PY 452 Midterm

Date: Thursday October 15, 2009, 9:30am-11:00am
This is a CLOSED book exam; no notes, calculators, or any electronic devices allowed! PLEASE EXPLAIN YOUR WORK CLEARLY to maximize the possibility of partial credit.

1. Three non-interacting particles of the same mass m are all in a one-dimensional simple harmonic oscillator potential, with total energy $E=13 \hbar \omega / 2$.
(a) If the particles are distinguishable, determine the possible occupation-number configurations (i.e., give the possible sets of numbers $\left(n_{1}, n_{2}, \ldots\right)$, where n_{k} is the number of particles in the $k^{\text {th }}$ energy state). Also, enumerate all the distinct three-particle states for each allowable configuration.
(b) Repeat for the case of identical spinless Fermions.
(c) Repeat for the case of identical spinless Bosons.
2. This problem involves first- and second-order perturbation theory.
(a) Consider a Schrödinger Hamiltonian of the form $H_{0}+\lambda H^{\prime}$, in which the states $\left\{\psi_{n}\right\}, n=1,2,3, \ldots$ are a complete set that are exact solutions of H_{0} with corresponding energies E_{n}^{0}. Derive, to first-order in perturbation theory, the correction to the $n^{\text {th }}$ energy eigenvalue.
(b) Consider a free electron in the spin-up state $\mid \uparrow>$ (with magnetic moment $\vec{\mu}=-e \mathbf{S} /(m c)$) in the presence of a strong magnetic field $\mathbf{B}=B_{z} \hat{z}$ that points along the z direction. The Hamiltonian due to the field is $H_{0}=-\mu_{z} B_{z}$. Suppose that a small additional magnetic field $B_{x} \hat{x}$ is imposed. What is the change in the electron energy to: (i) first order in the perturbation and (ii) second order in the perturbation?

For your reference, the Pauli matrices are:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the formal expression for the second-order energy correction is:

$$
E_{n}^{2}=\sum_{m \neq n} \frac{\left|<\psi_{m}^{0}\right| H^{\prime}\left|\psi_{n}^{0}>\right|^{2}}{E_{n}^{0}-E_{m}^{0}}
$$

3. Consider a particle that moves in the two-dimensional simple harmonic oscillator potential with Hamiltonian

$$
H_{0}=\frac{\left(p_{x}^{2}+p_{y}^{2}\right)}{2 m}+\frac{m \omega_{0}^{2}\left(x^{2}+y^{2}\right)}{2}
$$

and with energy levels $E\left(n_{x}, n_{y}\right)=\left(n_{x}+n_{y}+1\right) \hbar \omega$. The perturbation $H^{\prime}=V x y$ is now imposed. Compute, to first order in the perturbation $V x y$:
(a) The shift in the ground-state energy.
(b) The energy shift of the doubly-degenerate first excited state by applying degenerate perturbation theory.
(c) The energy shift of the triply-degenerate second excited state, following the same approach as part (b).

Hint: The coordinate and momentum operators are related to the raising and lowering operators for the x - and y-coordinates, a^{\dagger}, a and b^{\dagger}, b, by:

$$
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a^{\dagger}+a\right) \quad y=\sqrt{\frac{\hbar}{2 m \omega}}\left(b^{\dagger}+b\right) \quad p_{x}=i \sqrt{\frac{2}{\hbar m \omega}}\left(a^{\dagger}-a\right) \quad p_{y}=i \sqrt{\frac{2}{\hbar m \omega}}\left(b^{\dagger}-b\right) .
$$

For unperturbed oscillator states in one dimension: $a^{\dagger}|n>=\sqrt{n+1}| n+1>$ and $a|n>=\sqrt{n}| n-1>$.

