
Journal of Statistical Physics, FoL 29, No. 2, 1982

A FORTRAN Program for Cluster Enumeration

S. R e d n e r I

Received May 11, I982

A simple FORTRAN program based primarily on the algorithm of Martin is
presented for enumerating isolated connected clusters of up to a given specified
number of particles on the square lattice. A brief explanation of the workings of
the program is also provided to facilitate its use by those interested in this
problem. To order 15, the program enumerates clusters at an average rate of
approximately 63,000/sec when implemented on an IBM 370/168 with the
extended optimizing compiler.

KEY WORDS: Cluster enumeration; Martin algorithm; FORTRAN pro-
gram.

Over the past decade, there has been extensive work in applying series
methods to cluster statistical problems such as percolat ion and lattice
animals. (1) M a n y of the series calculations that have been performed are
based on cluster enumerat ion, a problem of classic difficulty that was first
posed in the context of graph theory. (2) The goal of the enumerat ion is to
count the number of suitably normalized connected clusters of sites or
bonds on a regular lattice. Several groups have developed computer pro-
grams to accomplish this enumerat ion and have applied their techniques to
a wide variety of problems. (3-8) However, as yet, a listing of such a
p rogram has not been published, a l though a fairly detailed discussion of
the algori thm underlying one part icular enumerat ion strategy has appeared
in an article by Mart in (9) in the D o m b and Green series.

In this paper, we provide a F O R T R A N program for cluster enumera-
tion which is based primarily on Mart in 's algorithm. (We assume that the

1 Center for Polymer Studies 2 and Department of Physics, Boston University, Boston, Massa-
chusetts 02215.

2 Supported in part by grants from the ARO, NSF, and ONR.

309
0022-4715/82/1000-0309503.00/0 �9 1982 Plenum Publishing Corporation

310 Redner

reader has some familiarity with that publication in what follows.) The
program is short and simple, being only 36 lines long, and it is presented in
an Appendix to serve as a useful resource to those interested in learning
about, or using enumeration methods.

For simplicity, the program given is for the enumeration of site
clusters, defined as a group of nearest-neighbor occupied sites, on the
square lattice. This program is sufficiently simple and flexible so that it can
be easily generalized to treat bond or site enumeration on any regular
lattice, as well as certain more specialized classes of enumeration problems.
The key to the Martin algorithm is associating a unique labeling to each
n-site cluster which is generated in a recursive way. This ensures that each
cluster is counted only once, due to the uniqueness of the labeling, and that
all possible clusters are generated, because of the recursive labeling. This
labeling scheme will be evident in our program, as we shall explain below.

To begin, we define some of the quantities and arrays used in the
program. For convenience, the entire lattice is stored in the one-
dimensional array, termed iocc. The dimension of this array determines the
maximum cluster size that can fit on the lattice without wraparound
problems (see Fig. 1). With the dimensions specified for all the arrays in
line 1 of the program, clusters of up to 20 sites can be accommodated, The
location of each lattice site that is still available for becoming part of the
cluster is given the value 0 in iocc, while the location of a nonavailable site
is given the value 1. There are several ways that nonavailability of a site can
occur, and we will discuss this point in more detail below,

801 8 0 2 80:5
�9 �9 �9 �9 8 4 0
:

Ev(2)
Ev(1) + Ev(3)

iv(4) 21
"'~ 5")

�9 . ~ �9 120

�9 �9 �9 �9 5o9~ ~ i � 9 �9 �9 80
�9 �9 �9 �9 �9 �9 �9

I 2 3 4 0

4 -'-

Fig. 1.

4 0 �84184

Schematic picture of the lattice, and a typical cluster at some intermediate stage of the
enumeration is shown. Full circles are the cluster sites, while dotted circles are prohibited sites
whose order is written. The arrows indicate the root to which each cluster site is attached.

A FORTRAN Program for Cluster Enumeration 311

The geometry of the lattice is defined through the adjacency vectors,
iv, which give the nearest neighbors of any site. By changing these adja-
cency vectors, and by increasing the dimensions of certain arrays as
needed, the program can be modified to enumerate site or bond clusters on
any lattice. For the values for iv given in line 2, the lattice is a 40 • 21
rectangular grid. In parallel with the cluster storage mode described above,
the locations of the cluster sites are also stored consecutively, in the array
~. This will provide the sequential labeling scheme required by the Martin
algorithm. The nth cluster site joins to the rest of the cluster by being
attached to a particular "root" site already in the cluster whose order is
between 1 and n - 1. The value ofjpt(n) gives the order of this root site to
which the nth site is attached.

As clusters are successively built, the array numb is updated to record
the completion of each successful cluster. However, once a duster of a
maximum predetermined size (nmax) is constructed, it then becomes neces-
sary to remove cluster sites intermittently, in the reverse order that the sites
were added, so that the enumeration proceeds to completion. This
"backtracking" procedure is crucial to the success of the program, and is
explained below.

Once a jth-order site is removed, the location of that site becomes "j
prohibited" (following Martin's nomenclature). This condition means that
such a location becomes unavailable for the addition of another cluster site
until a later stage is reached in the enumeration where the j-prohibited sites
are "freed." Such a restriction is required so that the same cluster is not
generated from a different labeling of the sites. These prohibited sites are
stored injp; the second argument of the array gives the order at which the
given site is prohibited, while the first argument gives the number of
prohibited sites of that order. This number, in turn, is stored in np. Thus the
prohibited sites of each order are stored sequentially. However, in testing
whether a particular site is prohibited, it is faster to store only the locations
of the prohibited sites. This is done in the array iocc, where the location of
a prohibited site is given the value 1, while a nonprohibited site is given the
value 0. This use of iocc is in addition to its use in storing occupied cluster
sites as well.

The program begins with a single occupied site in the middle of the
second row of the lattice, site # 60 as specified in the data statement (line
2). Beginning with this site, we add to it iv(i), with i incrementing sequen-
tially between 1 and 4 to locate a nearest-neighbor site. More generally, the
program finds the nearest neighbors of the current root, ip(j), in an
(n - 1)-site cluster (line 5). The new location, inow, will become the next
site in the cluster if three conditions are satisfied. These conditions are
tested by the statement in line 6, where the program tests whether inow is
available for occupancy by a new cluster site. This includes the possibilities

312 Redner

that inow is already occupied by (i) an earlier cluster site, (ii) by an already
prohibited site, or (iii) the location of the current site is "earlier" than the
origin (site #60). The current site must be "later" than the origin so that
the same cluster is not generated more than once with only the overall
order of the cluster labeling reversed. The last test is most conveniently
performed by initializing iocc(i) to 1 for all i between 1 and 60, thereby
making these "earlier" sites unavailable for becoming cluster sites.

If inow successfully passes these checks, then a valid additional cluster
site has been found. Control is transferred to line 9 where the value inow is
stored in ip(n), numb(n) is incremented, and iocc(inow) is set equal to 1.
The last statement means that inow becomes part of the cluster, and that its
location is no longer available for occupation by later cluster sites. This is
the appropriate stage (after line 12) where one may measure the cluster
perimeter, radius, or other configurational properties of interest. For these
measurements, it may be desirable to differentiate between cluster sites and
prohibited sites in the array iocc. This may be accounted for by adding the
two statements indicated in the program. With these additions, the loca-
tions of cluster sites are given the value 1 in iocc, while the locations of
prohibited sites are given the value 2.

If n is less than nmax, the order j of the root site to which inow is
attached is also stored (line 14), n is incremented, and the program then
attempts to add another site to the cluster. To do this, the program goes to
line 19 and checks whether the four possible nearest neighbors of the
current root site have been utilized previously. If this is the case, then it is
no longer possible to attach an additional site to the current root. There-
fore, a new root is chosen, by incrementing the site label for the root by 1
(line 20), and the program will attempt to add sites to the updated root.

If n has reached nmax, then it is necessary to add the location of the
last cluster site to the list of prohibited sites of order n (lines 17 and 18).
Since a prohibited site is created where the cluster site was removed, this
particular location is still not available for later occupancy by other cluster
sites. We can account for this fact most simply by doing nothing. In this
way, the locations of occupied cluster sites and prohibited sites may be
stored simultaneously in iocc. At this stage, the program has reached line 19
where it proceeds as described above.

On the other hand, it may occur that inow is not a valid additional
cluster site according to the test in line 6. If this happens, control is
transferred to line 20 where a new root is chosen so that cluster building
may begin once again on this new root. However, if all cluster sites have
been used as roots, it is then necessary to implement the "backtracking"
procedure which performs the intermittent prohibition of certain lattice
sites necessary to ensure the unique cluster labeling. All prohibited sites of

A FORTRAN Program for Cluster Enumeration 313

order n are freed for possible later occupancy by additional cluster sites in
lines 23-27. The cluster site of order n - 1 should also be removed and a
prohibited site of order n - 1 should be created. As explained above, this
latter task is accomplished by doing nothing in the array iocc. However, it
is necessary to store the prohibited site of order n - 1 in j p (lines 29 and
30). Finally, the root of the last site in the cluster is identified (line 31) and
cluster building begins once again on this root.

When the backtracking procedure reaches the first site of the cluster,
then all possibilities for root and cluster sites have been exhausted (line 22).
At this point, the program is finished and the results are printed.

The program can be run as displayed using a standard FORTRAN
compiler on the IBM 370/168 machine at Boston University with the VPS
operating system. W i t h this compiler all array and variable space is
initialized to zero automatically. However, the program runs considerably
faster using a FORTRAN extended optimizing compiler, in which case it is
necessary for the user to initialize the arrays properly at the outset of the
program. This may be accomplished by zeroing all but the first 60 elements
of iocc, and all but the first elements of ip and numb. With the extended
compiler, the program requires approximately 11.1, 40.4, 155.3, and 587.0
sec of cpu time to enumerate all clusters of up to size 12, 13, 14, and 15,
respectively. This represents a cluster counting rate of approximately 63,000
per second. This counting rate may not be the best possible, but it is
sufficient to obtain series of meaningful length for a wide variety of
problems.

A C K N O W L E D G M E N T S

This paper would not have been written were it not for the friendly
persuasion of D. Stauffer. I am grateful to him for many constructive
suggestions on both the computer program and the manuscript itself. I also
thank H. E. Stanley for a critical reading of the manuscript and pertinent
suggestions, and J. A. M. S. Duarte and J. Rogiers for helpful correspon-
dence.

APPENDIX: COMPUTER PROGRAM FOR CLUSTER ENUMERATION

The two lines indicated as insertions are needed if it is desired to
distinguish between cluster sites and prohibited sites (see text). The output
of this program is the number of connected n-site clusters on the square
lattice with 1 < n < nmax. (These are given to order 19 in Table I of Ref.
4.) For completeness, these terms are: 1, 2, 6, 19, 63, 216, 760, 2725, 9910,

314 Redner

36446, 135268, 505861, 1903890, 7204874, 27394666, 104592937,
400795844, 1540820542, and 5940738676.

dimension iv(4), ip (20), jpt(20), np(20), jp (20, 20),iocc(840),
numb(20)
data nmax, numb(l), j , n, ip (1), iv, iocc/11, 1, 1,2, 60, - 1,40, 1,

1

2
- 40, 60* 1 /

3 l O k = l
4 1 do 2 i = k,4
5 inow = ip(j)+ iv(i)
6 if (ioee(inow).eq.O) go to 3
7 2 continue
8 go to 4
9 3 ip(n)-- inow

10 k = i + l
11 numb(n) = numb(n) + 1
12 iocc(inow) = 1
13 if (n.eq.nmax) go to 6
14 jpt(n) = j
15 n = n + l
16 go to 5
17 6 np(n) = np(n) + 1
18 jp(np(n),n) = inow
19 5 if (k.lt.5) go to 1
20 4 j = j + l
21 if (j.lt.n) go to 10
22 if (n.eq.2) go to 9
23 nx = np(n)
24 if (nx.eq.O) go to 7
25 np(n) = 0
26 do 8 m = l ,nx
27 8 iocc(jp(m, n)) = 0
28 7 n = n - 1
29 np(n) = np(n) + 1
30 jp(np(n), n) = ip(n)
31 j =jpt(n)
32 go to 10
33 9 write (6, 100) (numb(m),m = 1,nmax)
34 100 format (6i12)
35 stop
36 end

< iocc(inow) = 2

< iocc(ip(n)) = 2

A FORTRAN Program for Cluster Enumeration 315

R E F E R E N C E S

1. For extensive references on these fields, see e.g., D. Stauffer, Phys. Rep. 54:1 (1979); J. W.
Essam, Rep. Prog. Phys. 43:833 (1980).

2. See, e.g., F. Harary, in Graph Theory and Theoretical Physics, F. Harary, ed., Academic
Press, London (1967), pp. 1-41; D. A. Klarner, Can. J. Math. 19:851 (1967).

3. C. Domb, Philos. Mag. Suppl. 9:301 (1960).
4. M. F. Sykes and M. Glen, J. Phys. A: Gen. Phys. 9:87 (1976).
5. M. F. Sykes, D. S. Gaunt, and M. Glen, J. Phys. A : Gen. Phys. 9:1705 (1976).
6. D. S. Gaunt and H. Ruskin, J. Phys. A : Gen. Phys. 11:1369 (1978)~
7. H. P. Peters, D. Stauffer, H. P. H/Jlters, and K. Loewenich, Z. Phys. B 34:399 (1979).
8. J. A. M. S. Duarte and H. Ruskin, Physica 111A:423 (1982).
9. J. L. Martin, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S.

Green, eds., Academic Press, New York (1972), p. 97.

