Chapter 7

SPIN DYNAMICS

Kinetic spin systems play a crucial role in the development of non-equilibrium statistical physics. The
prototypical example is the appealing-simple kinetic Ising model, in which the conventional Ising model
of equilibrium statistical mechanics is endowed with physically-motivated transition rates that allows the
system to “hop” between different microstates. Just as investigations of the equilibrium Ising model have
elucidated the rich phenomenology underlying the transition between the disordered and ferromagnetically-
ordered states, studies of the kinetic Ising model have yielded deep insights that have played a starring role
in the development of the modern theory of critical phenomena and phase ordering kinetics.

7.1 The Voter Model

There is an even simpler kinetic spin system — the voter model — that will be the starting point for
our discussion. One reason for focusing on the voter model first is that it is exactly soluble in all spatial
dimensions. This solution also provides an instructive introduction for understanding kinetic Ising models.
The voter model was introduced in the context of interacting particle systems and has been one of the most
extensively examples of such systems. The voter model describes, in an appealing and paradigmatic way,
how consensus emerges in a population of spineless individuals. That is, each individual has no firmly fixed
opinion and merely takes the opinion of one of its neighbors in an update event. A finite population of such
voters eventually achieves consensus in a time that depends on the system size and on the spatial dimension.
In this section, we employ techniques inspired from non-equilibrium statistical physics, to solve some of the
most basic and striking dynamical properties of the voter model on regular lattices in all dimensions.

In the voter model, an individuals is situated at each site of a graph. This graph could be a regular lattice
in d dimensions, or it could be any type of graph—such as the Erdés-Rényi random graph, or a graph with
a broad distribution of degrees. Each voter can be in one of two states that, for this presentation, we label
as “Democrat” and “Republican”. Mathematically, the state of the voter at x, s(x), can take the values +1
only; s(x) = +1 for a Democrat and s(x) = —1 for a Republican.

The dynamics of the voter model is simplicity itself. Each voter has no confidence and looks to a neighbor
to decide what to do. A single update event in the voter model therefore consists of:

1. Pick a random voter.
2. The selected voter at x adopts the state of a randomly-selected neighbor at y; that is, s(x) — s(y).
3. Repeat steps 1 & 2 ad infinitum or stop when consensus is achieved.
Notice that a voter changes opinion only when its neighbor has the opposite opinion. A typical realization
of the voter model on the square lattice is shown in Fig. 7.1, showing how the system tends to organize into

single-opinion domains as time increases.
It is expedient to have each update step occur at a fixed rate. The rate at which a voter at x changes to
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the state —s(x) may then be written as

w@(x))_%(l_@ > s<y>>, (7.1)

y n.n.x

where the sum is over the nearest neighbors of site x. Here z is the coordination number of the graph and
we tacitly assume that each site has the same coordination number. The basic feature of this dynamical rule
is that the transition rate of a voter at x equals the fraction of disagreeing neighbors — when a voter at x
and all its neighbors agree, the transition rate is zero; conversely, the transition rate equals 1 if all neighbors
disagree with the voter at x. This linearity is the primary reason why the voter model is soluble. One can
generalize the voter model to include opinion changes, s(x) — —s(x), whose rate does not depend on the
local environment, by simply adding a constant to the flip rate.

Figure 7.1: The voter model in two dimensions. Shown is a snapshot of a system on a 100 x 100 square
lattice at time ¢ = 1000, obtained by a Monte Carlo simulation. Black and white pixels denote the different
opinion states.

To solve the voter model, we need, in principle, the probability distribution P({s},t) that the set of all
voters are in configuration {s} at time ¢. This probability distribution satisfies the master equation

—dpiffb ==Y _w(s()P({s}) + D w(-s(x)P({s}). (7.2)

Here {s}x denotes the state that is the same as {s} except that the voter at x has changed opinion. In
this master equation, the loss term accounts for all possible transitions out of state {s}, while the gain term
accounts for transitions to the state {s} from states in which one spin differs from the configuration {s}.
In principle, we can use this master equation to derive closed equations for all moments of the probability
distribution — namely, all multi-spin correlation functions of the form Sk, ., = (s(x)---s(y)) where the
angle brackets denote the average (f({s})) = > . f({s})P(s).

Let’s begin by considering the simplest such correlation function, namely, the mean spin, or equivalently,
the one-point function, S(x) = (s(x)). While it is possible to obtain the evolution of the mean spin and
indeed any spin correlation function directly from the master equation (7.2), this approach involves some
bookkeeping that is prone to error. We therefore present a simpler alternative method. In a small time
interval At, the state of a given voter changes as follows:

s(x,t) with probability 1 —w(s(x))At,

7.3
—s(x,t) with probability w(s(x))At. (7.3)

s(x,t+ At) = {

Since the opinion at x changes by —2s(x) with rate w(s(x)), the average opinion evolves according to the
rate equation

— —2(s(x)w(s(x)))- (7.4)
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Substituting in the transition rate from (7.1) and using the fact that s(x)? = 1, we find that for voters that
are located on the sites of a d-dimensional hypercubic lattice, the rate equation has the form
dS(x)
dt

1
(XHZ% (x+ei) (x) (7.5)
where e; are the unit vectors of the lattice and A denotes the discrete Laplacian operator
1
AF(x)=-F - F i) -
()= ~F(x) + 2 3 Flx+e)

This rate equation shows that the mean spin undergoes a continuous-time random walk on the lattice.
As a result, the mean magnetization, m = > _S(x)/N is conserved, as follows by summing Eq. (7.5) over
all sites. A subtle aspect of this conservation law is that while the magnetization of a specific system does
change in a single update event by construction, the average over all sites and over all trajectories of the
dynamics is conserved. The consequence of this conservation law is profound. Consider a finite system
with an initial fraction p of Democrats and 1 — p of Republicans; equivalently, the initial magnetization
mo = 2p — 1. Ultimately, this system will reach consensus by voter model dynamics — Democrat consensus
with probability E(p) and Republican consensus with probability 1 — E(p). The magnetization of this final
state is moo = E(p) x 1 + (1 — E(p)) x (—=1) = 2E(p) — 1. Using magnetization conservation, we obtain a
basic conclusion about the voter model: because m, = mg, the “exit probability” is E(p) = p.

Discrete Diffusion Equation and Bessel Functions

For a continuous-time nearest-neighbor lattice random walk, the master equation for the probability
that the particle is at site n at time ¢ has the generic form:

P, =

N2

(Pu_1+ Poy1) — Pa. (7.6)

The random walk corresponds to v = 1 in which the total probability is conserved. Here we consider
general values of v because this case arises in the equations of motion for correlation functions in the
kinetic Ising model. For simplicity, suppose that the random walk is initially at site n = 0. To solve
this equation, we introduce the Fourier transform P(k,t) =Y, P.(t)e’*" and find that the Fourier
transform satisfies % = [37(e™ + ") — 1]P(k,t). For the initial condition P(k,t = 0) = 1,
the solution is simply P(k,t) = exp[yt cos k —t]. Now we use the generating function representation

of the Bessel function,

exp(zcosk) = Z e L (2).

n=-—oo

Expanding the generating function in a power series in ¢, we obtain the final result
P (t) = L.(yt)e " (7.7)

In the long-time limit, we use the asymptotics of the Bessel function I, (t) ~ (271'15)71/2 e*, to give
the asymptotic behavior

1
Po(t) ~ ——— e 7M1,
() V2wt ¢

Let’s now solve the rate equation (7.5) explicitly for the mean spin at x for the initial condition S(z,t =
0) = d5,0; that is, a single Democrat in a background population of undecided voters. In one dimension, the
rate equation is
dS(z)
dt

Using the results from the above highlight on the Bessel function solution to this type of master equation,
we simply have

= —S(@) + 5 (S~ 1)+ S+ 1)]. (78)

as t — oo. (7.9)
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Exactly the same approach works in higher dimensions. Now we introduce the multidimensional Fourier
transform P(ki, kg, ..., t) =30, . Py, oy (t)eFr®1eik2z2 and find that the Fourier transform in each
coordinate direction factorizes. For the initial condition of one Democrat at the origin in a sea of undecided
voters, the mean spin is then given by

S(x,t) = HIw (t)e ¥ ~ W . (7.10)

Thus the fate of a single voter is to quickly relax to the average opinion of the rest of the population —
namely everyone is undecided, on average.

While the above result is exact, it provides no information about how consensus is actually achieved in
the voter model. What we need is a quantity that tells us the extent to which two distant voters agree.
Such a measure is provided by the two-point correlation function, S(x,y) = (s(x)s(y)). Proceeding in close
analogy with Eq. (7.3) the two-point function evolves as

S0t + AD)s(y, 4+ Af) = { s(x, t)s(y,t) W%th probab?l?ty 1 —[w(s(x)) + [w(s(y))]At, (711)
—s(x,t)s(y,t) with probability [w(s(x)) + w(s(y))]At.

Thus (x)s(y changes by —2(x)s(y if either of the voters at x or y changes state with respective rates w(s(x))
and w(s(y)), so that S(x,y) evolves according to

dS(x,y)

o = ~2(s(x)s(y) [w(s(x)) + w(s(y)])-

On a hypercubic lattice, the explicit form of this rate equation is
dS(x,
( y) _ —25(x,y) +Z S(x+e;y)+S(x,y+e). (7.12)

In what follows, we discuss spatially homogeneous and isotropic systems in which the correlation function
depends only on the distance r = |x — y| between two voters at x and y; thus G(r) = S(x,y). Then the
last two terms on the right-hand side of (7.12) are identical and this equation reduces to (7.5) apart from
an overall factor of 2. It is now convenient to consider the continuum limit, for which Eq. (7.12) reduces to
the diffusion equation

oG
ot

with D is the diffusion coefficient associated with the continuum limit of (7.12). For the undecided initial
state in which each voter is independently a Democrat or a Republican with equal probability, the initial
condition is G(r,t = 0) = 0 for > 0. On the other hand, each voter is perfectly correlated with itself, that
is S(x,x) = 1. In the continuum limit, we must impose a lower cutoff @ in the argument of the correlation
function, so that the statement of perfect self correlation becomes G(a,t) = 1.

To understand physically how the correlation function evolves, it is expedient to work with c=1 - G; ¢
also satisfies the diffusion equation, but now with the initial condition ¢(r > a,¢ = 0) = 1, and the boundary
condition ¢(r = a,t) = 0; that is, the absorbing point at the origin is replaced by a small absorbing sphere of
non-zero radius a. One should think of a as playing the role of the lattice spacing; a non-zero radius is needed
so that a diffusing particle can actually hit the sphere. Physically, then, we study how an initially constant
density profile evolves in the presence of a small absorbing sphere at the origin. The exact solution for
this concentration profile can be easily obtained in the Laplace domain. Laplace transforming the diffusion
equation gives sc — 1 = DV?¢; the inhomogeneous term arises from the constant-density initial condition. A
particular solution to the inhomogeneous equation is simply ¢ = 1/s, and the homogeneous equation

= DV?G, (7.13)

d=1 . _ 5420

1
+
¢ T D

has the general solution ¢ = Ar¥I,(r\/s/D) + Br*K,(r\/s/D), where I, and K, are the modified Bessel
functions of order v, with v = (2 — d)/2. Since the concentration is finite as r — oo, the term with I, must
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be rejected. Then matching to the boundary condition ¢ = 0 at r = a gives

1 r\¥ K,(r\/s/D)
s ll B (_) K,j(a\/s/D)] ' (7.14)

a
For spatial dimension d > 2, corresponding to v < 0, we use K,, = K_, and the small-argument form
K, (x) x (2/x)" to give the leading small-s behavior

c(r,s — 0) = % [1 - (%)”} .

Thus in the time domain, the concentration profile approaches the static electrostatic solution, ¢(r) =
1 — (a/r)4=21 A steady state is achieved because there is a non-zero probability that a diffusing particle
never hits the absorbing sphere. This is the phenomenon of transience that was discussed in Sec. (2.4). The
depletion of the concentration near the sphere is sufficiently slow that it is replenished by re-supply from
more distant particles. In terms of the voter model, the two-particle correlation function asymptotically
becomes G(r) — (a/r)?=2 for d > 2. Thus the influence of one voter on a distant neighbor decays as a power
law in their separation.

Now let’s study the case d < 2 (v > 0). Here a diffusing particle eventually hits the sphere; this is the
property of recurrence (see again Sec. 2.4) that leads to a growing depletion zone about the sphere. While
the time dependence of ¢ can be obtained by inverting the Laplace transform in Eq. (7.14), it is much simpler
to apply the quasi-static approximation as first outlined in Sec. 2.5. From the results given in that section
[Egs. (2.52a) and (2.52b)], the two-spin correlation function for 7 > @ has the asymptotic behavior for general
spatial dimensions:

e(r,s) =

2—d
r
1—-(— d<2and 0 <r<vDt
(7) /

Grt) ~ {1 In(r/a) 9anda<r . 7.15
(r,1) 1 nWDUa d=2and a < r < VDt (7.15)

an d—2
(—) d>2anda<r.
r

An important feature for d < 2 is that the correlation function at fixed r approaches 1—distant spins
gradually become more strongly correlated. This feature is a manifestation of coarsening in which the
voters organize into a mosaic of single-opinion enclaves whose characteristic size increases with time. As we
shall discuss in more detail in chapter 8, coarsening typifies many types of phase-ordering kinetics. On the
other hand, for d > 2 the voter model approaches a steady state and there is no coarsening in the spatial
arrangement of the voters if the population is infinite.

There are two important consequences for the voter model that can be deduced from the behavior of the
correlation function. The first is that we can immediately determine the time dependence of the density of
“interfaces” , namely, the fraction n of neighboring voters of the opposite opinion. As we shall use extensively
later in this chapter, it is helpful to represent an interface as an effective particle that occupies the bond
between two neighboring voters of the opposite opinion. This effective particle, or domain wall, provides the
right way to characterize the departure of system from consensus. For nearest-neighbor sites x and y, we
relate the correlation function to the domain wall density by

G(x,y) = (s(x)s(y)) = [prob(++) + prob(——)] — [prob(+—) + prob(—+)]
=1-n — n=1-2n. (7.16)
Thus the density of interfaces is related to the near-neighbor correlation function via n = (1 — G(x,y))/2.
Using our result (7.15) for the correlation function, the time dependence of the interfacial density is then
t4/2=1 4 <2,
n(t)~<{1/Int d=2, (7.17)
o1 d>2.
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When d < 2, the probability of having two voters with opposite opinions asymptotically vanishes and the
system develops a coarsening mosaic of single-opinion domains (Fig. 7.1). At the marginal dimension of
d = 2 the coarsening process is very slow and the density of interfaces asymptotically vanishes as 1/1In¢. In
higher dimensions, an infinite system reaches a dynamic frustrated state where voters of opposite opinion
coexist and continually evolve such that the mean density of each type of voter remains fixed.

The second basic consequence that follows from the correlation function is the time T to reach consensus
for a finite system of IV voters. For this estimate of the consensus time, we use the fact that the influence of
any voter spreads diffusively through the system. Thus starting with some initial state, the influence range
of one voter is of the order of v/Dt. We then define consensus to occur when the total amount of correlation
within a distance of v/ Dt of a particular voter equals the total number of voters N. The consensus criterion
therefore becomes

VDt
/ G(r)yri~tdr = N. (7.18)
The lower limit can be set to 0 for d = 1 and should be set to a for d > 1. Substituting the expressions for

the correlation function given in Eq. (7.15) into this integral, the time dependence can be extracted merely
by scaling and we find the asymptotic behavior

N2/ d <2
Tn x { NInN d=2;
N d>2.

Thus as the dimension decreases below 2, consensus takes a progressively longer to achieve. This feature
reflects the increasing difficulty in transmitting information when the dimensionality decreases.

This last part of the section hanging and incomplete. Let us now derive the exact solution for
the correlation function without using the continuum approximation. This solution is nothing more than the
lattice Green’s function for the diffusion equation. It is convenient to rescale the time variable by 2, 7 = 2t,
so that the correlation function satisfies precisely the same equation of motion as the average magnetization

d 1

T G(x) = ~G(x) + ;ZG(x—i-ei). (7.19)
K3

We consider the uncorrelated initial condition G(x,0) = d(x) and the boundary condition is G(0) = 1.

The evolution equation and the initial conditions are as for the autocorrelation function where the solution

is Im(7)e~?7. Since the equation is linear, every linear combination of these “building-blocks” is also a

solution. Therefore, we consider the linear combination

G(x,7) = Iy (1)e 47 —|—/ dr' J(r — 7') L (7")e =47 (7.20)
0
The kernel of the integral is identified as a source with strength 6(7) 4+ J(7). This source is fixed by the

boundary condition:
-

1= [10(7)677](1 —I—/ dr' J(r — ) [Io(v")e ™) (7.21)
0

We are interested in the asymptotic behavior of the correlation function. This requires the 7 — oo behavior
of the source term. Thus, we introduce the Laplace transform J(s) = fooo dr e *7J(7). Exploiting the
convolution structure of the integral yields

J(s)=[si(s)]"' =1  with  I(s)= /0 h dre™*"[Io(1)e" T4 (7.22)

Using the integral representation of the Bessel function, Iy(7) = fo% Qd—freT €054 the latter transform is ex-

pressed as an integral
27
A dq 1
i(s) = / . (7.23)
o (2m¢ 54 Z?Zl(l —cosq;)
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The 7 — oo asymptotic behavior of the source and the correlation function is ultimately related to the
s — 0 asymptotic behavior of this integral. The integral diverges, I(s) ~ s%/?~! when d < 2, but it remains
finite when d > 2. The leading s — 0 behavior of the Laplace transform is therefore

s—d/2 d<2,
J(s)~{sTins™! d=2, (7.24)
st d>2.

7.2 Glauber Model in One Dimension

In the Ising model, a regular lattice is populated by 2-state spins that may take one of two values: s(x) = +1.
Pairs of nearest-neighbor spins experience a ferromagnetic interaction that favors their alignment. The
Hamiltonian of the system is

H=—J) sis;, (7.25)
(i.4)

where the sum is over nearest neighbors (¢, j) on the lattice. Every parallel pair of neighboring spins con-
tributes —J to the energy and every antiparallel pair contributes +.J. When the coupling constant is positive,
the interaction favors ferromagnetic order. The main feature of the Ising model is that ferromagnetism ap-
pears spontaneously in the absence of any driving field when the temperature 7T is less than a critical
temperature T, and the spatial dimension d > 1. Above T, the spatial arrangement of spins is spatially dis-
ordered, with equal numbers of spins in the states +1 and —1. Consequently, the magnetization is zero and
spatial correlations between spins decay exponentially with their separation. Below T, the magnetization is
non-zero and distant spins are strongly correlated. All thermodynamic properties of the Ising model can be
obtained from the partition function Z = > exp(—3H), where the sum is over all spin configurations of the
system, with 8 = 1/kT and k is the Boltzmann constant.

While equilibrium properties of the Ising model follow from the partition function, its non-equilibrium
properties depend on the nature of the spin dynamics. There is considerable freedom in formulating this
dynamics that is dictated by physical considerations. For example, the spins may change one at a time or in
correlated blocks. More fundamentally, the dynamics may or may not conserve the magnetization. The role
of a conservation law depends on whether the Ising model is being used to describe alloy systems, where the
magnetization (related to the composition of the material) is necessarily conserved, or spin systems, where
the magnetization does not have to be conserved. This lack of uniqueness of dynamical rules is generic in non-
equilibrium statistical physics and it part of the reason why there do not exist universal principles, such as
free energy minimization in equilibrium statistical mechanics, that definitive prescribe how a non-equilibrium
spin system evolves.

Spin evolution

We now discuss a simple version of the kinetic Ising model — first introduced by Glauber in 1963 — with
non-conservative single-spin-flip dynamics that allows one to extend the Ising model to non-equilibrium
processes. We first focus on the exactly-soluble one-dimensional system, and later in this chapter we will
study the Ising-Glauber model in higher dimensions, and well as different types of spin dynamics, including
conservative Kawasaki spin-exchange dynamics, and cluster dynamics, in which correlated blocks of spins
flip simultaneously. In the Glauber model, spins are selected one at a time in random order and each changes
at a rate that depends on the change in the energy of the system as a result of this update. Because only
single spins can change sign in an update, s; — —s;, where s; is the spin value at site j, the magnetization
is generally not conserved.

There are three types of transitions when a single spin flips: energy raising, energy lowering, and energy
neutral transitions (Fig. 7.2). Energy raising events occur when a spin is aligned with a majority of its
neighbors and vice versa for energy lowering events. Energy conserving events occur when the magnetization
of the neighbors is zero. The basic principle to fix the rates of these of events is the detailed balance condition.
Mathematically, this condition is:

P({s})w(s — s}) = P({s}}) w(sj — s). (7.26)
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Here {s} denotes the state of all the spins in the system, {s’;} denotes the state derived from {s} in which
the spin at i is flipped, and w(s — s}) denotes the transition rate from {s} to {s}}.
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Figure 7.2: (a) Energy lowering, (b) energy raising, and (c¢) energy conserving spin-flip events on the square
lattice.

The detailed balance condition is merely a statement of current conservation. In the abstract space of all
2 possible spin states of a system of N spins, Glauber dynamics connects states which differ by the flipping
of a single spin. When detailed balance holds, the probability currents from state {s} to {s}} and from {s’}
to {s} (the left and right sides of Eq. (7.26)) are equal so there is no net probability current across any
link in this state space. If P({s}) are the equilibrium Boltzmann weights, then the transition rates defined
by Eq. (7.26) ensure that any initial spin state will eventually relax to the equilibrium thermodynamic
equilibrium state for any non-zero temperature. Thus dynamics that satisfy detailed balance are required if
one seeks to understand how equilibrium is approached when a system is prepared in an out-of-equilibrium
state.

In one dimension, the detailed balance condition is sufficient to actually fix the flip rates. Following
Glauber, we assume that the flip rate of the j* spin depends on the neighbors with which there is a
direct interaction, namely, s; and s;+1. For an isotropic system, the rate should have left/right symmetry
(invariance under the interchange i + 1 < ¢ — 1) and up/down symmetry (invariance under the reversal of
all spins)!. For a homogeneous one-dimensional system, these conditions constrain the rate to have the form
w(s — s%) = A+ Bs;j(sj-1 + sj41). This flip rate is simply the energy of the it spin up to an additive
constant. We now write this flip rate in the following suggestive form

$(1 —~) for spin state 111 or |]|;
1= Zsilsm +si00)| = 4 for spin state 1] or |11 (7.27)
2(1++) for spinstate T|T or |T].

w(s — s5) =

(Y e}

When the two neighbors are antiparallel (no local field), the flip rate is simply a constant that we take to
be 1/2 (o = 1) without loss of generality. For v > 0, the flip rate favors aligning s; with its neighbors and
vice versa for v < 0.
We now fix « by applying detailed balance:
w(s — 33) 1—Zs5(s5-1+8541) P({s;}) etBJe;

= (7.28)

w(s) — s) 1+ 755(85-1 +8j41) ~ P({s}) o—BJe;’

with €; = —s;(sj—1 + sj1+1). We simplify the last quantity by exploiting the £1 algebra of Ising spins to
write

e+HBIe coshfBJe; +sinh BJe;  1+tanh(28J%) 1+ fe;tanh23J

e~ Pl cosh(—fBJe;) +sinh(—BJe;) 1 —tanh(28J%) 1 — Jejtanh23J’

L Actually the most general rate that satisfies the constraints of locality within the interaction range, symmetry, and isotropy
is w(sj) =(1/2)(1 + dsj—15j+1) [1 —(v/2)s;(sj—1 + sj+1)}
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where in the last step we use the fact that tanh ax = atanhz for a = 0, £1. Comparing with Eq. (7.27), we
deduce that v = tanh 23J. Thus the flip rate is

1 1
w(s;) = 3 1- 3 tanh28J s;(sj-1 + $j41)] - (7.29)
For T' — o0, 7 — 0 and all three types of spin-flip events shown in Eq. (7.27) are equiprobable. Conversely,
for T'— 0, v — 1, and energy raising spin-flip events are prohibited.
The probability distribution P({s},t) that the system has the microscopic spin configuration s at time
t satisfies the same master equation (7.2) as the voter model. Consequently, the equation of motion for the
low-order correlation functions are:
ds,;
d_t] = —2(s;jw(s;)), (7.30a)

dSi)j
dt

= —2(sis;[w(s:) + w(s;)]), (7.300)

where the subscripts i and j denote the i** and j*™ site of a one-dimensional lattice.
Using the transition rates given in (7.29) and the identity s? = 1, the rate equation for the average spin
Sj is

ds;
L= -5+ % (Si1 4 S41) (7.31)
With the initial condition S;(0) = J, 0, the solution is (see the highlight on page 117 on the Bessel function

solution to discrete diffusion)
S;(t) = Lij(yt)e ™. (7.32)

The new feature compared to the corresponding voter model solution is the presence of the temperature-
dependent factor . Now the average spin at any site decays as S;(t) ~ (27yt)~/2e~ (=1t For T > 0, the
decay is exponential in time, S; ~ e~ /7, with relaxation time 7 = (1 — +)~"!, while for T' = 0 the decay is
algebraic in time, S; ~ (27t)"'/2. The magnetization m = N=' Y. S; satisfies 4 = —(1 —~)m, so that m
decays exponentially with time at any positive temperature,

m(t) = m(0)e” =7, (7.33)

and is conserved only at zero temperature, just as in the voter model. The Ising-Glauber in one dimension
model illustrates critical slowing down — slower relaxation at the critical point (T = 0 in one dimension)
than for 7" > 0.

The mean spin can also be directly solved for a general initial condition, S;(t = 0) = ¢;, with o; an
arbitrary function between +1 and —1. Then the Fourier transform of the initial condition is si(t = 0) =
>, onet*. Using this result, the Fourier transform of the solution to the equation of motion (7.31) is

Si(t) = Si(t = 0)elveosk=Dt — Z e . Z L (yt)e*m et

Now define £ = m+n to recast the exponential factors as a single sum to facilitate taking the inverse Fourier
transform:

Sk(t) = Z ettt Z Om Lo—m(yt)e ",
4 m

From the expression above we may simply read off the solution as the coefficient of e?**:

Sy = Z Om Lo—m (’yt) et (7.34)
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Figure 7.3: Mapping between states of the Ising or the voter models in one dimension and domain wall
particles between neighboring pairs of antiparallel spins. Shown are the equivalences between: (a) an energy
conserving move and diffusion of a domain wall, (b) energy lowering moves and annihilation of two domain
walls, and (c) energy raising moves and creation of a pair of domain walls.

Let’s now study the pair correlation function, S; ; = (s;s;). As a preliminary, we highlight a geometrical
equivalence between the kinetic Ising model and diffusion-limited reactions. As given by Eq. (7.16), there
is a one-to-one mapping between a spin configuration and an arrangement of domain wall quasi particles.
Two neighboring antiparallel spins are equivalent to a domain wall that is halfway between the two spins,
while two neighboring parallel spins has no intervening domain wall (Fig. 7.3). Energy raising spin flips are
equivalent to creating a nearest-neighbor pair of domain walls, while energy lowering moves correspond to
annihilation of two neighboring walls. Energy conserving flips correspond to the hopping of a domain wall
between neighboring sites. At 7" = 0, where domain wall creation is forbidden, Ising-Glauber kinetics is then
equivalent to irreversible diffusion-controlled annihilation, A+ A — 0 that we will discuss in more detail in
chapter 9.

We focus on translationally invariant systems where the correlation function depends only the separation
of the two spins, G, = S; i+%. The master equation (7.30b) becomes

dG
d—tk = —2Gk(t) + v (Gr—1 + Gr11) (7.35)

for kK > 0. This equation needs to be supplemented by the boundary condition Gy(t) = 1. Thus the pair
correlation function evolves in nearly the same way as the mean spin. However, because of the existence of the
fixed boundary condition at the origin, the master equation also admits an exponential equilibrium solution.
This solution is determined by assuming that G (c0) & n* and substituting this form into Eq. (7.35) with the
left-hand side set to zero. These steps lead to the following condition for n: 2 = ~(n + =), whose solution
isn=[1-+/1—~2]/y =tanh 8J. The equilibrium pair correlation function therefore decays exponentially
in the distance between the two spins,

Gr(c0) = e M/¢ (7.36)

with correlation length ¢! = In(coth 8J). This result coincides with the correlation function obtained
directly from thermodynamics. As expected, the correlation length & diverges as T' — 0, indicative of a
phase transition, and £ vanishes at infinite temperature.

To solve the time dependence of the correlation function with the prescribed initial and boundary con-
ditions, we use the fact that master equation for the correlation function has the same form as that for the
mean spin, apart from an overall factor of 2. Thus the general solution will be built from components of
the same form as (7.34), with the replacement of v — 2. We now need to determine the appropriate linear
combination of these component solutions that simultaneously satisfy the initial condition Gi(t = 0) and
the boundary condition Gy = 1. One piece of the full solution is just the equilibrium correlation function
Gr(0) = nl¥l. To this we add the general homogeneous solution that satisfies the prescribed constraints.
Pictorially, the appropriate initial condition for the homogeneous solution consists of an arbitrary odd func-
tion plus an antisymmetric piece that cancels the equilibrium solution for k > 0 (Fig. 7.4). The antisymmetry
of these pieces ensure that Gy = 1 and that the prescribed initial condition is satisfied for k£ > 0.
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Figure 7.4: (a) Equilibrium correlation function and (b) an arbitrary antisymmetric initial condition. To
find Gy (t) for k& > 0, we superpose the solutions for the three initial conditions shown. The influence of the
initial condition (c) cancels that of (a) in the region k > 0 so that only (b) remains—an arbitrary initial
condition that vanishes at k = 0.

The general solution for k¥ > 0 therefore is:

Gk(t) = nk + e 2t i Gz(O)Ik,[(Z"yt)
{=—00
=0+ e [Ge(0) = i e (291) + €7 _Z [Ge(0) + 1] T o (24t)
=1 =—1
=¥+ e [Ge(0) = 1 [ Tk—e(298) — Ty o(27)]. (7.37)
=1

We restrict ourselves to the case of T' = 0, where two special cases lead to nice results:

1. Antiferromagnetic initial state, Gx(0) = (—1)*. In this case, every site of the dual lattice is initially
occupied by domain wall particle. For this initial state, the nearest-neighbor correlation function in
Eq. (7.37) reduces to

Gi(t) =1-2e72" " [I_;(2t) — L ;(2t)] = 1 — 2% [(21),
jodd

where we have used I,, = I_,,.

2. Random initial state, Gx(0) = m2, where myg is the initial magnetization. Then the nearest-neighbor
correlation function is

Gi(t) =1+e 2(md -1) Z [[1-j(2t) — [11(2t)] = 1 — 2~ (m§ — 1) [Io(2t) + I, (21)] .

From these two solutions, the domain wall densities are

1
antiferromagnetic,

Vit ) (7.38)
[To(2t) + I (2t)] e % ~

In(2t) e % ~
2

uncorrelated.

If the initial magnetization mg = 0 for the random initial condition, then the asymptotic domain wall density

universally vanishes as
p(t) ~ (4mt) /2, (7.39)

independent of the initial domain wall density! Because the number of domain walls decrease with time,
their separation correspondingly increases. The system therefore coarsens, as domains of parallel spins grow
with the diffusive length scale t'/2. A final important point is that Eq. (7.38) also represents the exact
solution for diffusion-limited annihilation A + A — 0! We will return to this reaction in chapter 9.
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Domain length distribution

In the previous section, we obtained the density of domain walls or alternatively, the average domain length.
Now we ask the more fundamental question: what is the distribution of domain lengths in a one-dimensional
system of length L? Let Py be the probability for a domain of length k, namely, a string of k& consecutive
aligned spins that is flanked by oppositely-oriented spins at each end. To have a system-size independent
quantity, we define this probability per unit length.

Partial information about this distribution follows from basic physical considerations. For example, the
domain wall density p, which scales as t~1/2 is given by 3 « Pr, while the domain length distribution obeys
the normalization condition ), kP, = 1. Furthermore, from the diffusive nature of the evolution, the only
physical length scale grows as t'/2. These facts suggest that the domain length distribution has the scaling
form

P(t) ~ t71®(kt=1/?). (7.40)

The prefactor ensures that the mean domain length (per unit length) equals 1, i.e., [2®(x)dz = 1, while
the asymptotic decay of the total density (7.39) gives the condition [ ®(z)dx = (47)~1/2 = C.

We can also infer the short-distance tail of the scaling function ®(x) from the long-time decay of the
domain density. Consider the role of the shortest possible domain of length 1 in the rate equation for the
domain density p. When a domain that consists of a single spin flips, three domains merge into a single
larger domain, as illustrated below:

——

| —
Since such events, in which two domains disappear, occur with a unit rate, the domain density decays as

dp
— = -2P, 7.41
dt 1 ( )

and using Eq. (7.39), we obtain Py ~ §¢73/2. On the other hand, expanding ® in a Taylor series gives
Pp 2 &(0)t~! 4+ ®'(0)t~3/% 4+ ... Comparing these two results, we deduce that ®(0) = 0 and ®'(0) = <.
Therefore the scaling function vanishes linearly in the small-argument limit:

O(z) ~ %x, as x — 0. (7.42)
This linear decrease in the small-size tail of the probability distribution is a generic feature of many one-
dimensional interacting many-body systems.

While scaling provides some glimpses about the nature of the length distribution, we are interested in the
distribution itself. The exact solution of the distribution is not yet known, and we present an approximate
solution based on the independent interval approzimation. This approximation is based on assuming that the
lengths of neigh boring domains are uncorrelated, an assumption makes the calculation of the domain length
distribution tractable. This same approximation can be applied to a variety of one-dimensional domain
evolution and reaction processes. Under the assumption of uncorrelated domains, their length distribution
evolves according to the master equations

dP;
&k _ —2P; + Pyey1 + P (1 — 71) Z P, P; — —Pk (7.43)

dt
z+_] k—1

The first three terms account for length changes due to a domain wall hopping by +1 and describe the
diffusion of a single domain. The factor 1 — P;/p multiplying Py_; ensures that the neighboring domain
has length greater than 1, so that the hopping of a domain wall leads to (k —1,j) — (k,j — 1), and not to
(k—1,1,5) — (k+7). The remaining terms account for changes in the distribution due to mergings. Because
any merger requires a domain of length 1, these terms are proportional to P;. The gain term accounts for
the merger of three domains of lengths 4, j, and 1, with ¢ + j + 1 = k, and the loss term accounts for the
merger of a domain of length k& with a domain of any length. These master equations apply for any k£ > 1,
subject to the boundary condition Py = 0.
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It is easy to check that the total density p = 5, Py satisfies (7.41) and that >, k<t = 0. Since the
typical domain length grows indefinitely with time, we replace the integer k£ by the continuous variable x,
and substitute the scaling form (7.40), as well as p ~ Ct~/2 and Py ~ £¢73/2 into the master equation to
give the integro-differential equation for the scaling function

d*®  1d(x®)
— dy = 0. 7.44
a2 T2 a4 1o / —y)dy (7.44)
We now introduce the Laplace transform, ¢(s -1 fo )e~%%dzx, to transform the convolution into a
product and reduce this integro-differential equatlon to the ordmary nonlinear differential equation
dp ? 1
_— = - — 7.45
ds  2s +259 25’ ( )

with the boundary condition ¢(0) =
Eq. (7.45) is a Riccati equation and it can be reduced to the second-order linear equation

d2y  dy (1 ¥
WW—S(;‘%)‘@—O'

by the standard transformation ¢(s) = —QSM“d—Iﬁ(S). We then eliminate the linear term in this equation by
writing 9 = yv and then forcing the term linear in 1)’ to be zero. This requirement gives the condition
Inv’ = s — 1/(2s), from which we find that the transformation ¢(s) = 1 — 2s* — 254 Iny(s) reduces the
Riccati equation (7.45) to a linear Schrédinger equation

d2y

T3 T@-Sy=0. (7.46)

Eq. (7.46) is the parabolic cylinder equation whose solution is a linear combination of the two linearly
independent solutions, y(s) = C4D1/2(sv2) + C_D; j5(—sv/2), with D, (z) the parabolic cylinder function
of order v. From the large-s behavior ¢(s) ~ (4s)~2, together with the asymptotics of D, (s), it follows that
C_ = 0. Therefore the Laplace transform is

B(s) =1—2s% — 236% In D /5(sV/2). (7.47)
The constant C; can be evaluated explicitly from the normalization condition ¢'(0) = — _;1 and the
properties? of D, (x). Using these facts, we find C; = I'(3/4)/T(1/4) = 0.337989 .. .; this result should be
compared with the exact value C' = (47)~1/2 = 0.28209.

The domain length distribution at large length can also be obtained from the small-s limit of the exact
solution (7.47). The large-z tail of ®(x) is exponential as follows from the behavior of the Laplace transform
near its simple pole at s = —\, ¢(s) =~ 2\(s+A)~!. The constant ) is given by the first zero of the parabolic
cylinder function, Dq /2(—/\\/5) = 0, located at A =~ 0.5409. Therefore the domain length distribution
asymptotically decays exponentially for large x

O(x) =~ Aexp(—Az), (7.48)

with amplitude A = 2CA. The approximate value for the decay coefficient A\ is larger than the exact value
¢(3/2)/v/16m = 0.368468.

While the independent interval approximation is not exact, it is very useful. By invoking the this approx-
imation, we are able to write a closed master equation for the evolution of the domain length distribution.
The independent interval approximation then yields the main qualitative behavior of the domain length dis-
tribution including: (i) the linear small-length limit of the distribution, (ii) the large-length exponential tail,
and (iii) correct integrated properties, such as the t—1/2 decay of the number of domains. As we shall see in
later applications, the independent interval approximation applies to a wide range of coarsening processes.

V2Y D! (0) Vr2or+1

2The following properties are needed D, (0) = T(i/2—0/2) = T/ and Dy (x) ~ z¥ exp(—z2/4)[1 + O(z~2)].
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7.3 Glauber Model in Higher Dimensions

Finite spatial dimension

When the spatial dimension d is greater than one, the Ising-Glauber model is no longer solvable. A variety
of approximate continuum theories have been constructed to capture the essence of this model, as will be
described in the next chapter. Here we focus on the basic properties of an individual-spin description, there
is still much that can be learned.

by A I - B
by }
v 7! v yo!

Ising—Glauber voter

Figure 7.5: Comparison of the rates of an update event in the Ising-Glauber model at zero temperature and
in the voter model on the triangular lattice.

First, we address why the voter model is soluble for all d, while the closely related Ising-Glauber model
at zero temperature is not. This dichotomy stems from a simple but profound difference between these two
models in d > 1.3 Let’s determine the transition rates for Glauber dynamics for d > 1 by using detailed
balance. Following the same steps that lead to Eq. (7.29), we have

w(s—st)  P({s}}) e P 1 —tanh(BJs; Ys;)  1—sitanhBJ Y s;

_ _ _ _ 7.49
w(s; —s)  P({s}) et#u2Xs 14tanh(BJsiy s;) 1+ sitanh T3 s;’ 74

where the sum is over the nearest neighbors of s;, and in the last step we used tanh(s;x) = s; tanhx for
s; = 1. Thus up to an overall constant that may be set to one, the transition rate for spin 17 is

w(s;) = % [1 — s; tanh (ﬁJZ sj)] . (7.50)

At zero temperature, this rule forbids energy raising updates, while energy lowering updates occur with
rate 1 and energy conserving events occur with rate 1/2. This defines a majority rule update — a spin flips to
agree with the majority of its neighbors (Fig. 7.5). In contrast, the voter model is governed by proportional
rule — a voter changes to the state of its local majority with a probability equal to the fraction of neighbors
in this majority state. This proportionality allows one to factorize the voter model master equation in d
dimensions into a product of soluble one-dimensional master equations. There is no such simplification
for the Ising-Glauber model because s; appears inside the hyperbolic tangent and the master equation is
non-linear. For these reasons, much of our understanding of the Ising-Glauber model in d > 1 is based on
simulation results or on continuum theories.

Another important feature of proportional rule is that there is no surface tension between domains of
opposite-opinion voters. For example, a straight boundary between two opposite-opinion domains becomes
fuzzier in voter model evolution (first line of Fig. 7.6). Additionally, even though the voter model coarsens
in two dimensions, the lack of a surface tension means that the interface density disappears very slowly with
time, namely, as 1/Int¢. In contrast, for the Ising-Glauber model at zero temperature, there is a surface
tension that scales as the inverse curvature for a droplet of one phase that is immersed in a sea of the
opposite phase. We will discuss this surface tension in the next chapter; however, let us accept the existence
of a surface tension that scales as the inverse curvature. Consequently, a single-phase droplet of radius R

3In d = 1, the two models are identical because the three distinct types of transitions of energy lowering, energy neutral,
and energy raising,

PTl=11d T1l=T11 TI11=T41

respectively, occur with the same rates of 1, 1/2, and 0.
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Figure 7.6: Spatial evolution in the voter model (top 2 rows) and the Ising-Glauber model at T' = 0 (bottom
two rows) on a 256 x 256 square lattice. Lines 1 & 3 shown snapshots at times ¢ = 4, 16, 64, and 256 starting
with an initial bubble of radius 180 for the voter model and the Ising-Glauber models, respectively. Lines 2
& 4 show the same evolution starting with a random initial condition with equal density of the two species.
The voter model figure is from Dornic et al., Phys. Rev. Lett. 87, 045701 (2001); courtesy of I. Dornic. The
Ising-Glauber model figure is courtesy of V. Spirin.

in a background of the opposite phase will shrink according to R x —1/R, or R(t)?> = R(0)?> — at and thus
disappear in a finite time (third line of Fig. 7.6). Additionally, the surface tension will quickly eliminate high
curvature regions so that the coarsening pattern strongly differs from that of the voter model.

Perhaps the most basic questions about the Ising-Glauber model in d > 1 are concerned with the analog
of the domain-size distribution. What is the nature of the coarsening when a system is prepared in a random
initial state and then suddenly quenched to a low temperature? What is the final state? How long does it
take to reach the final state? For d > 1 and for temperatures below the critical temperature, it has been
well established that the system organizes into a coarsening domain mosaic of up and down spins, with the
characteristic length scale that grows as t'/2. For a finite system, this coarsening should stop when the
typical domain size reaches the linear dimension L of the system.

However, when the final temperature T of the quench is strictly zero, intriguing anomalies occur when
the size of the system is finite. At early stages of the relaxation, there is little difference in the dynamics
of T =0 and T > 0 systems. However, when the elapsed time is such that the characteristic time of the
coarsening is comparable to the time to diffuse across the system, the two dynamics diverge. Perhaps the most
striking feature of the 7' = 0 dynamics is that a system can get stuck in an infinitely long-lived metastable
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state. These metastable states consist of straight stripes in two dimensions, but are more topologically more
complex in higher dimension. In two dimensions, the probability of getting stuck in a metastable state is
approximately % as L — oo. In greater than two dimensions, the probability to reach the ground state
rapidly vanishes as the system size increases. One obvious reason why the system fails to find the ground
state is the rapid increase in the number of metastable states with spatial dimension. This proliferation of
metastable states makes it more likely that a typical configuration will eventually reach one of these states
rather than the ground state.

Mean field theory

Mean field theory describes systems in which fluctuations are negligible. One way to construct a mean-
field theory for a spin system is to replace the actual environment surrounding each spin by the average
environment that is then determined self consistently; this is the Curie-Weiss effective-field theory. Another
mean-field description is achieved by embedding the Ising model on a complete graph of N sites, where all
the N(N — 1)/2 pairs of spin interact with the same strength. The Hamiltonian of the system is now

J
H = —stisj, (7.51)

i<j

where the interaction strength scales inversely with the system size so that the energy is extensive, i.e., scales
linearly with N.

From the approach that gave the transition rate on a lattice in greater than one dimension [Eq. (7.50)],
the transition rate for Glauber dynamics on the complete graph is simply

w(s;) = % ll — s; tanh (% Z s])] . (7.52)

where the sum ) s, is over all other spins in the system, from which the equation of motion for the mean
spin is again dﬁi = —2(s;w;). We now exploit the fact that there are no fluctuations in the magnetization
to write (f(m)) = f({m)). With this identity we have (tanh % > si) = tanh% > (si) = tanh fm, with

m=N"! >, (si) the average magnetization. Thus the equation of motion for the mean spin is

ds;
dt

= —S; + tanh Bm. (7.53)

Summing these rate equations, the average magnetization satisfies

dm _ —m + tanh Sm. (7.54)

dt
In contrast to one dimension, the magnetization is generally not conserved. The rate equation has three
fixed points, one at m = 0 and two at £meq, with the latter determined by the roots of the familiar
transcendental equation m = tanh(8Jm). A linear stability analysis shows that the zero-magnetization
state is stable for 3J < 1 but unstable for 3J > 1, and vice versa for the states with m = +mcq. Thus there
is a phase transition at 8.J = 1, with meq ~ (T, — T)l/ 2 for T < T.. The emergence of two equivalent, but
symmetry-breaking ground states when the Hamiltonian itself is symmetric is termed spontaneous symmetry
breaking.

Above the critical temperature, the magnetization decays to zero and we expand tanh Sm in Eq. (7.54)
in powers of Gm to give
dm 1

= (8~ Bym— 5 ()" (7.55)

In the high temperature phase, the cubic term is negligible so that the magnetization decays exponentially
in time, m ~ e~%/7, with 7 = (8, — 8)~'. At the critical point, the relaxation is algebraic,

m o~ (7.56)
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Below the critical temperature, the magnetization also decays exponentially toward its equilibrium value,
|m —meq| ~ et/ witht=! =1-4/ coshQ(ﬁqu) not explained. Thus, as the critical point is approached,
either from above or from below, the relaxation time scale diverges as

T~ |T. —T|7 1. (7.57)

The divergence of the relaxation time as T' — T is a generic sign of critical slowing down as the approach
to equilibrium becomes extremely slow.

7.4 Kawasaki Spin-Exchange Dynamics

The transition rate

As mentioned at the outset of Sec. 7.3, there are two fundamental classes of spin dynamics: magnetization
conserving and magnetization non-conserving. The former class is appropriate to describe alloy systems,
where the two different spin states naturally correspond to the two component atoms that comprise the
alloy. In studying the dynamics of phase separation of an alloy into domains of pure metal, a plausible
dynamics is that the positions of atoms of different species are exchanged; there is no alchemy where one
type of atom can be converted to the other type. In this section, we investigate a simple realization of this
order-parameter conserving dynamics — Kawasaki dynamics.
In Kawasaki dynamics, neighboring antiparallel spins simultaneously reverse their states so that

e e [T (7.58)

Alternatively, the two spins can be regarded as being exchanged and hence the term spin-exchange. Clearly,
such moves do not alter the magnetization and so this quantity is strictly conserved in every update event.
The existence of this strict conservation law has far-reaching consequences that will become clearer when we
discuss continuum theories of spin dynamics in the next chapter.
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Figure 7.7: Energy neutral update events (a) & (b), energy lowering events (c¢), and energy raising events
(d) for Kawasaki dynamics in one dimension. The spins that flip are shown bold. Also shown are the
corresponding domain wall particles (o) and the transition rates for these four events.

Again, there are three types of update events: energy raising, energy lowering, and energy neutral. As
illustrated in Fig. 7.7, the energy neutral update is equivalent to the simultaneous hopping of two nearest-
neighbor domain walls, or to the hopping of an impurity down spin in a sea of up spins. As long as the
domain-wall pair remains isolated from all other domain walls, the pair hops freely between neighboring
lattice sites. This pair can be viewed as an elementary excitation of the spin system. The hopping rate
of a domain wall pair merely sets the time scale, so there is no loss of generality in setting this rate to
1/2, as in Glauber dynamics. Because such diffusive moves do not alter the energy, they automatically
satisfy the detailed balance condition. The rates of the remaining two update events are then set by detailed
balance. Since spin exchange involves the interactions among four spins—the two spins that flip and their
two neighbors—the rates depend on the total energy of the three bonds connecting these four spins. The
detailed balance condition is then

M _ P exp(48J), (7.59)

w—1 b3
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where w, is the transition rate out of a state with energy ¢J and p, its equilibrium probability. Using the
convenient Glauber notations of ws = (14+)/2 and w_1 = (1 —)/2 for energy raising and energy lowering
transitions, the detailed balance condition has the same form as in Glauber dynamics, }*_‘—1 = exp(48J), or
~v = tanh 23.J.

To determine the transition rates, we first must guarantee that spins ¢ and i 4+ 1 are antiparallel. This
constraint can be achieved by the factor (1 — s;$;41)/2 that equals +1 if the two spins are antiparallel and
equals zero otherwise. The form of the flip rate then depends on the interaction energy between the pairs
si—1 and s;, and between s;+1 and s;12. The flip rate should be a symmetric function of these two bond

energies and the rate should be proportional to (1 +1)/2, 1/2, and (1 —7)/2 respectively, when the signs of

these bond energies are ——, +—, and ++. These constraints leads to the transition rate
1 vy 1
’LUi(Si, Si+1) = 5 1-— 5(81;181' + 5i+15i+2) X 5(1 — Si5i+1). (760)

An important feature of this rate is that the evolution of spin correlation functions are no longer closed. One-
spin averages are coupled to three-spin averages, two-spin averages are coupled to four-spin averages, etc.
Thus the equation of motion for a particular correlation function generates an infinite hierarchy of equations
for high-order correlations. This coupling to higher-order correlation functions arises in a wide range of
many-body problems and it is a matter of considerable technical effort and artistry to find a tractable and
accurate scheme to truncate this infinite hierarchy.

Frustration at zero temperature

Because Kawasaki dynamics is more constrained than Glauber dynamics, a system will almost always get
stuck forever at zero temperature in one of the very large number of metastable states — one whose energy
is above the ground state and for which the only possible transitions by Kawasaki dynamics would raise
the energy (see Fig. 7.7(d)). The metastable states are characterized by each domain wall particle being
separated by more than a nearest-neighbor distance from any other domain wall. Equivalently the lengths of
all spin domains are two or longer. The number of such configurations in a system of length L asymptotically
grows as g&, where g = (1+ \/5) /2 is the golden ratio. It is striking how often this beautiful number appears
in statistical physics problems. At zero temperature these metastable states prevent the system from reaching
the ground state. At non-zero temperature, these states merely slow the approach toward equilibrium.

To study how the system evolves to a metastable state, let’s study the case where energy lowering
transitions only are allowed, as illustrated in Fig. 7.7(c). The resulting behavior differs only slightly from the
situation where diffusive moves are also allowed, but the former is simpler to treat analytically. The dynamics
is perhaps best visualized in terms of the domain walls that occupy the sites of the dual lattice. According
to Fig. 7.7(c), an update step consists of picking three contiguous domain wall particles at random and then
removing the two outside particles. Since pairs of domain walls are removed sequentially from triplets of
consecutive domain walls, the process is equivalent to the random sequential adsorption of a e o e “fork” on
top of a string of three consecutive domain wall particles. Because of this equivalence, we can use the tools
of random sequential adsorption (Chapter 6) to solve the problem.

Let Ej be the probability that a string of k sites (in the dual lattice) are all occupied by domain walls.
This probability evolves by the master equation

dEy
dt
for k > 3. This equation reflects the different ways that the transition o o o — e o @ can occur and alter the
number of empty strings of length k. There are k — 2 ways that this transition can occur in the interior of a
k-string. There are also 2 ways that this transition can occur with two sites at the edge of the k-string and
one site outside, and also 2 ways with one site at the edge of the k-string and two sites outside.

We solve this rate equation by introducing the exponential ansatz Ej, = ®(t) e~ *=2)* [see the discussion
accompanying Eq. (6.4)]. For the initial condition of an antiferromagnetic spin state, the dual lattice is
completely occupied. Thus Fj = 1 initially, so that ®(0) = 1. Substituting this ansatz into the rate
equation (7.61) leads to the ordinary differential equation for ®:

do

- -2
W ape + e, (7.62)

= —(k—2)E}, — 2Ej41 — 2Ep40 (7.61)
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Integrating this equation gives the string probabilities for k > 2,
Ep(t) =exp[—(k—2)t+e > +2¢7" = 3]. (7.63)

Since two domain walls are lost in each update event and these events occur with rate F3, the domain
wall density p = FEj satisfies % = —2F5. Using Eq. (7.63) for F3 and integrating then yields the domain

wall density
t
p(t) =1— 2/ dsexp [—s+e ?* +2e° —3]. (7.64)
0

The final “jamming” density is finite, pjam = p(c0) = 0.450898.... Thus there is not very much relaxation
as almost half of the domain walls still remain in the final jammed state. Moreover, the relaxation to the
jamming density is exponential in time,

p(t) = piam ~ e 2" (7.65)

We see that the system neither reaches the lowest energy state, nor does it exhibit critical slowing down. The
underlying reason for both of these behaviors is that the dynamics samples only a very restricted portion of
the phase space.

Coarsening at infinitesimal temperature

While the one-dimensional chain with Kawasaki dynamics quickly reaches a jammed state at zero temper-
ature, the equilibrium state will be reached for any non-zero temperature, no matter how small. Because
the correlation length diverges as the temperature approaches zero, one can set the temperature sufficiently
small so that the correlation length is much larger than the length of the system. Then the equilibrium state
consists of a single domain and we are interested in the approach to this final state.

The large separation of time scales between energy raising updates and all other update events leads
to an appealing description of the domain evolution within the framework of an extremal dynamics. Since
the rate of an energy raising update equals e=*%/_ the typical time for such an event is 7 = ¢**7/. We
define the time unit to be e*?”. Energy neutral and energy lowering events then occur instantaneously in
this time unit. Starting from an initial state, the system instantly reaches a frustrated state in which no
further energy neutral or energy lowering moves are possible. After a time 7 has elapsed (on average) an
energy raising event occurs that is then followed by a burst of energy neutral and energy lowering events
until the system reaches another frustrated state. This pattern of an energy raising event followed by a burst
of complementary events continues until a finite system reaches the ground state. As we will show, this
dynamics leads to the typical domain size growing in time as t'/ and is a general feature of order-parameter
conserving dynamics. One of the appealing features of Kawasaki dynamics in one dimension is that this t*/3
coarsening emerges in a direct way. In contrast, we will see in the next chapter that it is much more subtle
to deduce the t'/3 coarsening from continuum approaches.

At long times, the system evolves to a low-energy state that consists of alternating domains of typical
length ¢. The subsequent evolution at low temperature is controlled by rare, energy raising updates where
a pair of domain walls nucleates around an existing isolated domain wall. Once this triplet of domain walls
forms, a bound pair of these domain walls can diffuse freely with no energy cost until another isolated domain
wall is encountered. When such a collision occurs, two of the domain walls annihilate so that a static single
domain wall remains. As illustrated in Fig. 7.8, the creation of a mobile bound domain wall pair is equivalent
to an isolated spin splitting off from a domain and then diffusing freely within a neighboring domain of length
¢ of the opposite orientation. If this diffusing spin returns to its starting point, the net effect is no change
in the domain configuration. However, if the spin manages to traverse to the other side of the domain, then
one domain has increased its size by one and another has shrunk by one. This effective diffusion of domain
lengths is the mechanism that drives the coarsening.

What is the probability that the spin can actually traverse to the other side of the domain? This is given
by the classic “gambler’s ruin” problem as discussed in the highlight on page 23. Once the spin has split off,
it is a distance 1 from its initial domain and a distance ¢ — 1 from the domain on the other side. Since the
spin diffuses freely, it eventually reaches the other side with probability 1/¢ , while the spin returns to its
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Figure 7.8: Illustration of the effective domain diffusion from Kawasaki dynamics at infinitesimal temper-
ature. The second line shows an energy raising event where a spin (shown bold) splits off from a domain.
Eventually this spin joins the next domain to the right. Also shown is the evolution of the domain walls.
The net result of the diffusion of the spin across the middle domain is that this moves one step to the left.
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Figure 7.9: Effective domain diffusion by Kawasaki dynamics at infinitesimal temperature. A | spin from
the j domain (dashed oval) splits off and eventually reaches the right edge of the £ domain. The k domain
has moved rigidly to the left by one lattice spacing.

starting position with probability 1 — 1/¢. Thus the probability that the ¢-domain hops by one step equals
1/£. That is, the diffusion coefficient of a domain equals the inverse of its length: D(¢) = ¢~1.

Thus in the low-temperature limit, the spin dynamics maps to an effective isotropic hopping of entire
domains by one step to the left or the right* (Fig. 7.9). Domains of length 1 disappear whenever one of
their neighboring domain hops toward them. Concomitantly, the lengths of the neighboring domains are
rearranged so that four domains merge into two (Fig. 7.10). The net effect of these processes is coarsening
because domains of length 1 disappear. We can determine the typical domain length by a heuristic argument.
Because each domain performs a random walk, coalescence occurs whenever a domain diffuses of the order
of its own length. In such a coalescence, a domain typically grows by an amount A/ that is also of the order
of £, while the time between coalescences is At ~ ¢2/D(f). Thus

Al l 1

~N —

At 2/D() 2

so that domains grow as
0~ th3, (7.66)

It is conventional to define the dynamical exponent z in terms of the growth of the typical length scale
in a coarsening process via { ~ t*. For the non-conserved Glauber and the conserved Kawasaki dynamics,

4There is an anomaly involving domains of length 2 that can be ignored for the purposes of this discussion.
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Figure 7.10: The outcome after domain merging.

the dynamical exponent is:

L {1 /2 nonconservative dynamics, (7.67)

1/3  conservative dynamics.

While we have derived these results in one dimension, they are generic for all spatial dimensions. Conservation
laws are a crucially important ingredient in determining the nature of non-equilibrium dynamics.

7.5 Cluster Dynamics

Glauber single-spin flip dynamics and the Kawasaki spin-exchange dynamics are local in that they involve
flipping a single spin or a pair of spins. In spite of their idealized natures, these rules were the basis of
many simulational studies of coarsening and dynamic critical phenomena because of their connection to the
evolution of real systems. However, a dynamics that is based on flipping single spins is computationally inef-
ficient. Compounding this inefficiency, the dynamics significantly slows down close to criticality. To mitigate
these drawbacks, Swendsen and Wang developed a dynamical update rule in which an entire suitably-defined
cluster of spins is flipped simultaneously. Because of their efficiency, cluster algorithms have been used ex-
tensively to simulate the equilibrium behavior of many-body statistical mechanical and lattice field theory
models. The Swendsen-Wang and the Wolff algorithms are two of the earliest and most prominent such
examples of cluster dynamics. Remarkably, both of these algorithms are analytically soluble by the master
equation approach.

Swendsen-Wang dynamics

In one dimension, an Ising spin chain consists of alternating spin-up and spin-down domains. In the
Swendsen-Wang algorithm, an entire domain of aligned spins is chosen at random and all its spins are
flipped simultaneously, as illustrated below:

T = T T

SN—~— SN—~—

By construction, all such updates decrease the energy. In each update event, there is a net loss of two
domains. Consequently, the number density of domains p decreases according to % = —2p, where we take
the flip rate to be 1, without loss of generality. The density of domains then decreases exponentially with
time, and for the antiferromagnetic initial condition in which p(0) = 1, the domain density is p(t) = e=2t.
Since the average domain length (k) is the inverse of the domain density, (k) = e?. When this average
length reaches the system length L the dynamics is complete. This criterion yields the time to reach the
ground state Ty, o In L.

Now consider the domain length distribution. We define ¢, as the density of domains of length £. When
a domain is flipped, it merges with its two neighbors, so that the length of the resulting domain equals the
length of these three domains. As a result of this three-body aggregation process, ¢; evolves according to

ng 1
E = —3CZ + —2 Z C; Cj CL. (768)
i+j+k=~C
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The factor of —3cy accounts for the loss of a domain that occurs when a domain of length £ or either of its
neighboring domains is flipped. The last term accounts for the gain in ¢, due to the flipping of a domain
of length j that then merges with its two neighboring domains of lengths ¢ and k, with £ =i+ j + k. The
simplest way to deduce the prefactor p~2 is to ensure this master equation consistent with the rate equation
for the domain density p = —2p. Notice that newly-created domains do not affect their neighbors, nor are
they affected by their neighbors. Thus if the domains are initially uncorrelated, they remain uncorrelated.
Because no spatial correlations are generated, the rate equations are exact!

We can obtain a cleaner-looking master equation by introducing Py = ¢¢/p, namely, the probability for a
domain of length ¢ (with the normalization ), P, = 1). Using p = —2p in Eq (7.68), P, evolves as

dP,
—~=-Pi+ Y PPP. (7.69)

dt 4
i+j+k=~

As we have seen in many previous examples, the convolution form of the gain term cries out for applying
the generating function method. Thus we introduce the generating function F(z) = Y, P, z* into (7.69) and
find that it satisfies %—f = —F + F3. Writing 1/(F® — F) in a partial fraction expansion,t the equation can
be integrated by elementary methods and the solution is

B Fy(z)et
Flo) = et (7.70)

where Fy(z) is the initial generating function.
For the antiferromagnetic initial condition, the initial condition is Fy(z) = z. Expanding the generating
function in powers of z then yields the domain number distribution

20\ [1—e2t\"
Py = (E) (Te) e’ (7.71)

in which domains have odd lengths only. Since the average domain length grows exponentially with time,
(f) = €%, we expect that this scale characterizes the entire length distribution. Employing Stirling’s approx-
imation, we find that asymptotically the length distribution approaches the scaling form P, — e~ 2®(fe=2})

with the scaling function

®(z) = L (7.72)
2mx

Because the scaling function diverges ®(z) ~ =12 for & < 1, there is a large number of very small domains.

Wolff dynamics

In the Wolff cluster algorithm, a spin is selected at random and the domain it belongs to is flipped. This
protocol further accelerates the dynamics compared to the Swendsen-Wang algorithm because the larger the
domain, the more likely it is updated. Schematically, the Wolff dynamics is

k

o IR AL & PP i NN P (7.73)
— —

so that a flipped domain again simply merges with its neighbors. Since each spin is selected randomly,

the time increment associated with any update is identical. The domain density therefore decreases with

constant rate p = —2, so that p(t) = 1 — 2t and the entire system is transformed into a single domain in a

finite time, . = 1/2. Correspondingly, the average domain length, (k) = (1 —2¢)~!, diverges as t — t..
The evolution of the domain length distribution is governed by the natural generalization of (7.69)

dP,
—~=—(P+ Y jPP;P;. (7.74)

dt L
i+j+k=~L
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The generating function F(z,t) = Y, Py2* satisfies

oF _
ot

oF

z(F? —1) o (7.75)

To solve this equation, we first transform from the variables (¢,z) to (r,y) = (¢,t — Inz) to absorb the

negative term on the right-hand side. This transformation gives
oF oF
— =-F*_ 7.76
or dy ( )

We now employ the same procedure as that used in the solution of aggregation with the product kernel (see
the discussion leading up to Eq. (4.37) in chapter 4) to transform among the variables (7, y, F') and reduce
(7.76) into the linear differential equation % = F2. The solution to this equation is y = G(F) + F?r, with
G(F) determined by the initial conditions, or, equivalently,

t—Inz=G(F)+ F?t. (7.77)

For the antiferromagnetic initial condition Fy(z) = z, so that G(F) = —In F'. Substituting G(F) = —In F
into (7.77) and exponentiating yields the following implicit equation for the generating function

2= Fel=Ft, (7.78)

The length distribution Py is just the k" term in the power series expansion of F(z). Formally, this term
may be extracted by writing P in terms of the contour integral

1 F(2)
= — z
P oni J T

then transforming the integration variable from z to F, and using the Lagrange inversion formula (see the
discussion on page 51 in Chapter 4). These steps give

1 F(2) 1 F dz
o f YT o ]{ 2Py gF
ekt ez | 1 2t
= — — — —— | dF’ 7.79
omi ]ée [Fk F’“—Q} ’ (7.79)
where we use the fact that j—; =t F 2‘5(1 — 2F?t) in the above integral. Now we find the residues simply by

expanding e*¥’ *tina power series and keeping only the coeflicient of % in the integrand. Because the power

series is even in F', only Py for odd values of k is non zero and we find

(kt)(k=1)/2 2t(kt)(k—3)/2]

Pk _ e—kt l

I ]

After some simple algebra, the domain length distribution is

2k + 1)1
Poy1(t) = (+k7') th e~ (k+1t (7.80)
Near the critical time (¢ — 1/2), Stirling’s approximation gives, for the leading behavior of domain length

distribution,
1

7172 k372
with p = 1 —2¢. While this distribution has a characteristic length scale k* = 4/p? = (1/2 —t)~2, this length
does not fully characterize the distribution. Since the domain length distribution has a power-law & =3/ tail
that is cut off at k* o« p~2, the average domain length (k) = >, k Py ~ fk kk=3/2 dk. This last integral

then gives the expected behavior (k) ~ p~.

P(t) ~ kP4 (7.81)
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Problems

7.1 The Voter Model

1.

Evaluate the average opinion for a Democrat in a sea of uncommitted voters: S(x,0) = d(x).

7.2 & 7.3 Glauber Spin-Flip Dynamics

1.

A

Solve for the domain number distribution in the Potts model with Glauber dynamics. Hint: P; is replaced by
Pi/(g—1) in Eq. (7.43).

Verify that for the Hamiltonian H = — . _. J; jsis; the spin flip rate is w; = %(1 — tanh 3s; Zj Jm»sj).

i<y
Obtain the entropy in the mean-field model.
Determine Pas(t), the probability to have M up spins and N — M down spins,”® for zero-temperature dynamics.
Examine P (t) for the critical dynamics.

In the low temperature regime (co > 8 > f3.), the distribution Pas(t) is bimodal with peaks of width o« v N
around My = % N (1+£m). The system spends almost all time in the proximity of the peaks yet occasionally
it leaves one peak and reaches the other. Estimate the transition time.

7.4 Glauber Spin-Exchange Dynamics

1.

Show that the correlation functions obey an infinite hierarchy of equations. Write the evolution equation for
Si.

2. Obtain the number of frozen configurations in the zero-temperature limit for Kawasaki dynamics.

Solve for the domain wall density at zero-temperature for random initial conditions.

7.5 Cluster Dynamics

1.

2.

Consider the zero-temperature Swendsen-Wang dynamics, with energy lowering moves only, for the ¢ = oo
Potts model. In this case a domain merges with only one of its neighbors. Determine the domain density and
the domain length distribution.

Solution: Since there is a net loss of one domain in a single update, the number density obeys dp/dt = —p.
Therefore p(t) = e~ * while the average domain length again grows exponentially with time. The domain length
size distribution now evolves by two-body aggregation, so that this distribution satisfies

dPy,
— =P+ Z P,P;. (7.82)
i+j=k
To solve this equation, we again introduce the generating function into this equation to give %—IZ =—F+ F?,
whose solution is simply
F —t
F(z,t) = o(z)e (7.83)

T 1-(1—eNEFy(2)

Expanding this generating function in a power series we immediately obtain
P(t) =e "1 —e H)F (7.84)

Asymptotically, the distribution attains the scaling form Py(t) ~ e ‘®(ke ') with the purely exponential
scaling function ®(z) = exp(—z). The enhancement of smaller than average domains disappears in the ¢ — co
limit.

Analyze a domain coarsening process where the smallest domain merges with one of its neighbors.

5In all problems in this paragraph the system is finite.



