Reflection symmetry (parity) Define a reflection (parity) operator
P|S5,585,...,58%) =|Sx,...,55,57)

Consider a hamiltonian for which [H,P]=0 and [H, T]=0; but note that [P, T]=0
Can we still exploit both P and T at the same time? Consider the state

a(k.p)) = }Z T (14 pP)la), p= 1

This state has momentum k, but does it have parity p? Act with P

Pla(k, p)) = \/L Z et T (P4 p)la)  PTT =T TP

N-1
1 1o
=D _E e™“"T" (1 4+ pP)la) = pla(k, it k=0ork=m

k=0,m momentum blocks are split into p=+1 and p=-1 sub-blocks

 [T,P]=0 in the k=0, blocks

 physically clear because -k=k on the lattice for k=0,

« we can exploit parity in a different way for other k — real basis
(semi-momentum states, will not discuss here)



Spin-inversion symmetry
Spin inversion operator: Z|S7,55,....5%) =|— S7,—=55,...,—=5%)

In the magnetization block mz=0 we can use eigenstates of Z

a(k, p, 2)) = }Z =R (1 4 pP)(1 + 27)|a)

Zlalk,p,z)) = z|lalk,p,z)), z==+1

. - ' . )
Example: block sizes Total spin S conservation
mz=0, k=0 (largest momentum block) « difficult to exploit

(p=+1,2 = +1) e complicated basis states
N LD LD L3 (L-D e calculate S usmg S$2=§(S+1)
8 7 1 0 2
12 35 15 9 21 g2 — S..S.
16 257 183 158 212 ; ; B
20 2518 92234 2136 2364 T ;
24 28968 27854 27482 28416 _ 9 S..8. +°N
28 361270 356876 355458 359256 Z ‘ + 4
32 4707969 4690551 4685150 4700500 v<J




Example: Thermodynamics

some quantities can be computed using only the magnetization m;=0 sector

* spin-inversion symmetry can be used, smallest blocks

- spin-S state is (25+1)-fold degenerate (no magnetix field) — weight factor

* possible spin dependence of expectation value — average over m;=-S,...,S

d(HY 1

C = Sl = ((H) - (H)?)

Compared
with leading
high-T forms
X = (1/4)/T
C=(313)/T?




The Lanczos method (review)

If we need only the ground state and a small number of excitations
 can use “Krylov space” methods, which work for much larger matrices
 basis states with 107 states or more can be easily handled (30-40 spins)

The Krylov space and “projecting out” the ground state

Start with an arbitrary state ()
* it has an expansion in eigenstates of H; act with a high power A of H

A
HAMW) = chET/L\]m = E) <CO|O> + ¢ (%) 1) +>

n

For large A, if the state with largest |IEnl dominates the sum
* one may have to subtract a constant, using H-C, to ensure ground state
* even better to use linear combination of states generated for different A

!% Z% Hm‘\If> a:O,...,A

. diagonallze H in this basis

In the Lanczos basis, H is tridiagonal, convenient to generate and use
* Normally M=50-200 basis states is enough; easy to diagonalize H



Constructing the Lanczos basis

First: construct orthogonal but not normalized basis {fn}. Define

N = <fm‘fm>a Hpm = <fm‘H’fm>

The first state Ifo> is arbitrary, e.g., random. The next one is

f1) = H|fo) — ao|fo)

Demand orthogonality

(J1lfo) = (folH|fo) — ao(folfo) = Hoo — aoNo — ao = Hoo/Ng

All subsequent states are constructed according to

‘fm—|—1> — H‘fm> — am‘fm> — bm—l’fm—1>
Ay = mm/Nma bm—l — Nm/Nm—l

Easy to prove orthogonality of all these states (<fm+1lfm>=0 is enough)



The hamiltonian in the Lanczos basis
Rewrite the state generation formula

H‘fm> — ’fm—|—1> + am‘fm> + bm—l’fm—1>

Because of the orthogonality, the only non-0 matrix elements are

<fm—1 H fm> — bm—le—l — Nm
<fm H fm> = an Ny
<fm+1 H fm> — Nm—H
But the f-states or not normalized. The normalized states are:
1
|Pm) = ——=—=|fm)

VN,

In this basis the Hamiltonian matrix is
<¢m—1 H gbm> —  V brm—1
<¢m H ¢m> — Um
<¢m—|-1 H ¢m> — 'V bin




Operator expectation values

Diagonalizing the tri-diagonal matrix = eigenstates in the Lanczos basis
* eigenvectors vy, energies Ep
« only some number of low-energy states (<< A) are correct eigenstates of H

To compute expectation values we go back to the original basis
A

Vn(a) = Un(Mm)opm(a), a=1,.... M

m=0

Convergence properties of the Lanczos method
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. | Example; 24-site chain
1m:=0,k=0,p=1,z=1

1 block size M=28416

| Total spin S extracted
] assuming that

1(8%) =5(5+1)
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Ground state converges first, then successively excited states



Explicit re-orthogonalization
- after each Lanczos step (using the
method with normalized states

Break-down of orthogonality

- will eventually happen for large m
- causes artificial degeneracies

- cured by re-orthogonalization Grn) [Omt1) — D e @il D)
- all states have to be stored mll 1 -5 2

q; = <§bi‘§bm+1>
N=16, k=0 p=1, 2 =1

no orthogonalization with orthogonalization

(a)




