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We employ scaling arguments and numerical simulations to investigate the kinetics of general
classes of coagulation processes. Within the rate-equation, or mean-field, approximation, a scaling
form for the cluster density is used to predict the asymptotic kinetic behavior for the “product,”
“sum,” and “Brownian” kernels. These predictions are tested by simulations of the particle coales-
cence model, a model which corresponds exactly to the rate-equation description of coagulation.
Our numerical results indicate the presence of an intermediate-time regime of behavior in coagula-
tion kinetics, which is characterized by effective exponents whose values are consistent with scaling.
This new and unexpected regime persists for an extracrdinarily long time before a crossover to
asymptotic behavior sets in. Furthermore, for the sum kernel, our numerical estimates for the ex-
ponents which describe the asymptotic kinetic behavior are in disagreement with current theoretical

FEBRUARY 1986

predictions. Finally, new fluctuation-controlled kinetic behavior below an upper critical dimension

equal to 2 is also reported.

I. INTRODUCTION

The phenomenon of coagulation, or aggregation, is the
basis for a wide variety of kinetic behavior in.diverse
physical systems, including basic and applied problems
such as colloidal and aerosol physics,? polymer phys-
ics,>* studies of antibody-antigen reactions,’ galactic clus-
ter formation,7 and gelation phenomena.®~!! Coagula-
tion processes can generally be written in terms of the fol-
lowing reaction scheme:

K(,j)

Ai +A j—> A,‘ +j -
Here A; denotes a cluster of mass i, and when two clus-
ters of mass { and j meet, they react irreversibly to form a
cluster of mass i +j at a rate governed by the rate con-
stant K (i,j). This matrix of rate constants, the reaction
matrix, or kernel, embodies the microscopic details of the
collision process between two clusters, such as the mass
dependence of the collision cross section and the mass
dependence of the cluster mobility. In this description of
coagulation, the assumption of binary collisions only has
been made; this should be a good approximation if the
cluster density is small.

The crucial difference between the various physical
realizations of aggregation phenomena lies in the func-
tional dependence of the rate constants on the masses of
the two incident clusters, i.e., on i and j. This functional
dependence of the reaction matrix must usually be derived
from a microscopic theory describing the actual system
under investigation. Once this functional form is speci-
fied, the reaction kinetics can then be treated systematical-
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ly by studying the Smoluchowski rate equations corre-
sponding to the system. These equations represent an ap-
proximation in the spirit of mean-field theory as spatial
fluctuations in density are neglected. Therefore, the Smo-
luchowski equations should provide a valid description of
the kinetic behavior, except in low-dimensional systems,
where fluctuations effects can be relatively important.

The purpose of this paper is the following. First, in
Sec. II, we describe the rate-equation approach to coagula-
tion®~!? and sketch some basic predictions obtained by as-
suming a scaling form for the cluster size distribution.
Second, we apply the insights gained from this scaling
analysis to three important examples of coagulation which
are defined by specific forms of the reaction kernel.
These examples are the “product” kernel, K (i,j)~(ij)%;
the “sum” kernel, K (i,j)~i?+j% and the “Brownian”
kernel, K(i,j)~[R(@-+R()NI*~D()+D(j)], where
R (i) is the radius and D (i) is the diffusion constant of a
cluster of mass i. The predictions of the scaling theory
applied to these kernels will then be tested by numerical
simulation approaches in Secs. III and IV,

The bulk of our simulations are based on an idealized
model which provides a simple picture for coagulation,
the particle coalescence model (PCM).2° This thodel has
the important feature that an exact correspondence with a
specific system of rate equations, defined by the function-
al form of the reaction kernel, can be made. This
equivalence stems from the fact that the rate constants of
the PCM can be easily adjusted to take on an arbitrary
functional form.
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In Sec. III we describe methods by which this PCM
may be simulated and also discuss a complementary
method, that of numerical integration of the rate equa-
tions. Our primary results are then presented in Sec. IV.
For the sum and product kernels, our simulations indicate
the presence of an unexpected and long-lived
intermediate-time regime, in which scaling is apparently
satisfied before a crossover to the asymptotic behavior sets
in. These interesting crossover effects stem from the very
different reaction rates between large clusters with other
large clusters, and large clusters with small clusters.
However, a full quantitative understanding of the cross-
over is still lacking. Owing to the surprising results stem-
ming from these simulations, direct numerical integration
of the Smoluchowski equations are also performed to
serve as a check of the results. Through the use of some
computational shortcuts, we are able to integrate the
equations to rather long times and thereby support the re-
sults from the PCM simulations. For the Brownian ker-
nel, we present results which indicate that the kinetic
behavior is quite different than that arising from coagula-
tion with a constant reaction kernel. The kinetic
behaviors arising from the two kernels are quite close at
short times, but then substantial differences develop at
long times.

In Sec. V we perform simulations of the PCM for low-

" dimensional systems to determine that the upper critical
dimension for a wide variety of coagulation phenomena is
equal to 2. It should be emphasized that this upper criti-
cal dimension refers to the relevance of spatial fluctua-
tions in the cluster densities when the clusters are taken to
be pointlike. This critical dimension does not take-into
account any effects due to the internal geometry of the
clusters. Above the upper critical dimension, the rate
equations provide an accurate description of coagulation
kinetics in the PCM, but in the opposite case, fluctuations
in the spatial densities of the reactants give rise to new ki-
netic behaviors. These new behaviors are readily observ-
able in our simulations, and heuristic arguments are given
which yield the observed exponents in the product and
sum kernels. Finally, our conclusions are presented in
Sec. V1. '

II. RATE-EQUATIONS APPROACH

A. The kinetic equation

The mean-field theory of aggregation describes the sys-
tem in terms of a time-dependent cluster-size distribution,
{cr(t)}F—1, where cz(2) is the concentration of clusters of
mass k at time z. This description neglects from the
outset at least two significant facts: (a) the existence of
geometrically different structures for clusters of the same
size, and (b) the existence of spatial fluctuations. The
former assumption means that a single rate constant is
used to describe all possible collision processes between i-
mers and j-mers. Neglecting the internal cluster geometry
can be justified in several ways: If the clusters are fluid
droplets, they will always relax after coalescence to a
spherical shape. Alternatively, one can arrive at a single
rate constant K (i,j) by averaging over all possible geome-

trical realizations of clusters of mass i and j. While this
is hard to justify, it does not seem to be an unreasonable
assumption. On the other hand, spatial fluctuations al-
ways exist, and with the PCM we can allow for such fluc-
tuations naturally and learn when their influence dom-
inates the long-time kinetics.

Under the two basic assumptions (a) and (b), the rate
equations are

k—1
ék(t)=% E K(j,k —j)Cj(I)Ck_j(l)
j=1

—e(® S K (ke (), m
j=1

where the overdot denotes the time derivative. The first
term represents the gain of k-clusters owing to the pair-
wise coalescence of two clusters whose masses add up to
k, and the second term represents the loss of k-clusters
owing to the coalescence of k-clusters with other clusters.

These equations have been extensively studied, and a
relatively large amount of information about the nature of
the solutions is known,®~ ! including some exact results
for specific forms of the reaction kernel, and more exten-
sive approximate large-time solutions for rather general
forms of the reaction kernel. For the purposes of this pa-
per, it will be sufficient to review briefly some of the re-
sults from an approximate analysis.

B. Scaling theory and definitions of kinetic exponents

21-23 8—11

Experiments, exact solutions, and plausible
physical arguments’?* all indicate that for large times the
solutions to Eq. (1) can be cast into a scaling form,

cr(t)~k ~O(k /s (1)), (2)

where s(#) is some measure of a characteristic cluster
mass. This measure is often taken to be the weight aver-
age

zkzck(t)
2 ke (1) |

From mass conservation, > 2_, kcx(t)=const, one im-

s(t)= (3)

mediately obtains =2,

To obtain reasonably complete information about the
cluster size distribution, the behavior of s(¢) for large
times and the behavior of ¢(x) for both small and large
values of its argument are required. This last piece of in-
formation turns out to be irrelevant, however, since there
are virtually no clusters of size k >>s(¢). To describe the
behavior of s(¢) and of ¢(x) for small x, we define two
basic exponents, w and z, as follows:

s(t)~t* (t—cw),
(4)
Hx)~xP% (x «<1).

Substituting in Eq. (2) yields
)~k [1k <«s(t), t—>w], (5)

where
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2—7iz=w. (6)

Thus w describes the time dependence of the decay of
k-mer density, and 7 describes the mass dependence of the
cluster-mass distribution at fixed time. Finally, a basic
exponent @ can be defined which describes the time
dependence of the total number of clusters,

S et~ )
k=1

Substituting the scaling form Eq. (5), into Eq. (7), and us-
ing the scaling relation (6), we obtain the exponent rela-
tions a=z (r<1) and a=w (r>1).%*

To evaluate w and z requires a knowledge of the reac-
tion kernel. For this purpose, we shall consider only ker-
nels which are homogeneous in form; this encompasses
essentially all physically relevant situations.. Three in-
dices, A, v, and u, may then be introduced to describe the
general dependence of the reaction matrix on its two argu-
ments and classify the resulting kinetic behavior.!® The
homogeneity index of the kernel is defined by

K (ai,aj) ~a*K (i,j) , (8a)
while an index v may be defined by
K(1,j)~j* (8b)

and an index p may be defined by u=A—v. For u>0,

reactions between the largest clusters predominate over all '

other types of reactions, while for i <0, reactions between
large-small predominate, and these distinctions give rise
to two general classes of behavior.!” The case p=0 is

marginal, characterized by a balance between the influ-

ence of these two types of reactions.

To compute the basic kinetic exponents, we first consid-
er the time dependence of the mass of the typical size
cluster. The dominant contribution to this increase arises
from aggregates of the typical size reacting with each oth-
er. In the spirit of this approximation, the sums appear-
ing in the rate equation for the typical size cluster can be
reduced to a single term involving the reaction of two
clusters of half the typical size. Taking the second mo-
ment of the resulting equation, one immediately finds

ds
dt

leading to the well-known result (see, e.g., Refs. 14 and
17)

z={1—A)"". (10)

To evaluate w, we consider the rate equation for ¢(#)

~K (s,8)~s*, 9

G B=—cy(0 3 KL,

j=1
~—ci(t) S %0
J=1

~—eys® [ O xv0dx . Can
—1

The integral is then either a constant or it is dominated by

a divergence at the lower limit. Let us first con51der the

former case. It then follows that
4;1(t)~—c (£)y—1/A=A) i (12)

Solving for c,(¢) and matching it to the scalmg form (2),
we deduce that the scaling function must vary as

dlx)~exp(—x*) (x «<1). (13)

That is, the scaling function at small x does not vanish as
a power law, as postulated in Eq. (4), but instead vanishes
quasiexponentially. This is possible only for y <0, a con-
dition which is then consistent with the assumed conver-
gence of the integral in Eq. (11). Thus in the case where
small-large reactions are most favored, clusters decay ac-
cording to a quasiexponential law, and w is not defined.

Now consider the opposite casé, u >0, where the in-
tegral diverges at the lower limit. Thus in evaluating the
discrete sum in Eq. (11), it is sufficient to keep only the
first term. That is

S K(Lj)ej(t)=cy(t), (14)
j=1

and llénce, using Eq. (11),

ci(t)~1/t, (15)
which implies, by Eq. (6),
w=1, r=1+A. . (16)

An important borderline case arises when p1=0. In this
situation, the kinetic behavior appears to depend strongly
on the detailed form of the reaction kernel, and relatively
little about the general behavior is known.

In the following sections, we shall discuss an example
of each of the above three general cases.

(1) p>0. An important example of this class of reac-
tion kernels is the product kernel, K (i,j) ~i®j®. This ker-
nel has been uséd to describe, for example, branched poly-

'merization.~!! In such a process, the number of reactive

end groups of a branched polymer can increase as a power
of the cluster mass. Therefore, the reaction rate between
two branched polymers can be modeled by the product
kernel. This kernel gives rise to a gelation transition in a
finite time for w>—;~, but we shall focus here on the
nongelling case, 0 <w < %

(2) p=0. The example we study here is the sum kernel,
K(i,j)~i®+j®. This kernel can be used to describe
coagulation of Brownian clusters in three dimensions, if
the diffusion constants do not depend on the cluster size
(see below). No rigorous results are known for the ex-
ponents of this model, except for bounds on 7.2 From
the bound 7>1, one has an additional result, w <z.
Analytical results!*!? for this kernel are either in
disagreement with this rigorous bound or in disagreement
with our simulations. This situation points to the
subtleties associated with the behavior of a reaction kernel
with a characteristic index p=:0.

(3) £ <0. A kernel of this class is the Browman kernel
which is used to describe realistically the detailed collision
processes between growing spherical clusters which move
by diffusive motion. There exist two competing physical
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effects which enter into this reaction kernel. First, more
massive clusters will diffuse more slowly, thereby decreas-
ing the rate at which such clusters encounter other clus-
ters. On the other hand, heavier clusters present a larger
collision cross section, thereby increasing the reaction
rate. These two effects are accounted for by the Brownian
kernel,

K(i,))~[R(D+RHIP D) +D()],

where R (i) and D (i) are the radius and diffusion coeffi-
cient of a cluster of mass i, respectively. The first factor
represents the diffusive flux of a point particle onto a
sphere of radius R (i)+R(j). This gives the dependence
of the geometrical collision cross section on the cluster ra-
dius, under the assumption of spherical clusters. The
second factor is the relative diffusivity of two clusters.

For spherical clusters in three dimensions, we have
R(i)~i73, while D(i) is proportional to the inverse hy-
drodynamic radius, a quantity which varies as i3
With these identifications, the Brownian kernel can be
simplified to

K ()~ (i1 4314 =17

=24 /PG /3
Thus for this kernel, A=0, while v=+, leading to
p=—+. Notice also that in a three-dimensional system,

if the diffusion constants do not depend on cluster mass,
the sum kernel is recovered.

II. NUMERICAL METHODS

A. Particle coalescence model (PCM)

In order to present our numerical results, we first dis- ’

cuss the important new features of our models and simu-
lations that render this investigation practical. First, we
employ the recently-introduced particle coalescence model
for performing most of our simulations. This simple
model describes an idealized coagulation process in which
clusters are defined to be single lattice sites.’ When two
clusters of mass i and j meet, they coalesce into a heavier
single-site cluster of mass i +j at a rate proportional to
the reaction kernel, K(i,j). Because there is no cluster
geometry, and because we are free to choose the rules for
cluster motion, it is possible to specify the reaction matrix
in our model exactly, and thereby make a precise
correspondence with a coagulation process described by a
system of rate equations.
The spirit of the PCM model is to describe physical
_ coagulation processes entirely through the functional
form of the reaction kernel. Instead of attempting to
model faithfully the complicated geometrical effects of
aggregating clusters, and then deducing K (i,f), the PCM
models K (i,j) directly by algebraic means and neglects
the geometry. Thus if a microscopic theory can provide
the correct form of K (i,j), then simulations of the PCM
model can be used to extract the kinetic behavior. By this
approach, we can treat reaction kernels of arbitrary func-
tional form straightforwardly. ,
This purely kinetic viewpoint of coagulation should be

contrasted with the cluster-cluster aggregation
model.2#?6—30 Although this model provides a reasonable
geometrical representation of real coagulation process-
es,2527 the determination of the reaction kernel for a par-
ticular system and the correspondence with the rate-
equation approach is a formidable task.’® In addition,
since the geometrical structure of the aggregates is fixed
by the imposed model, one does not have the same free-
dom to choose the reaction kernel as in the PCM. The
cluster-cluster aggregation model also assumes that clus-
ters are perfectly rigid and that they do not rotate, as-
sumptions which may not be entirely justified. Attempts
to improve on these limitations are quite involved compu-
tationally.>"3? Finally, due to the aforementioned com-
plexities of the cluster-cluster aggregation model, typical
simulation results for the kinetics?*>** of this model are
several orders of magnitude smaller in scope (both in
number of clusters and in number of time steps) than
those of the PCM for the same investment of computer
time.

B. Simulations of the PCM

We now describe some of the details of the simulation
procedure for the PCM. Our primary interest is to
develop a method that properly represents the mean-field
limit, so that the predictions of the rate equations can be
tested numerically. A secondary goal is to simulate
coagulation in low-dimensional systems (below the upper
critical dimension) in order to investigate the effects of
spatial fluctuations.

To simulate the kinetics according to the rate equations,
we require that the density of clusters is spatially wuni-
form, and that the relative rate of reaction of an i-mer
with a j-mer is strictly proportional to K (i,j). Spatial un-
iformity is most conveniently achieved by allowing clus-
ters to hop to any site of the lattice with the same proba-
bility.*® This equivalent-neighbor hopping rule corre-
sponds to an infinite cluster mobility (on an infinite lat-
tice), and it ensures that mixing effects are as strong as
possible, thereby reducing spatial fluctuation effects. An
important computational simplification results from
equivalent-neighbor hopping because the lattice structure
on which the hopping is taking place becomes irrelevant.
For simplicity, we have, therefore, performed most of our
simulations on a one-dimensional chain.

The effect of the reaction kernel can be most easily ac-
counted for by assigning a sticking probability equal to
C K (i,j) when a cluster of mass 7 meets a cluster of mass
j. For kernels with a negative homogeneity index, the
constant C may be set equal to unity. However, for
positive-homogeneity-index kernels, C must be chosen to
be sufficiently small so that the product C K (i,j) remains
less than unity during the course of a simulation. The
small value of the constant C may be thought of as setting
a rather short microscopic time scale.

The primary limiting factor in many of our simulations
is the condition that C must be set extremely small in or-
der for the coagulation process to reach large cluster sizes.
An alternative approach is to assign a sticking probability
C(t)K (i,j), where C(t) is a predetermined monotonically
decreasing function of time, chosen so that the sticking
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probability remains less than unity throughout the reac-
tion process. This choice for the sticking probability has
the advantage of being somewhat more efficient in com-
puter time use, since C(¢) can be set fairly close to unity
at the initial stages of the reaction. On the other hand,
the savings in computer time do not justify the somewhat
larger uncertainties that accompany the data obtained in
this manner, and we have, therefore, adopted the choice of
a sticking probability equal to a small constant amplitude
multiplying K (i, /).

With these two rules for cluster mobility and sticking,
the detailed simulation procedure is as follows. Initially a
given number of monomers are randomly placed on a
one-dimensional chain. Then, one by one, a move to an
arbitrary lattice site is attempted for each cluster. If this
newly chosen site was previously unoccupied, the move is
allowed. If the new site was already occupied, a coales-
cence is defined to occur with probability CK(i,j). If
coalescence does not occur, the original cluster is returned
to its starting position. This rule is simpler to implement
technically than the physically-reasonable alternative of
allowing multiple occupancy of sites by unreacted clus-
ters. At large times, or equivalently in the low-density
limit, these two alternatives should give the same qualita-
tive results. When all the clusters in the lattice have been
moved as just described, the time is increased by one unit,
and a new scan through the list of clusters is started.

Superficially, the above method closely resembles the
procedure of choosing two clusters at random from a
large list of clusters, allowing them to react with probabil-
ity CK(i,j), and returning the reaction product(s) to the
list. Based on this general procedure, a simplified version
of cluster-cluster aggregation simulations has been
developed.®* While this method satisfies the basic physi-
cal criteria of a mean-field approach, and is also slightly
simpler in principle than the PCM, it possesses the draw-
back that a connection between physical time and the time
steps in the simulation cannot be made. Such a connec-
tion requires that the cluster density be defined, so that an
overall reaction rate can be deduced.

Finally, to investigate the effects of fluctuations in
low-dimensional systems, we merely replace the
equivalent-neighbor hopping rule with nearest-neighbor
hopping. In high dimensions, the kinetic behavior result-

ing from nearest- and equivalent-neighbor hopping are

identical, indicating that fluctuations arising from the dif-
fusive motion of clusters are irrelevant. In lower dimen-
sions, the results from the two hopping rules differ, there-
by permitting the investigation of fluctuation-controlled
kinetics and the identification of the upper critical dimen-
sion.

C. Numerical integration of the rate equations

To help check the validity of simulations of the PCM
as a description of the rate equations, we have also per-
formed numerical integrations of the rate equations.
Since our primary goal is the extraction of reliable ex-
ponent values, and not the accurate evaluation of detailed
quantities, we have adapted the standard approach by in-
tegrating over very long time intervals for very large sys-
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tems of equations. By this approach, numerical accuracy
has been largely sacrificed, but on the grounds of ‘univer-
sality, the exponents characterizing the asymptotic
behavior should not be affected in any fundamental way.

To integrate the rate equations, the time is discretized
and a cutoff on the number of equations is imposed in or-
der to make the integration numerically tractable. Thus,
we replace the rate equations (1) with

k—1
alt+h)=ci(D+h |5 3, K,k —er(tde;_i(0)
j=1

N
— () 3, K(j,k)e(t)
j=1

(I<k<N)y, a7

where N is the cutoff on the total number of equations to
be integrated. As long as the c¢;(¢) remain positive, these
quantities also remain bounded, since it is straightforward
to show that '

N N
2 Jeit+h) < F, jese) . (18)
j=1 j=1

The inequality is due to the production of clusters of
masses greater than the cutoff NV, which is considered as
“loss” of mass in the system. The use of this cutoff,
therefore, has the disadvantage of violating mass conser-
vation. This is offset, however, by the fact that no ma-
terial can accumulate in sizes on the order of N. That is,
the cluster-mass distribution behaves smoothly just below
the cutoff. On the other hand, if one were to strictly en-
force mass conservation by the use of a cutoff in the rate
equation of the form

k—1
=7 3 K(ik —jj(t)ck _;(2)
j=1
N—k
—ce(t) 3, K(jk)ej(2), (19)

then asymptotically the system would reach a final static,
state in which the remaining clusters of the system would
all have masses within the range N/2 to N. This finite-
size effect makes a mass-conserving cutoff unsuitable for
our purposes of studying asymptotic behavior. Thus, we
use the cutoff implied in Eq. (17), as this produces a small
influence on the kinetics of the concentrations of clusters
with masses much less than N.

To reach both very large times and large system sizes,
two devices must be used. First it is necessary to use a
fast convolution algorithm for the evaluation of the pro-
duction term. Unfortunately, this leads to the possibility
of small negative contributions to some of the cluster con-
centrations due to round-off errors. This is an early-time
effect, however, and it eventually disappears. Second, we
adopt the viewpoint that the only really important issue is
the stability of the recursion, Eq. (17), where stability
means boundedness of the ci()’s. We have seen, howev- |
er, that this is ensured if the c(#)’s are positive. This
latter constraint can be satisfied as long as % is chosen at
each time step to be
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-1

. v
hit)<a 1$a§Nj§1KU’k)C"(t) , (20)

with a <1. In practice, we chose a between 45 and 7.
With this general procedure, arbitrarily large times can be
reached. Due to the cutoff, however, data for times such
that the typical cluster size is larger than the cutoff are
essentially worthless. To ascertain where this occurs, we
monitor the total mass, >, kck(t), and discard data when
this quantity is less than 5. With these methods, it is not
hard to integrate Eqs. (17) with N =26 to ~5x 10° time
units, and beyond, if necessary.

To compare this performance with that of simulations
on the PCM, we note that in the PCM, we have typically
chosen the initial number of monomers to be of the order
of several times 10°. Thus, in principle, the PCM simula-
tions correspond to integrating this number of equations.
In addition, the simulations extend to between 10°-—-10°
time steps. However, this must be rescaled by the con-
stant C in the sticking probability in order to obtain a
“physical” time, a quantity which is directly proportional
to the time units used in the numerical integration of the
rate equations. Since C is generally quite small, the larg-
est time reached in the simulations is of the order of 500
physical time units. The CPU time required for such a
simulation is longer than that needed for numerical in-
tegration of 2!¢ equations. However, simulations of the
PCM manifestly conserve mass and also provide informa-
tion not available from numerical integration, namely in-
formation about large-size clusters.

IV. SIMULATION RESULTS
IN THE MEAN-FIELD LIMIT

A. Product kernel (u > 0)

In order to obtain significant simulation results of
equivalent-neighbor hopping in the PCM, it is necessary
to choose the constant C in the sticking probability in an
optimal way. If C is chosen to be too small, an initial re-
gime of essentially no reaction persists for a relatively
long time, and considerable CPU time is wasted. On the
other hand, if C is chosen to be larger, then less CPU time
is required, but the simulation may have to be terminated
before asymptotic behavior sets in because the sticking
probability becomes greater than unity. As a typical ex-
ample, we found that the choice C=0.0035 for =0.25
was close to optimal for a linear chain of 10° sites and an
initial monomer density of 0.3.

In Fig. 1(a), we plot the time dependence of the total
number of clusters, and of ci(¢) for several values of k.
Three general regimes of behavior are observed: First
there is the previously mentioned short-time regime where
essentially no reaction occurs, due to the extremely small
sticking probability of light clusters. Then there follows
an intermediate-time regime in which a substantial
amount of reaction is occurring. In this regime, which
persists for approximately one decade in time, the kinetic
exponents «, w, z, and 7 can be estimated reasonably well
(Table I). Quite strikingly, these estimates disagree with
the established asymptotic values of the exponents in Eq.
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FIG. 1. Typical simulation results for the product kernel,
K (i,j)=Ci®j®, simulated by coalescing particles which execute
equivalent-neighbor hopping. (a) The dependence of the reac-
tion on the number of time steps in the simulation is illustrated.
The number of time steps is related to a physical time by the
small multiplicative factor C (see text). Shown are the results
from averaging 10 configurations of a linear chain of 10° sites
with an initial state of 3X10° monomers, for w=0.25 and
C=0.0035. The symbols refer to the following: ®, the total
number of clusters; X, number of monomers; A, number of di-
mers; [, number of 4-mers. These data are plotted versus the
number of time steps on a double logarithmic scale. Notice the
crossover from an intermediate-time decay to the asymptotic
1/t decay, which is most readily apparent in the behavior of the
number of monomers. (b) Dependence of the cluster-mass dis-
tribution on mass for fixed times based on averaging over 100
configurations for the same initial conditions as in (a). Plotted
is the number of clusters versus mass at 10* time steps (@), at
5 10* steps (X ), and at 10° steps (A). The data at 10* steps in
the mass range 1—30 is linear with a slope of —1.03 as deter-
mined by a least-squares fit. Data for larger masses is excluded
from the fit, due to the effect of the exponential cutoff. At later
times, a similar analysis over the entire range of nonzero data
yields a slope approximately equal to —1.23 at 5X10* time
steps, and a slope of —1.37 at 10° time steps. This behavior is
indicative of an apparent time dependence in the exponent 7. A
number of typical size statistical error bars are shown.
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TABLE 1. Estimated mean-field values of the kinetic exponents for product-kernel coagulation,
K(i,j)~i®j®, with ©=0.25 and 0.40, obtained from simulations of the particle coalescence model. Esti-
mates have been given for both the transient intermediate-time regime and the asymptotic regime, as
discussed in the text. For the purposes of comparison, the accepted analytical expressions for the kinet-

ic exponents are given as well. .

This work
0=0.23 »=0.40
(t<10% (£210% (r<10% (£>10%
Theory* intermediate asymptotic intermediate asymptotic
a 1 14 1.1 1.5 1.2
w 1 1.5 1.0 1.6 1.1
T 142w 0.95 1.4 1.3 1.7
z 1/(1-2w) 1.4 1.9 24 4.0

*See, e.g., Refs. 14 and 25.

(16), but they are internally consistent with the scaling re-
lation Eq. (6). This peculiar result may be of considerable
experimental relevance, as scaling is apparently satisfied
over a reasonable temporal range, but with the “wrong”
exponents.

Finally, after a rather long time, a crossover to a dif-
ferent kinetic behavior occurs. As shown in Fig. 1(a), this
crossover is most readily apparent in the density of the
smallest clusters, as the asymptotic regime for this size
range sets in the soonest. In the asymptotic regime, the
exponents are consistent with scaling, and also in agree-
ment with the asymptotic predictions of Leyvraz.!*

Some insights into the origin of the intermediate-time
regime can be gained by pursuing the most simple-minded
consequences of a scaling form for the cluster density.
Thus we substitute the scaling form, Eq. (2), into the rate
equations, and then investigate the possible kinetic
behaviors by imposing a number of drastic but highly
simplifying assumptions. Since we are interested primari-
ly in the long-time, small-mass limit, the effects of the
finite number of production terms (first factor) in the rate
equation are neglected. This is justified since these terms
make only a negligible contribution at long times com-
pared to the infinite number of loss terms in the rate
equations. In addition, the sums in the rate equations are
replaced by integrals. With these steps, it is relatively
straightforward to verify that three possible generic
classes of behavior are possible which are delineated by
different ranges of values for 7. The origin of these three
classes depends crucially on the value of 7, as this ex-
ponent governs whether various moments of the cluster
size distribution, which eventually enter in the procedure
of substituting the scaling form (2) into (1), converge or
diverge. The three classes of behavior are characterized
by the following sets of kinetic exponents.

a=z=1/(1—w), O0<7<1 (21a)
a=w, z=1/(1—0), l<r<l4w (21b)
a=w=1, 1+o<r. (21e)

To compare these predictions with the simulation results,
note that the intermediate-time estimate of 7 for @=0.25

is less than unity, corresponding to behavior of (21a). Our
simulation results for @ =0.25 are in reasonable agreement
with (21a), and furthermore, the observed exponents are
internally consistent with scaling (Table I). Similarly, for -
»=0.40, the simulation results appear to fall into the gen-
eral class of behavior given in (21b). Once again the data
are in reasonable agreement with (21b), and they are also
internally consistent with scaling. However, the ex-
ponents in (21a) and (21b) are incorrect asymptotically, as
more detailed analyses of the rate equations have demon-
strated.'*! Only in the case where 7> 14w, does the
simple-minded substitution of the scaling form in the rate
equations give the correct asymptotic results.

Thus the gradual crossover appears to originate
mathematically from the fact that the cluster-size ex-
ponent 7 is time dependent. Evidence for this striking
phenomenon can be seen in Fig. 1(b), where we plot c;(¢)
versus k at various times. For relatively short times
(number of steps < 10*), one clearly observes a power-law
decay for small k, with an effective exponent T approxi-
mately equal to 1. For values of k larger than the typical
cluster size, this power-law decay is then sharply cut off
as embodied by the scaling form (2). At larger values of
the time, the power-law regime for ¢, () persists to larger
masses, as expected by scaling. However, quite surpris-
ingly, the slope of the power-law regime is getting gradu-
ally steeper as well.

The physical origin for this crossover seems to stem
from the much larger reaction rate for massive clusters
than for light clusters. In the intermediate-time regime,
enough reaction is occurring so that the cluster-size distri-
bution establishes an apparent power-law decay, but very
large clusters have not yet had time to form. However,
once sufficiently large clusters do form, they will react at
a very high rate. Thus the large-mass portion of the
cluster-size distribution will be quickly depleted, while the
$mall-mass tail will tend to persist. Evidently, the com-
bined effect of these two features is to steepen the cluster-
size distribution, thereby giving rise to the ostensible time
dependent of 7 [Fig. 1(b)].

B. Sum kernel (z=0)

To simulate the sum kernel, K(i,j)~i®+j° we
proceed as in the case of the product kernel and assign a
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sticking probability equal to C(i®+4j*) when two clusters
of mass i and j meet. Upon performing fairly large-scale
simulations based on this approach, a rather disturbing re-
. sult is found. For both ©=0.25 and &=0.40, the cluster-
size exponent T is apparently less than unity (Table II).
However, rigorous bounds?® have recently been derived

which state that 7 must be greater than unity for any posi-
tive value of w. Our conclusion, then, is that the observed
behavior is not the asymptotic one, as in the product ker-
nel, but that the crossover time for the asymptotic
behavior is beyond the range of the simulation.

To understand these disturbing results, we performed
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FIG. 2. Typical results from the sum kernel, K (i,j)~i®+j®, from a numerical integration of the rate equations. Shown are the
results from integrating 65 536 equations for up to 5X 10? time units. These units correspond directly to a physical time. In (a) we
plot the quotients cx(2)/c,() versus k at 50 time units (O ), at 500 time units (®), and at 2000 time units ( + ) in order to show the
slow approach to an “equilibrium” state where the quotients are time independent. The initial slope of the data is approximately
—0.62 at 50 time units, increasing gradually to —0.83 at 2000 time units. Notice also the presence of a slight curvature in the data
for masses less than the cutoff. In (b) we plot ¢;(¢) versus the number of time units to show the evidence for the beginnings of a
crossover only after > 10° time units have elapsed. (c) Finally we plot >k ck(2) versus the number of time units. These data suggest
that a=z=1.33, consistent with both 7 < 1 and with scaling, but these exponents are known to be incorrect asymptotically.
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TABLE II. Estimated mean-field values of the kinetic ex-
ponents for the sum kernel, K (i,j)~i®+j?, for ©=0.25, 0.40,
and 0.75 from simulations of the particle-coalescence model,
and comparison with the theoretical predictions. For @=0.25
and 0.40, the rigorous bound 7> 1 (Ref. 25) is not satisfied and
the quoted exponents are, therefore, not characteristic of asymp-
totic behavior.

This work
Theory® w=0.25 w=0.40 w=0.75
a =w 1.29 1.53 2.5
w <z ) 1.76 1.75 2.5
T >1 ' 0.63 0.84 1.3
z 1/(1—w) 1.32 1.56 33

*See, e.g., Ref. 25.

numerical integration of the rate equations for »=0.25,
for N =65535 equations, going up to t~5X10° time
steps. To present our results, we note that if the asymp-
totic form

) ~k~tY, (22)

valid for t—o and 1<<k <<s(t), is reached, then the
quotients c;(¢)/c(¢) are time independent, at least for
sizes k <<s(t)~t% These quotients are plotted in Fig.
2(a) for a number of different values of k between 1 and
100, and it is readily seen that they settle to an equilibri-
um value only extremely slowly. Furthermore, the value
of 7 characterizing the cluster-mass distribution apparent-
ly varies smoothly from approximately 0.60 to 0.8 as
shown in the figure. The smaller values of 7 found from
the numerical integration also agree with the values ob-
tained in simulations of the PCM in the time range where
the two simulations could be directly compared.

A plot of ¢;(¢) versus time is shown in Fig. 2(b). A
power-law decay of ¢(t) apparently holds over a substan-
tial temporal range, but the decay slows down at longer
times. This slowing down cannot be taken as conclusive
evidence of a crossover, however, since at the time where
the slower decay sets in, finite size effects are quite notice-
able. In particular, for #> 1200 time units, the second
moment decreases with time.

The value of w which can be extracted from this data
(both at intermediate and at long times) are in disagree-
ment with the theoretical predictions of Leyvraz'* and
Botet-Jullien.!” More problematic is that through the
whole range of times investigated, the rigorous relations
7>1, and hence w <z as well as a=w, are all violated.

We do not know of a satisfactory explanation for these

facts.

C. Brownian kernel (g <0)

In the classical treatments of Brownian coagulation, the
mass-dependent terms were neglected,'! so that the ki-
netics is reduced to that of constant-kernel coagulation.
This is a reasonable approximation at the early stages of
the reaction, where large clusters have not yet had time to
form. However, as discussed in Sec. 11, the Brownian ker-
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nel is dominated by large-small reactions, and these be-
come rather important at the later stages of the coagula-
tion process.

To illustrate this crossover, we have simulated Browni-
an kernel coagulation on a one-dimensional chain of
5% 10° sites (Fig. 3). In close analogy with the simula-

~ tions of the product and sum kernels, we must also model

the reaction kernel in terms of a mass-dependent sticking
probability, and use the infinite-mobility hopping rule.
For this purpose, we again multiply the reaction kernel by
a small constant to ensure that the product,

CKG,j)=C[2+G /D P+ /D],

which is the sticking probability in our simulation
method, will always be less than unity. For the simula-
tion results shown, we found that the choice C=0.08 was
close to optimal. We observe that the total number of
clusters decays as 1/t over a very large range in time, a
behavior identical to that of constant-kernel coagulation.
During the initial stages of decay, the individual cluster
populations decrease as 1/t2, as in constant kernel coagu-
lation. However, there is a crossover to a much steeper
decay which appears to be quasiexponential at longer
times. It does not seem possible to compare the data
quantitatively with Eq. (13) unless a considerably larger
system could be simulated so that data could be taken
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FIG. 3. Typical results for the Brownian kernel,
K (i,j)=C[2+(i /))*+(j /D)"/*], from simulations of the parti-
cle coalescence model with equivalent-neighbor hopping. Shown
are the results from a linear chain of 5X 10° sites with an initial
state of 1.5X 10° monomers, and with C=0.08. The data for
the total number of clusters (- ), plotted versus the number of
time steps on a double logarithmic scale, lie approximately on a
straight line of slope —1, indicating that the exponent a=1.
The data for the monomer number (O ) initially appear to be de-
caying as 1/t% but asymptotically the decay is faster than a

power law.
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over a more extensive range in time. Nevertheless, the
available evidence indicates the existence of the expected
CrOSSOVer.

V. SIMULATION RESULTS BELOW
THE UPPER CRITICAL DIMENSION

The results of the previous section have been obtained
on the basis of simulations of models in which density
fluctuations are negligible. However, for low-dimensional
systems, where diffusive transport can be described in
terms of nearest-neighbor or short-distance hopping,‘ spa-
tial fluctuations can occur and dramatically influence the
kinetic behavior. In particular, it has been determined
previously that for constant-kernel coagulation, the upper
critical dimension d, equals two,”® and that logarithmic
corrections to the mean-field behavior can be observed in
two dimensions.

In this section, we study the product and sum kernels in
low dimensions in order to ascertain the upper critical di-
mension for these systems, and to study the kinetics below
this upper critical dimension. To this end, we compare
the dimension-independent (mean-field) simulation results
based on the equivalent-neighbor hopping rule, with the
results based on local hopping rules, for the same reaction
kernel. In three dimensions, we find, for the sum and
product kernels, that the results from the local hopping
rules are essentially identical to those obtained from
equivalent-neighbor hopping. In two dimensions, the re-
sults of the two hopping rules no longer coincide exactly,
but are quite close. This seems to be indicative of a rela-
tively small (possibly logarithmic) difference between the
two sets of results, in analogy with the results from
constant-kernel coagulation.” Finally, in one dimension,
the results of the two hopping rules are completely dif-
ferent. From this general picture, we identify two as the
upper critical dimension for coagulation kinetics when
clusters move by Brownian motion. A more thorough
verification of this assertion could be obtained by per-
forming simulations of coagulation on fractal lattices in
which the fracton dimension is between one and two.

It appears that the underlying physical mechanism for
the upper critical dimension is the transition from re-
currence to transience for random walks, a transition
which occurs in two dimensions. Below two dimensions,
the recurrence of random walks guarantees that clusters
are more likely to collide with near neighbors, rather than
with distant neighbors, and fluctuation effects can become
important. In the opposite case, the transience of the
random-walk motion ensures that a particular cluster has
essentially the same probability of reacting with any other
cluster in the system, i.e., the mean-field limit.

In simulations of the product kernel by the PCM, we
continue to use a mass-dependent sticking probability, but
with nearest-neighbor cluster hopping. In one dimension,
the results suggest that the asymptotic kinetics is indepen-
dent of the value of w, and we estimate a=z =% [Fig.
4(a)]. This behavior is reminiscent of the situation en-
countered in bimolecular decay when recombination
occurs with a very small (constant) reaction probability.*
It was found that the asymptotic kinetics is independent

of the sticking probability when the system is below the
upper critical dimension. Apparently, a similar
phenomenon appears to be occurring in product kernel
coagulation.

To model the sum kernel, we note that it is of the form
[D{iY+D(j)], where D(i)~i® can be thought of
representing a mass-dependent diffusion constant of a
cluster of mass i. There are several ways that such a
mass-dependent diffusion coefficient can be simulated nu-
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FIG. 4. Simulation results below the upper critical dimension
for (a) the product and (b) the sum kernels. Plotted are the total
number of clusters as a function of the number of time steps
based on simulations of particle coalescence on a chain of 10°
sites, in which clusters move by nearest-neighbor hopping. For
the product kernel, the cases w=0.10 (A), 0.25 (®), and 0.50
(X) are shown, in which the multiplicative constant C=0.2,
0.01, and 0.00S, respectively. Asymptotically, all the data lie on
a common straight line of slope ——;—. For the sum kernel, the
cases @=0.25 (®) and 0.75 (X ) are shown, with C=0.15 and
0.02, respectively. The slopes of the straight lines which pass
through the data points at large times are 0.56 and 0.77, respec-
tively. These numbers compare well with our theoretical predic-
tions of 0.571. . . and 0.80, respectively, for these two cases.



33 LONG-TIME CROSSOYER PHENOMENA IN COAGULATION KINETICS

merically. One possibility is to move each cluster i steps

in a random walk, while a second alternative is to allow a
cluster to take a single random step with a probability
proportional to i®. Both approaches give essentially iden-
tical results, thereby providing a useful check of the
methods. Applying these two methods in one dimension,
we find that 7 is negative, leading to a population inver-
sion in the cluster-size distribution as a  function of
mass.?? These results are also quite similar to those found
in constant-kernel coagulation in one dimension.’ The
value of 7 is found to increase as @ increases, reaching the
value 7=0 when w=1. This special case, =1, appears
to display the same behavior as constant-kernel coagula-
tion in the mean-field limit. '

A simple, but very heuristic argument can be given to
predict some of the kinetic exponents of sum-kernel
coagulation below the upper critical dimension. It is
known that for constant-kernel coagulation, > ck(?) is

proportional to (Dt)~%/? for spatial dimension d <d. =2,

where D is the diffusion coefficient. For the sum kernel,
D is now mass dependent, varying as i® for a cluster of
mass i. When a distribution of cluster sizes is present, we,
therefore, write '

Eck(t)7(<D>t)—d/2~( (kw>t)—d/2~(ta)z+1)—d/2 .
k

From the definition of «, and the scaling relation a=z
for 7< 1 (as observed in our simulations), we have z =(wz
+1)d /2. This leads ultimately to a=z =d /(2 —wd), in
excellent agreement with our numerical data [Fig. 4(b)].

VI. CONCLUSIONS

In summary, we have found that the kinetic behavior of
a variety of aggregation phenomena are not simply
described by the asymptotic solutions of the Smolu-
chowski rate equations. These findings are primarily
based on numerical simulations of the particle coalescence
model, an idealized model which, above an upper critical
dimension equal to 2, corresponds exactly to the Smolu-
chowski rate equations. This upper critical dimension sig-
nals the regime where fluctuations in the spatial density of
the clusters may be neglected.
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In the particle coalescence model, the essential kinetic

-aspects of coagulation are described in terms of the densi-

ty of pointlike clusters, while complicated geometrical ef-
fects, such as the influence of cluster structure on the re-
action rate, are simply absorbed into the functional form
of the reaction kernel. Since the rate constants can be
chosen to have an arbitrary functional form, and through
the equivalence between the model and the rate equations,
we are in a position to study a wide variety of coagulation

phenomena over the entire temporal range.

For both the product and sum kernels, a new
intermediate-time regime, with effective exponents con-
sistent with scaling, is observed. For the product kernel,
there is an eventual crossover at long times to a distinct
asymptotic behavior, which is in agreement with theoreti-
cal predictions based on solutions to the Smoluchowski
equations. In the case of the sum kernel, the predicted
crossover to asymptotic behavior occurs beyond the range
accessible by simulations of the particle coalescence
model, and also by numerical integration of the rate equa-
tions. With the latter method, we do find that the scaling
form for the cluster-size distribution sets in only extreme-
ly slowly. This points to the fact that the kinetics of
sum-kernel coagulation is quite subtle. For the Brownian
kernel, we have seen that the kinetic behavior is very close
to that of constant-kernel coagulation at short times.
However, at larger times, reactions of small clusters with
large clusters predominate, and ci(¢) decays at a more ra-
pid quasiexponential rate, rather than as 1/t2 as in the
constant-kernel case.

Our simulation results may be of experimental
relevance,! =23 as it appears that the true asymptotic
behavior to the Smoluchowski equations may not be ob-
served until very long times have elapsed, a time regime
which may be beyond the range of typical experimental
probes. The detailed understanding of this long-time
crossover effect remains an interesting open question.

ACKNOWLEDGMENT

The Center for Polymer Studies is supported in part by
grants from the U.S. Army Research Office, NSF, and
U.S. Office of Naval Research.

*Deceased.

1S, K. Friedlander, Smoke, Dust and Haze: Fundamentals of
Aerosol Behavior (Wiley, New York, 1977); S. K. Friedlander
and C. S. Wang, J. Colloid Interface Sci. 22, 126 (1966).

2R. L. Drake, in Topics in Current Aerosol Research, edited by
G. M. Hidy and J. R. Brock (Pergamon, New York, 1972),
Vol. 3, Part 2.

3P. 1. Flory, Principles of Polymer Chemistry (Cornell University
Press, Ithaca, New York, 1977), pp. 317—398.

4W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

5F. W. Wiegel and A. S. Perelson, J. Stat. Phys. 29, 813 (1982);
A. S. Perelson and R. W. Samsel, in Kinetics of Aggregation
and Gelation, edited by F. Family and D. P. Landau (North-
Holland, Amsterdam, 1984).

6G. B. Field and W. C. Saslaw, Astrophys. J. 142, 568 (1965).

7J. Silk and S. D. White, Astrophys. J. 223, L59 (1978).

8F. Leyvraz and H. R. Tschudi, J. Phys. A 14, 3389 (1981).

9F. Leyvraz and H. R. Tschudi, J. Phys. A 15, 1951 (1982).

10E. .M. Hendriks, M. H. Ernst, and R. M. Ziff, J. Stat. Phys.
31, 519 (1983).

M. H. Ernst, R. M. Ziff, and E. M. Hendriks, J. Colloid Inter-
face Sci. 97, 266 (1984).

12M. V. von Smoluchowski, Phys. Z. 17, 557 (1916).

13§, Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

14F, Leyvraz, Phys. Rev. A 29, 854 (1984).

I5R. M. Ziff, in Kinetics of Aggregation and Gelation, edited by
F. Family and D. P. Landau (North-Holland, Amsterdam,
1984).

16A, A. Lushnikov, J. Colloid Interface Sci. 46, 549 (1973); 48,
400 (1974); 54, 94 (1975).



1182 K. KANG, S. REDNER, P. MEAKIN, AND F. LEYVRAZ 33

7R, Botet and R. Jullien, J. Phys. A 17, 2517 (1984).

18M. H. Ernst, E. M. Hendriks, and F. Leyvraz, J. Phys. A 17,
2137 (1984).

9P, G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54,
1396 (1985). ,

20K . Kang and S. Redner, Phys. Rev. A 30, 2833 (1984).

217, Djordjevic, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1984.

22], Feder, T. Jossang, and E. Rosenquist, Phys. Rev. Lett. 53,
1403 (1984).

23D, A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, Phys. Rev.
Lett. 53, 1657 (1984).

248, K. Friedlander and C. S. Wang, J. Colloid Interface Sci. 22,
126 (1966); T. Vicsek and F. Family, Phys. Rev. Lett. 52,
1661 (1984); in Kinetics of Aggregation and Gelation, edited by
F. Family and D. P. Landau (North-Holland, Amsterdam,
1984). '

25p. G. J. van Dongen and M. H. Ernst, Phys. Rev. A 32, 670
(1985).

26p. Meakin, Phys, Rev. Lett. 51, 1119 (1983).

27M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123
(1983).

28M. Kolb, Phys. Rev. Lett. 53, 1653 (1984).

29P. Meakin, T. Vicsek, and F. Family, Phys. Rev. B 31, 564
(1985).

30R. M. Ziff, E. D. McGrady, and P. Meakin, J. Chem. Phys.
82, 5269 (1985).

31p. Meakin, J. Chem. Phys. 81, 4637 (1984).

32p. Meakin and R. Jullien, J. Phys. (Paris) 46, 1543 (1985).

33K. Kang and S. Redner, Phys. Rev. A 32, 435 (1985).

3R, Botet, R. Jullien, and M. Kolb, J. Phys. A 17, L75 (1984);
Phys. Rev. A 30, 2150 (1984).



