites. These prohibited sites are 
stored injp;  the second argument of the array gives the order at which the 
given site is prohibited, while the first argument gives the number of 
prohibited sites of that order. This number, in turn, is stored in np. Thus the 
prohibited sites of each order are stored sequentially. However, in testing 
whether a particular site is prohibited, it is faster to store only the locations 
of the prohibited sites. This is done in the array iocc, where the location of 
a prohibited site is given the value 1, while a nonprohibited site is given the 
value 0. This use of iocc is in addition to its use in storing occupied cluster 
sites as well. 

The program begins with a single occupied site in the middle of the 
second row of the lattice, site # 60 as specified in the data statement (line 
2). Beginning with this site, we add to it iv(i), with i incrementing sequen- 
tially between 1 and 4 to locate a nearest-neighbor site. More generally, the 
program finds the nearest neighbors of the current root, ip(j), in an 
(n - 1)-site cluster (line 5). The new location, inow, will become the next 
site in the cluster if three conditions are satisfied. These conditions are 
tested by the statement in line 6, where the program tests whether inow is 
available for occupancy by a new cluster site. This includes the possibilities 
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that inow is already occupied by (i) an earlier cluster site, (ii) by an already 
prohibited site, or (iii) the location of the current site is "earlier" than the 
origin (site #60). The current site must be "later" than the origin so that 
the same cluster is not generated more than once with only the overall 
order of the cluster labeling reversed. The last test is most conveniently 
performed by initializing iocc(i) to 1 for all i between 1 and 60, thereby 
making these "earlier" sites unavailable for becoming cluster sites. 

If inow successfully passes these checks, then a valid additional cluster 
site has been found. Control is transferred to line 9 where the value inow is 
stored in ip(n), numb(n) is incremented, and iocc(inow) is set equal to 1. 
The last statement means that inow becomes part of the cluster, and that its 
location is no longer available for occupation by later cluster sites. This is 
the appropriate stage (after line 12) where one may measure the cluster 
perimeter, radius, or other configurational properties of interest. For these 
measurements, it may be desirable to differentiate between cluster sites and 
prohibited sites in the array iocc. This may be accounted for by adding the 
two statements indicated in the program. With these additions, the loca- 
tions of cluster sites are given the value 1 in iocc, while the locations of 
prohibited sites are given the value 2. 

If n is less than nmax, the order j of the root site to which inow is 
attached is also stored (line 14), n is incremented, and the program then 
attempts to add another site to the cluster. To do this, the program goes to 
line 19 and checks whether the four possible nearest neighbors of the 
current root site have been utilized previously. If this is the case, then it is 
no longer possible to attach an additional site to the current root. There- 
fore, a new root is chosen, by incrementing the site label for the root by 1 
(line 20), and the program will attempt to add sites to the updated root. 

If n has reached nmax, then it is necessary to add the location of  the 
last cluster site to the list of prohibited sites of order n (lines 17 and 18). 
Since a prohibited site is created where the cluster site was removed, this 
particular location is still not available for later occupancy by other cluster 
sites. We can account for this fact most simply by doing nothing. In this 
way, the locations of occupied cluster sites and prohibited sites may be 
stored simultaneously in iocc. At this stage, the program has reached line 19 
where it proceeds as described above. 

On the other hand, it may occur that inow is not a valid additional 
cluster site according to the test in line 6. If this happens, control is 
transferred to line 20 where a new root is chosen so that cluster building 
may begin once again on this new root. However, if all cluster sites have 
been used as roots, it is then necessary to implement the "backtracking" 
procedure which performs the intermittent prohibition of certain lattice 
sites necessary to ensure the unique cluster labeling. All prohibited sites of 
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order n are freed for possible later occupancy by additional cluster sites in 
lines 23-27. The cluster site of order n - 1 should also be removed and a 
prohibited site of order n - 1 should be created. As explained above, this 
latter task is accomplished by doing nothing in the array iocc. However, it 
is necessary to store the prohibited site of order n - 1 in j p  (lines 29 and 
30). Finally, the root of the last site in the cluster is identified (line 31) and 
cluster building begins once again on this root. 

When the backtracking procedure reaches the first site of the cluster, 
then all possibilities for root and cluster sites have been exhausted (line 22). 
At this point, the program is finished and the results are printed. 

The program can be run  as displayed using a standard FORTRAN 
compiler on the IBM 370/168 machine at Boston University with the VPS 
operating system. W i t h  this compiler all array and variable space is 
initialized to zero automatically. However, the program runs considerably 
faster using a FORTRAN extended optimizing compiler, in which case it is 
necessary for the user to initialize the arrays properly at the outset of the 
program. This may be accomplished by zeroing all but the first 60 elements 
of iocc, and all but the first elements of ip and numb. With the extended 
compiler, the program requires approximately 11.1, 40.4, 155.3, and 587.0 
sec of cpu time to enumerate all clusters of up to size 12, 13, 14, and 15, 
respectively. This represents a cluster counting rate of approximately 63,000 
per second. This counting rate may not be the best possible, but it is 
sufficient to obtain series of meaningful length for a wide variety of 
problems. 
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APPENDIX: COMPUTER PROGRAM FOR CLUSTER ENUMERATION 

The two lines indicated as insertions are needed if it is desired to 
distinguish between cluster sites and prohibited sites (see text). The output 
of this program is the number of connected n-site clusters on the square 
lattice with 1 < n < nmax.  (These are given to order 19 in Table I of Ref. 
4.) For completeness, these terms are: 1, 2, 6, 19, 63, 216, 760, 2725, 9910, 
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36446, 135268, 505861, 1903890, 7204874, 27394666, 104592937, 
400795844, 1540820542, and 5940738676. 

dimension iv(4), ip (20), jpt(20), np(20), jp (20, 20),iocc(840), 
numb(20) 
data nmax, numb(l), j ,  n, ip (1), iv, iocc/11, 1, 1,2, 60, - 1,40, 1, 

1 

2 
- 40, 60* 1 / 

3 l O k = l  
4 1 do 2 i =  k,4 
5 inow = ip( j )+ iv(i) 
6 if (ioee(inow).eq.O) go to 3 
7 2 continue 
8 go to 4 
9 3 ip(n)-- inow 

10 k = i +  l 
11 numb(n) = numb(n) + 1 
12 iocc(inow) = 1 
13 if (n.eq.nmax) go to 6 
14 jpt(n) = j  
15 n = n + l  
16 go to 5 
17 6 np(n) = np(n) + 1 
18 jp(np(n),n) = inow 
19 5 if (k.lt.5) go to 1 
20 4 j = j + l  
21 if (j.lt.n) go to 10 
22 if (n.eq.2) go to 9 
23 nx = np(n) 
24 if (nx.eq.O) go to 7 
25 np(n) = 0 
26 do 8 m =  l ,nx  
27 8 iocc(jp(m, n)) = 0 
28 7 n = n - 1  
29 np(n) = np(n) + 1 
30 jp(np(n), n) = ip(n) 
31 j =jpt(n)  
32 go to 10 
33 9 write (6, 100) (numb(m),m = 1,nmax) 
34 100 format (6i12) 
35 stop 
36 end 

< iocc(inow) = 2 

< iocc(ip(n)) = 2 
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