
Chapter 10

COMPLEX NETWORKS

The study of complex networks represents a non-traditional application of non-equilibrium statistical physics.
As we shall discuss, the tools of the field seem particularly appropriate to quantify basic properties of complex
networks, such as percolation transitions and many geometrical properties. In this chapter, we will present
some of the simplest complex network models and apply the master equation to quantify many of their basic
features through a dynamical approach.

10.1 Erdös-Rényi Random Graph

A simple and classic starting example is the Erdös-Rényi (ER) random graph. This graph consists of N
nodes in which each node pair may be joined by a link according to a connection probability that we define
as p/N , with 0 ≤ p ≤ N . Since any pair of nodes may be connected equiprobably, the ER graph has no
spatial structure. A striking feature of the ER graph is the existence of a phase transition, in the limit
N → ∞, at p = 1. For p < 1, a finite network consists of disconnected clusters whose a maximum size is of
the order of lnN . At p = 1 the size of the largest cluster beccomes of the order of N2/3. In the N → ∞
limit, this largest cluster becomes the incipient infinite cluster; the term incipient refers to the fact that this
cluster comprises a vanishing fraction of all nodes as N → ∞. Finally, for p > 1 the largest cluster consists
of a finite fraction of all nodes. For p = N , all N(N − 1)/2 pairs of nodes are connected to give the complete
graph.

While the ER graph is usually defined as a static problem — each link is independently present with
probability p/N — we recast the ER graph dynamically by creating links between nodes at a constant rate.
Within this formulation, the master equation provides in a simple way to determine the structure of the
ER graph. A similar dynamical perspective was used to determine the coverage evolution in irreversible
adsorption (Chapter 6), from which the final coverage — an ostensibly static quantity — emerged as a
simple byproduct.

mention ER graph is like a tree with zg ≈ N generations.

Degree distribution

We build the ER graph by starting with N disconnected nodes and then introducing links one by one
between randomly-selected node pairs. The two nodes may be the same, and also, more than one link may
be created between a pair of nodes. However, these two processes occur with a vanishingly small probability
when N → ∞ and may be ignored. For convenience, we define the rate at which each link is introduced as
(2N)−1. The total number of links at time t is then Nt/2 and the average degree equals t. Here degree is
the number of links that are attached to a node. Thus the average degree evolves by a stochastic process in
which k → k + 1 at rate 1.

As we shall see, the distribution of degrees is an important characteristic of complex networks. We define
the degree distribution as nk, the fraction of nodes of degree k. Nodes of degree k are created from nodes
of degree k − 1 at rate 1, and nodes of degree k are also lost at rate 1 due to the creation of nodes of degree
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k + 1. The degree distribution therefore satisfies the master equation of the Poisson process

dnk

dt
= nk−1 − nk , (10.1)

which applies for all k ≥ 0 if we impose the additional condition n−1 ≡ 0. For a network with no links at
t = 0, the initial condition is nk(0) = δk,0. Eqs. (10.1) may then be solved one by one starting with n0 (see
problem 10.1), and the degree distribution is

nk =
tk

k!
e−kt . (10.2)

From this expression, the mean degree equals the time, 〈k〉 = t, while the standard deviation
√

〈k2〉 − 〈k〉2 =√
t. Thus the degree distribution becomes sharp in the thermodynamic limit.

The percolation transition

We probe the percolation transition in the ER graph by studying the cluster size distribution. Here a cluster
is defined as the set of all nodes that are connected by links into a single connected component. Initially the
network consists of N clusters of size 1. As links are added, clusters merge and their number systematically
decreases while their mean size grows. Since a link occurs equiprobably between any pair of nodes, there
are i × j ways to join disconnected clusters of sizes i and j to create a cluster of size i + j; consequently,
the overall rate for this event is ij/(2N). This process is precisely product kernel aggregation discussed in
chapter 4, and we can make use of the results derived therein to determine the cluster size distribution.

Figure 10.1: A realization of the ER graph that consists of two clusters: one of size 8 and one of size 3.

Let ck(t) be the density of clusters that contain k nodes at time t. The cluster size distribution obeys
the master equation

dck

dt
=

1

2

∑

i+j=k

(ici)(jcj) − k ck, (10.3)

with ck(0) = δk,1 for the disconnected initial condition. The gain term accounts for the merger between two
clusters whose sizes sum to k, and the loss term accounts for the loss of clusters of size k due to their linking
with other clusters. As a preliminary, it is useful to study moments of the size distribution, Mn =

∑

k knck.
The first moment, M1, is just the fraction of nodes that belong to finite clusters; this quantity therefore
equals 1 as long as there is no gelation, a condition that holds for t < 1 (see Sec. 4.1 for a detailed discussion
of this point). As derived in Eq. (4.30), the second moment, which gives the mean cluster size, obeys the
rate equation Ṁ2 = M2

2 for t < 1. With the initial condition M2(0) = 1, the solution is simply

M2 = (1 − t)−1, (10.4)

which shows that an infinite cluster forms at t = 1 when the number of nodes of the ER graph is infinite.
As t increases beyond the percolation point, this infinite cluster contains a finite fraction of all nodes and
eventually engulfs the entire system.

From our earlier discussion of product-kernel aggregation, the cluster size distribution is [see Eq. (4.38)]

ck(t) =
kk−2

k!
tk−1 e−kt . (10.5)
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While this exact distribution seems to have a smooth time dependence, there is a dramatic change in behavior
as t passes through 1 that can be seen by using Stirling’s approximation to give the asymptotic behaviors:

ck(t) ∼
{

e−k(t−ln t−1) t < 1;

(2π)−1/2k−5/2 t = 1.
(10.6)

The existence of a power-law distribution at t = 1 signals the percolation transition where the mean cluster
size diverges.

What happens when the ER graph is finite? The transition is no longer sharp, and singular behavior
is replaced by finite-size scaling laws. For example, for a finite network, the incipient infinite cluster now
becomes just the largest cluster. Its size, M , can be estimated by the extremal criterion,

N

∞
∑

k≥M

ck = 1, (10.7)

which states that there should be a single cluster whose size is in the range [M,∞]. Using the asymptotic
forms in Eqs. (10.6) for ck(t) in the extremal criterion, and approximating the sum by an integral we obtain

M ∼
{

lnN t < 1;

N2/3 t = 1.
(10.8)

Thus clusters are at most of size ln N below percolation, while a “giant” cluster of size N2/3 emerges as
percolation is approached. When does this cluster appear? Close to the percolation time, we may estimate
the typical cluster mass as

M2 ≈
M
∑

k2ck ∼
∫ M

k2 k−5/2 dk ∼ M1/2,

and equating this result to M2 = (1 − t)−1 in Eq. (10.4), we obtain M ∼ (1 − t)−2. Since M also scales as
N2/3, we obtain the percolation time in a finite network:

t ∼ 1 − N−1/3. (10.9)

Paths and cycles

A deeper characterization of the ER graph may be obtained by studying paths and cycles in the network.
A pair of nodes that are connected by a sequence of links forms a path. How do paths evolve with time?
When a newly-added link connects the ends of two paths of lengths n and m, the result is a path of length
n + m + 1. For ℓ > 0, the density of distinct paths that contain l links at time t, Pℓ(t), evolves as

dPℓ

dt
=

∑

n+m=ℓ−1

PnPm. (10.10)

The initial condition is Pℓ(0) = δl,0 and we define P0(t) = 1. The solution of (10.10) is simply

Pℓ = tℓ. (10.11)

For example, P1 = t corresponds to the link density being equal to t/2 and that every link corresponds to
two distinct paths of length 1 ambiguous. From this path length distribution, the total density of paths
and the typical path length,

Ptot ≡
∑

ℓ

Pℓ =
1

1 − t
,

〈ℓ〉 =

∑

ℓ ℓPℓ
∑

ℓ Pℓ
=

t

1 − t
, (10.12)
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respectively, both diverge at t = 1.
When a link directly joins two nodes that are already on the same path, a cycle forms. Let the average

number of cycles of length ℓ at time t be Qℓ(t). This quantity is coupled to the path length density through
the rate equation

dQℓ

dt
=

1

2
Pℓ−1. (10.13)

The right-hand side equals the link creation rate 1/(2N) times the total number of paths NPℓ−1. Solving
this equation, the cycle length distribution is

Qℓ =
tℓ

2ℓ
. (10.14)

Consequently, the total number of cycles in the system is Qtot ≡
∑

ℓ Qℓ = 1
2 ln 1

1−t , which diverges weakly
as t → 1.

10.2 Sequentially Growing Networks

Sequential growth describes the evolution of many networked systems, such as the Internet and the world-
wide web, where new routers or websites are added incrementally. It is natural to model such growing
networks, by adding nodes one by one with each new node attaching to a “target” node, or a set of target
nodes, with attachment rate Ak that depends only on the degree of the target (Fig. 10.2). The number of
nodes N therefore plays the role of a time-like variable and we sometimes refer to N as the “time”. The
case where the attachment rate Ak increases with k defines preferential attachment, which encapsulates the
notion of the “rich get richer”. For example, in the context of scientific citations, preferential attachment
means that a currently well-cited paper is more likely to be well cited in the future simply by virtue of being
well cited now. We now apply the master equation to elucidate the structure of such growing networks.

Uniformly Growing Tree

As a starting example, we study the simpler case of the uniformly growing tree (UGT), also known as the
random recursive tree. The growth rules of a UGT at any stage of its evolution are:

1. Pick one of the nodes of the UGT with uniform probability.

2. Introduce a new node that links to the target node.

Starting with the initial state of a single node, these steps repeated until the tree reaches a desired number
of nodes N . Each node is distinguished by the order in which it is introduced so that there are N ! distinct
trees of N nodes. Since each newly-introduced node has a single link, no closed loops can be generated.
Thus if the graph initially is a tree, it remains a tree.
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Figure 10.2: Evolution of one realization of a uniformly growing tree (upper left to lower right).
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The degree distribution

Let’s determine the degree distribution of the UGT, namely, the number of nodes of degree k when the
network contains N nodes, Nk(N). This distribution is distinct for each realization of the UGT, and, from
the statistical physics perspective, the interesting quantity is degree distribution averaged over all realizations
of trees with fixed N . Although the average distribution does not have a simple form for small N , it simplifies
considerably when N is large. In this limit, the average number of nodes of degree k evolves according to

dNk

dN
=

Nk−1 − Nk

N
+ δk1, (10.15)

where we denote the average degree distribution by Nk average notation. This master equation is es-
sentially the same as that for the ER graph, Eq. (10.1), except for the additional delta-function term that
accounts for the single outgoing link of the new node.

To get a feeling for the solution, let’s start by solving the master equations (10.15) one by one. With the
understanding that N−1 = 0, the master equations are, explicitly:

Ṅ0 = −N0

N

Ṅ1 =
N0 − N1

N
+ 1

Ṅ2 =
N1 − N2

N

Ṅ3 =
N2 − N3

N
,

etc., where the overdot denotes differentiation with respect to N . The solution to the first equation is simply
N0 = 1/N . We now rewrite the equation for N1 as ˙(N1N) = N + N0, with asymptotic solution N1 ∼ N/2.

By the same method, the equation for N2 becomes ˙(N2N) = N1, from which N2 ∼ N/4. This pattern of
behavior continues for all k so that we conclude that all the Nk are proportional to N .

It therefore is convenient to work with the density of nodes of degree k, nk ≡ Nk/N . In terms of this
quantity, Eq. (10.15) reduces to

nk = nk−1 − nk + δk1, (10.16)

which are trivially soluble. Starting with n0 = 0, we obtain n1 = 1
2 , n2 = 1

4 , etc., and the general solution
is simply nk = 2−k. Thus the UGT has a rapidly decaying degree distribution in which the average degree
equals 2 and the largest degree is of order lnN for a network of N nodes.

Genealogical tree

It is revealing to study the genealogy underlying a UGT. We build this genealogy by taking generation g = 0
to be the initial node. Nodes that attach to those in generation g form generation g + 1. For example, in
the final network of Fig. 10.2, node 1 is the “ancestor” of 2, while nodes 3 and 7 are the “descendants” of 2.
There are 5 nodes in generation g = 1 and 3 in g = 2, leading to the genealogy of Fig. 10.3.

1

62 8 94

3 7 5

g=0

2

1

Figure 10.3: Genealogy of the network in Fig. 10.2 with nodes arranged according to generation number.
The node indices indicate when each is introduced.
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How many generations are there in a tree of N nodes? What is the size of the gth generation, Lg(N)?
To determine Lg(N), note that Lg(N) increases when a new node attaches to a node in generation g − 1,

an event that occurs with probability Lg−1/N . This gives the evolution equation L̇g(N) = Lg−1/N , with
solution Lg(τ) = τg/g!, where τ = lnN . Using Stirling’s approximation, we see that the generation size
Lg(N) therefore grows with g, when g < τ , and then decreases and becomes of order 1 when g = eτ . The
genealogical tree therefore contains approximately eτ generations for a tree of N nodes. This latter result
also determines the diameter of the tree, since the diameter (also the maximum distance between any pair
of nodes) is twice the distance from the root to the last generation. Therefore the diameter of the tree scales
as 2eτ ≈ 2e lnN ; this is the same dependence on N as in the Erdös-Rényi random graph.

Redirection

We now generalize the UGT to incorporate the mechanism of redirection. In redirection a new node n is
introduced and an earlier node x is uniformly selected as a target. With probability 1 − r, the link from n

to x is created. However, with probability r, the link is redirected to the ancestor y of node x (Fig. 10.4).

n

y x

Figure 10.4: Illustration of redirection. The new node (solid) selects a target node x uniformly at random.
With probability 1 − r a link is established to this target (dashed arrow), while with probability r the link
is established to y, the ancestor of x (thick solid arrow). The rate at which attachment to y occurs by
redirection is proportional to the number of its upstream neighbors (shaded).

According to the defining processes of redirection shown in Fig. 10.4, the degree distribution Nk(N)
evolves according to

dNk

dN
=

1 − r

N
[Nk−1 − Nk] + δk1 +

r

N
[(k − 2)Nk−1 − (k − 1)Nk] . (10.17)

The first three terms correspond to the growth processes of the UGT, whose master equation (10.15) is
recovered for redirection probability r = 0. The last two terms account for the change in Nk due to
redirection. To understand their origin, consider the gain term. Since the initial node is chosen uniformly,
if redirection does occur, the probability that a node of degree k − 1 receives the newly-redirected link is
proportional to the number of its incoming links, which equals k − 2 (shaded nodes in Fig. 10.4). A similar
argument applies for the redirection-driven loss term.

Combining the terms in Eq. (10.17), the master equation becomes

dNk

dN
=

r

N

{[

k − 1 +

(

1

r
− 2

)]

Nk−1 −
[

k +

(

1

r
− 2

)]

Nk

}

+ δk1. (10.18)

Thus uniform attachment, in conjunction with redirection, generates a growing network in which the attach-
ment rate to a node of degree k is a linear function of k, albeit with an additive shift. To determine the
degree distribution, we now study preferential attachment networks systematically, from which the solution
of the redirection model follows easily.
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Preferential attachment networks

The degree distribution

Let us again consider networks in which each new node attaches to one pre-existing node of degree k with
rate Ak. The master equation for the degree distribution is, in analogy with Eq. (10.15) for the uniformly
growing tree,

dNk

dN
=

Ak−1Nk−1 − AkNk

A(N)
+ δk1. (10.19)

The first term on the right accounts for processes in which the new node connects to a node that already has
k−1 links, thereby increasing Nk by one. Since there are Nk−1 nodes of degree k−1, the total rate at which
such processes occur equals to Ak−1Nk−1. The factor A(N) ≡ ∑

j≥1 AjNj(N) is the total rate for any event
to occur, so that Ak−1Nk−1/A(N) is the probability to attach to a node of degree k − 1. A corresponding
role is played by the second (loss) term on the right-hand side; namely, AkNk/A(N) is the probability that
the new node connects to a node with k links, thus leading to a loss in Nk by one. The last term accounts
for the new node itself that has one outgoing link and no incoming links.

For attachment rates that do not grow faster than linearly with k, both the degree distribution and A(N)
grow linearly with time (see problem 10.x). This fact suggests making the substitutions Nk(N) = N nk and
A(N) = µN in Eq. (10.19). With this step, the overall dependence on N cancels out, leaving behind the
recursion relations

nk =
Ak−1nk−1 − Aknk

µ
k > 1, and n1 = −A1n1

µ
+ 1, (10.20)

with formal solution

nk =
µ

Ak

k
∏

j=1

(

1 +
µ

Aj

)−1

. (10.21)

To make this solution explicit, we need the amplitude µ in A(N) = µN . Using the definition µ =
∑

j≥1 Ajnj

in Eq. (10.21), we obtain the condition

∞
∑

k=1

k
∏

j=1

(

1 +
µ

Aj

)−1

= 1, (10.22)

which shows that the amplitude µ depends on the functional form of the attachment rate. When Ak = kγ

with 0 ≤ γ ≤ 1, a numerical solution of Eq. (10.22) shows that µ varies smoothly between 1 and 2 as γ
increases from 0 to 1.

For sublinear attachment rates, γ < 1, we rewrite the product Eq. (10.21) as the exponential of a sum,
convert the sum to an integral, and then expand the logarithm inside the integral in a Taylor series. These
steps lead to

nk ∼



































k−γ exp
[

−µ
(

k1−γ−21−γ

1−γ

)]

1
2 < γ < 1,

k(µ2−1)/2 exp
[

−2µ
√

k
]

γ = 1
2 ,

k−γ exp
[

−µ k1−γ

1−γ + µ2

2
k1−2γ

1−2γ

]

1
3 < γ < 1

2 ,

(10.23)

etc. Whenever γ decreases below 1/m, with m a positive integer, an additional term in the exponential
arises from the now relevant contribution of the next higher-order term in the expansion of the product in
Eq. (10.21).

For the strictly linear attachment rate, Ak = k, the total event rate is A =
∑

k AkNk =
∑

k kNk = 2N .
Substituting this value for A = µN in Eq. (10.20) and solving the resulting recursion gives the discrete
power-law form

nk =
4

k(k + 1)(k + 2)
=

4Γ(k)

Γ(k + 3)
∼ 4

k3
. (10.24)
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The main feature of this result is that there is no natural degree scale. For this reason, such networks have
been dubbed scale free, and they stand in stark contrast to the delta-function degree distribution of regular
lattices and the Poisson degree distribution of the Erdös-Rényi random graph.

A surprising feature of linear preferential attachment is that the exponent of the power-law degree distri-
bution is non-universal . The asymptotic evaluation of the product in Eq. (10.21) generally leads to a degree
distribution exponent that can assume any value greater than 2. All that is required is that the attachment
rate is asymptotically linear, Ak ∼ k, rather than strictly linear, Ak = k. This non-universal behavior is
counter to the conventional wisdom of critical phenomena in which power laws, by their very nature, should
not depend on microscopic model details.

N

Figure 10.5: Creation of a “bible” for attachment rate Ak ∼ kγ with γ > 2. In the configuration shown each
new node attaches only to the bible.

What happens for superlinear attachments rates? Now an analog of gelation occurs in that nearly all
the links in the network condense onto a single node, while all other nodes are attached to a small number
of links. Especially singular behavior occurs for γ > 2 because one node there is a non-zero probability that
a single node links to every node in an infinite network, while only a finite number of links exist between all
other nodes. We call such a highly-linked node a “bible”. It is easy to see that the probability for a bible to
exist is non zero when γ > 2. Suppose that there is a bible after then network contains N +1 nodes (1 bible
and N citing nodes). The probability that the next node links to the initial node is then Nγ/(N +Nγ), and
the probability that this connection pattern to continue indefinitely is

P =
∞
∏

N=1

1

1 + N1−γ
.

Evaluating this product by the standard steps of writing the product as the exponential of a sum, approx-
imating the sum as an integral, and expanding the logarithm in the integrand to first order, we find that
P = 0 for γ ≤ 2 and P > 0 for γ > 2. Thus for γ > 2, there a non-zero probability for a bible to exist even
in an infinite network.

When 1 < γ < 2, singular behavior still arises in which one node is linked to all but a small number of
other nodes. There is a also an infinite sequence of subtle connectivity transitions in the behavior of the
number of low-degree nodes. For 3/2 < γ < 2, the number of nodes of degree 2 grows as N2−γ , while the
number of nodes with degree > 2 remains finite. For 4/3 < γ < 3/2, the number of nodes of degree 3 grows
as N3−2γ and the number with degree > 3 is finite. Generally for m+1

m < γ < m
m−1 , Nk ∼ Nk−(k−1)γ for

k ≤ m, while the number of nodes with degree greater than m links is finite.

Node attractiveness

In many real networked systems, such as the world-wide web, book sales by individuals, scientific publications,
etc., not all nodes are equivalent, but rather, some are more attractive than others at their inception.
Thus it is natural that the subsequent attachment rate to a node should be a function of both its degree
and its attractiveness. The master equation approach easily gives the degree distribution for this natural
generalization of preferential attachment.
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Each node is assigned an initial “attractiveness” η > 0 that is chosen from a specified distribution p0(η).
The attachment rate for a node with degree k and attractiveness η is defined as Ak(η). To characterize
how nodes evolve, we need to monitor their degree and keep track of their attractiveness. Thus let Nk(η)
be the number of nodes of degree k and attractiveness η. The evolution of this joint degree-attractiveness
distribution is governed by the master equation

dNk(η)

dN
=

Ak−1(η)Nk−1(η) − Ak(η)Nk(η)

A
+ p0(η)δk1, (10.25)

where A =
∫

dη
∑

k Ak(η)Nk(η) is the total rate. Following the same approach as that used to analyze
Eq. (10.19), we substitute A = µN and Nk(η) = Nnk(η) into Eq. (10.25). The solution of the resulting
recursion relation is

nk(η) = p0(η)
µ

Ak(η)

k
∏

j=1

(

1 +
µ

Aj(η)

)−1

. (10.26)

As a simple and generic example, consider the case where Ak(η) = ηk, that is, the attachment rate is
linear in degree and in attractiveness. Applying the same analysis as in the homogeneous network, we obtain
the degree distribution

nk(η) =
µ p0(η)

η

Γ(k) Γ
(

1 + µ
η

)

Γ
(

k + 1 + µ
η

) . (10.27)

Thus for nodes with a fixed attractiveness η, the asymptotic degree distribution is the power law nk(η) ∼
k−1−µ/η. What is perhaps more relevant, however, is the degree distribution averaged over the attractiveness
distribution. For this purpose, we need the amplitude µ. We therefore substitute (10.27) into the definition
µ =

∫

dη
∑

k≥1 Ak(η)nk(η) and use the identity

∞
∑

k=1

Γ(k + u)

Γ(k + v)
=

Γ(u + 1)

(v − u − 1) Γ(v)

to yield the implicit relation that determines µ:

1 =

∫

dη p0(η)

(

µ

η
− 1

)−1

. (10.28)

The above condition leads to two alternatives: in the pathological case where the support of η is un-
bounded so that arbitrarily attractive nodes can exist, the integral diverges and there is no solution for
µ. In this case, the most attractive node is connected to a finite fraction of all links. Conversely, if the
support of η is bounded, then the degree distribution for fixed η is simply the power law nk(η) ∼ k−ν(η),
with an attractiveness-dependent exponent ν(η) = 1 + µ/η. However the degree distribution averaged over
all attractiveness, 〈nk〉 =

∫

dη nk(η), is no longer a power law, but rather 〈nk〉 is governed by properties of
the initial attractiveness distribution near the upper cutoff. For example, if p0(η) ∼ (ηmax − η)ω−1 (with
ω > 0 to ensure normalization), the total degree distribution is

nk ∼ k−(1+µ/ηmax) (ln k)−ω. (10.29)

10.3 Finite Networks

Since real networks are necessarily finite, it is wothwhile to ask: what is the role of finiteness on the properties
of growing networks? Clearly, finiteness imposes a cutoff on the power-law tail degree distribution (Fig. 10.6),
and we wish to quantify this cutoff and related manifestations of finitness. For finite N , the state of a network
can be more generally characterized by the set N = {N1, N2, . . .} that specifies the number of nodes Nk of
degree k. Each time a new node is introduced into the network, its state N evolves by:

(N1, N2) → (N1, N2 + 1),

(N1, Nk, Nk+1) → (N1 + 1, Nk − 1, Nk+1 + 1).
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The first process arises when the new node attaches to an existing node of degree 1; in this case, the number
of nodes of degree 1 does not change while the number of nodes of degree 2 increases by 1. The second
line accounts for the case where the new node attaches to a node of degree k > 1. From these processes,
it is straightforward, in principle, to write the master equation for the joint probability distribution P (N).
However, such an equation would provide much more information than is of practical interest. Here we focus
on the degree distribution and fluctuations in the degree distribution. As we shall show, for a finite network
the number of nodes of fixed degree, Nk(N), are random variables that become sharply peaked about their
average values in the N → ∞ limit.

When the number of nodes N is finite, there will also necessarily be a maximal degree kmax. Thus
predictions for the degree distribution that are implicitly based on an infinite network must eventually
break down as k approaches kmax. The maximal degree may be determined by the extremal criterion
∑

k≥kmax
〈Nk(N)〉 ≈ 1 which states that there should be one node whose degree is in the range (kmax,∞).

This criterion yields kmax ∼ N1/(ν−1) when the degree distribution of an infinite network asymptotically
decays as k−ν .
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Figure 10.6: (left) Normalized degree distributions for strictly linear preferential attachment networks (Ak =
k) with 102, 103, . . . , 106 links (upper left to lower right). The dashed line is the asymptotic result nk =
4/[k(k + 1)(k + 2)]. (right) The scaling function F (ξ), with ξ = k/N1/2 from Eq. (10.39). The circles give
the simulation data of 106 realizations of a network with N = 104 links for the dimer initial condition.

Nodes of Fixed Degree

Degree 1

To appreciate the role of finiteness in the simplest possible setting, consider the number of nodes of degree
1, N1(N). For the case of strictly linear preferential attachment, Ak = k, the average number of such nodes
evolves according to

〈N1(N + 1)〉 =

〈

N1(N) × N1(N)

2N

〉

+

〈

(N1(N) + 1) ×
(

1 − N1

2N

)〉

.

The first term on the right accounts for the new node attaching to a node of degree one, an event that occurs
with probability N1/2N . In this case, the number of nodes of degree one does not change. The second term
accounts for the new node attaching to a node of degree greater than one with probability (1−N1/2N). For
this event N1 increases by one. Simplifying, we obtain the recursion

〈N1(N + 1)〉 = 1 +

(

1 − 1

2N

)

〈N1(N)〉. (10.30)

We take the initial condition 〈N1(1)〉 = N1(1) = 2. why?
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To solve this recursion, we multiply (10.30) by NwN−1 and sum over N ≥ 1 to convert it into the
differential equation for the generating function X1(w) =

∑

N≥1〈N1(N)〉wN−1,

dX1

dw
=

1

(1 − w)2
+

1

2
X1 + w

dX1

dw
. (10.31)

Solving Eq. (10.31) subject to the initial condition X1(0) = 2 gives X1(w) = 2
3 (1−w)−2 + 4

3 (1−w)−1/2, and
expanding this solution in a Taylor series in w leads to

〈N1(N)〉 =
2

3
N +

4

3
√

π

Γ
(

N − 1
2

)

Γ(N)
. (10.32)

Thus the fraction of nodes of degree 1 approaches the expected value of 2/3 [see Eq. (10.24)], but with
corrections that vanish as N−1/2.

Degree Greater Than One

Following the same reasoning as in the case of nodes of degree 1, the number of nodes of degree k ≥ 2,
Nk(N) evolves as

〈Nk(N + 1)〉 =

〈

N1(N) × N1(N)

2N

〉

+

〈

(N1(N) + 1) ×
(

1 − N1

2N

)〉

.

The first term on the right accounts for the new node attaching to a node of degree k with probability
Nk/2N , after which the Nk decreases by 1. The second term accounts for the new node attaching to a
node of degree k − 1 with probability Nk−1/2N), after which Nk increases by 1. The last term accounts for
attachment to all other nodes, which leads to no change in Nk. This then gives the recursion

〈Nk(N + 1)〉 = 〈Nk(N)〉 +

〈

(k − 1)Nk−1(N) − kNk(N)

2N

〉

. (10.33)

The first term on the right accounts for the new node attaching to a node of degree k − 1 with probability
Nk−1/2N . The second term accounts for the new node attaching to a node of degree k with probability
Nk/2N . For this event N1 increases by one.

Thus recursion can be again solved by the generating function method (problem 10.x). Expanding this
generating function in a Taylor series we then obtain 〈Nk(N)〉, and the explicit results for the first few k
are:

〈N1(N)〉 =
2

3
N +

4

3
√

π

Γ
(

N − 1
2

)

Γ(N)
,

〈N2(N)〉 =
1

6
N +

4

3
√

π

Γ
(

N − 1
2

)

Γ(N)
− 3

2
δN,1,

〈N3(N)〉 =
1

15
N +

4

3
√

π

Γ
(

N − 1
2

)

Γ(N)
− 4

5
√

π

Γ
(

N − 3
2

)

Γ(N)
− 3 δN,1

Thus as N increases the number of nodes Nk with fixed degree k approaches the value obtained for the
infinite system, 4

k(k+1)(k+2) , but with corrections whose leading behavior is proportional to N−1/2.

Nodes of Arbitrary Degree

More generally, what is the dependence of Nk on both k and on N? The existence of this maximal degree
suggests that the degree distribution should be described by the finite-size scaling form

〈Nk(N)〉 ≃ NnkF (ξ), ξ = k/kmax. (10.34)
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This scaling function has a well-defined peak for ξ ≈ 2 (Fig. 10.6), and through the use of the generating
function method, it is possible to determine the full behavior of the scaling function. To start, we need
the dependence of Nk(N) on both N nd k. It is therefore useful to introduce the two-variable generating
function

N (w, z) =

∞
∑

N=1

∞
∑

k=1

〈Nk(N)〉wN−1 zk . (10.35)

Taking Eq. (10.33), multiplying by wN−1zk and summing over all N and k, the generating function N (w, z)
satisfies

(

2(1 − w)
∂

∂w
+ z(1 − z)

∂

∂z
− 2

)

N =
2z

(1 − w)2
. (10.36)

To simplify this equation, we introduce the rotated variables x, y defined by x + y = − 1
2 ln(1 − w) and

x − y = ln z
1−z , to recast Eq. (10.36) into

(

∂

∂x
− 2

)

N (x, y) =
2 e5x+4y

ex + ey
, (10.37)

whose general solution is

N (x, y) = e4x+4y − 2e3x+5y − e2x+2y + 2e2x+4y + 2
e2x+2y

1 + e2y
+ 2e2x+6y ln

(

ex+y + e2y

1 + e2y

)

. (10.38)

We may then extract the scaling function F (ξ) from this generating function, and the final result is

F (ξ) = erfc

(

ξ

2

)

+
2ξ + ξ3

√
4π

e−ξ2/4 , (10.39)

where erfc(x) is the complementary error function. The most important feature of this result is that the
exact average degree distribution has a Gaussian large-degree tail

〈Nk(N)〉 → 2√
πN

e−k2/4N , (10.40)

and moreover, the scaling function in Eq. (10.39) completely describes the finite-size correction to the degree
distribution (Fig. 10.6).

Higher Moments and Their Fluctuation

We now turn to higher moments of the degree distribution. While the zeroth and first moments of the degree
distribution are simply related to the total number of links for any network topology, the higher moments
are not so simply characterized, but instead reflect the power-law tail of the degree distribution.

Using the exact expression (10.38) for the generating function, the second moment of the degree distri-
bution is obtained from

(

z2 ∂

∂z

)2

N (w, z)
∣

∣

∣

z=1
=

4 − 2 ln(1 − w)

(1 − w)2
.

We now expand the right-hand side in a series in w to yield

〈k2〉 ≡
∞
∑

k=1

k2〈Nk〉 = 2NHN , = 2N lnN + 2γN + 1 − 1

6N
+ . . . , (10.41)

where HN =
∑

1≤j≤N j−1 is the harmonic number and γ ≈ 0.5772166 is Euler’s constant.
For the third moment we find

〈k3〉 =
32√
π

Γ
(

N + 3
2

)

Γ(N)
− 6NHN − 16N . (10.42)
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More generally, the dependence of the moments on N stems from the power-law tail of the degree
distribution 〈Nk〉 ∝ N/k3. From this asymptotic distribution, a suitably normalized set of measures for the
mean degree

Mn =

( 〈kn〉
〈k0〉

)1/n

, (10.43)

has the following N dependence:

Mn ∝











const. n < 2

lnN n = 2

N (n−2)/2 n > 2

(10.44)

Sensitivity

To illustrate the crucial role of the initial condition, let’s study the degree of the first node in the network. Let
P (k, N) be the probability that the first node has degree k in a network of N nodes. For linear preferential
attachment, Ak = k, this probability obeys the master equation

P (k, N + 1) =
k − 1

2N
P (k − 1, N) +

2N − k

2N
P (k, N). (10.45)

The first term on the right accounts for the situation when the first node has degree k − 1: a new node can
attach to it with probability (k − 1)/2N , thereby increasing the probability for the first node to have degree
k. Conversely, with probability (2N −k)/2N a new node does not attach to the earliest node, thereby giving
the second term on the right.

The solution to the master equation (10.45) for the “dimer” initial condition • • is

P (k, N) =
1

22N−k−1

(2N − k − 1)!

(N − k)! (N − 1)!
−→ 1√

πN
e−k2/4N , (10.46)

where the asymptotic behavior applies in the limit N → ∞, with the scaling variable k/N1/2 being finite.
Thus the average degree of the first node is 〈k〉1 =

√

4N/π ≈ 1.228
√

N . On the other hand, from the
extremal criterion for the largest degree in the network

∞
∑

kmax

Nnk = 1,

and using asymptotic degree distribution nk ∼ 4/k3, we obtain the largest degree kmax ∼
√

2N ≈ 1.4142
√

N .
Thus the degree of the first node of the network is close the largest degree; this fact implies that there is a
substantial probability that the first node in the network is the one with the largest degree.

Although P (k, N) contains all information about the degree of the first node, its moments 〈ka〉N =
∑

kaP (k, N) are simpler to appreciate. Using Eq. (10.45), the average degree of the initial node satisfies
the recursion relation

〈k〉N+1 = 〈k〉N
(

1 +
1

2N

)

, (10.47)

whose solution is

〈k〉N = Λ
Γ

(

N + 1
2

)

Γ
(

1
2

)

Γ(N)
∼ Λ√

π
N1/2 . (10.48)

The prefactor Λ depends on the initial condition, with Λ = 2, 8/3, 16/5, . . . for the dimer, trimer, tetramer,
etc., initial conditions.

This multiplicative dependence on the initial condition means that the first few growth steps substantially
affect the average degree of the first node. For example, for the dimer initial condition, the average degree
of the first node is, asymptotically, 〈k〉N ∼ 2

√

N/π. However, if the second link attaches to the first node,

an effective trimer initial condition arises and 〈k〉N ∼ (8/3)
√

N/π. Thus small initial perturbations at the
beginning of the network growth lead to huge differences in the degree of the first node.
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Problems

Section 10.1

1. Solve the master equations for the degree distribution of the ER graph

dnk

dt
= nk−1 − nk

one by one for the initial condition n0(t = 0) = 1 and show that the solution is

nk =
tk

k!
e−kt.

Section 10.2

1. Compute the degree distribution for the uniformly growing tree for a few values of N = 1, 2, 3, . . .
within the (i) continuous and (ii) discrete approach. For the continous formulation, solve the system
of differential equations (10.15). For the discrete approach, solve the exact recursion formulae

Nk(N + 1) − Nk(N) =
Nk−1(N) − Nk(N)

N
+ δk,1.

Compare your results with the asymptotic average degree distribution Nk(N) ∼ N2−k.

2. Show that the zeroth and first moments of the degree distribution Mn(N) ≡ ∑

j≥1 jnNj(N) have the
time dependence M0(N) = N and M1(N) = 2N , independent of the attachment rate Ak.

3. Verify, for attachment rates that do not grow faster than linearly with k, that both the degree distri-
bution Nk(N) and A(N) both grow linearly with time.

4. Show that the limiting behavior of µ in A(N) = µN is give by:

µ = 1 + B0γ + O
(

γ2
)

, γ ↓ 0

µ = 2 − B1(1 − γ) + O
(

(1 − γ)2
)

, γ ↑ 1

with

B0 =

∞
∑

j=1

ln j

2j
= 0.5078 . . . ,

B1 = 4

∞
∑

j=1

ln j

(j + 1)(j + 2)
= 2.407 . . . .

Here γ is the exponent in the attachment rate Ak defined by Ak = kγ .

5. Determine the degree distribution for the shifted linear attachment rate Ak = k + λ. First show
that A(N) =

∑

j AjNj(N) now equals A(N) = M1(N) + λM0(N). Using these results in the master
equation show that the degree distribution is

nk = (2 + λ)
Γ(3 + 2λ)

Γ(1 + λ)

Γ(k + λ)

Γ(k + 3 + 2λ)
. (10.49)

Show that asymptotically, this distribution decays as k−ν , with ν = 3 + λ = 1 + 1
r .

6. Consider the connection kernel A1 = 1 and Ak = ak for k ≥ 2. Show that the resulting degree
distribution is asymptotically a power law, nk ∼ k−ν , with ν = (3 +

√

1 + 8/a∞)/2, which can indeed
be tuned to any value larger than 2.
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7. Generalize linear preferential attachment networks to the case where each new node links to m pre-
existing nodes. Write the master equation for this process, and by applying the same approach as that
used for Eq. (10.19), find the the degree distribution

8. Solve the recursion Eq. (10.33) for the number of nodes of degree k, Nk(N) by the generating function
method.

Solution: Define the generating function as Xk(w) =
∑∞

N=1〈Nk(N)〉wN−1. We multiple Eq. (10.33) by
wN to convert it to a differential equation that relates Xk and Xk−1. This equation is further simplified
by making the transformation

Xk(w) = (1 − w)
k
2
−1 Uk(u), u =

1√
1 − w

− 1. (10.50)

The resulting equation is
dUk

du
= (k − 1)Uk−1, k ≥ 2. (10.51)

Rewriting our previous solution for X1 as

U1(u) =
2

3
u3 + 2u2 + 2u + 2, (10.52)

one can solve Eqs. (10.51) subject to the initial condition Uk(u = 0) = 0 for k ≥ 2. The final result is

Uk(u) =
4uk+2

k(k + 1)(k + 2)
+

4uk+1

k(k + 1)
+

2uk

k
+ 2uk−1 .

Using the binomial formula, we transform Xk(z) into the series

Xk(w) =
4

k(k + 1)(k + 2)

1

(1 − w)2
+

4

3

1

(1 − w)1/2

+ 2

k−1
∑

a=1

(−1)a a + 2

a + 3

(

k − 1

a

)

(1 − w)(a−1)/2 .
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