Reflection symmetry (parity) Define a reflection (parity) operator

$$P|S_1^z, S_2^z, \dots, S_N^z\rangle = |S_N^z, \dots, S_2^z, S_1^z\rangle$$

Consider a hamiltonian for which [H,P]=0 and [H,T]=0; but note that $[P,T]\neq 0$

Can we still exploit both P and T at the same time? Consider the state

$$|a(k,p)\rangle = \frac{1}{\sqrt{N_a}} \sum_{r=0}^{N-1} e^{-ikr} T^r (1+pP) |a\rangle, \quad p=\pm 1$$

This state has momentum k, but does it have parity p? Act with P

$$P|a(k,p)\rangle = \frac{1}{\sqrt{N_a}} \sum_{r=0}^{N-1} e^{-ikr} T^{-r} (P+p)|a\rangle \qquad PT^r = T^{-r} P$$
$$= p \frac{1}{\sqrt{N_a}} \sum_{r=0}^{N-1} e^{ikr} T^r (1+pP)|a\rangle = p|a(k,p)\rangle \text{ if } k = 0 \text{ or } k = \pi$$

k=0,π momentum blocks are split into p=+1 and p=-1 sub-blocks

- [T,P]=0 in the k=0, π blocks
- physically clear because -k=k on the lattice for k=0,π
- we can exploit parity in a different way for other k → real basis (semi-momentum states, will not discuss here)

Spin-inversion symmetry

Spin inversion operator: $Z|S_1^z, S_2^z, \dots, S_N^z\rangle = |-S_1^z, -S_2^z, \dots, -S_N^z\rangle$

In the magnetization block $m^z=0$ we can use eigenstates of Z

$$|\alpha(k, p, z)\rangle = \frac{1}{\sqrt{N_a}} \sum_{r=0}^{N-1} e^{-ikr} T^r (1+pP)(1+zZ) |a\rangle$$
$$Z|\alpha(k, p, z)\rangle = z|\alpha(k, p, z)\rangle, \quad z = \pm 1$$

Example: block sizes

m_z=0, k=0 (largest momentum block)

$(p=\pm 1, z=\pm 1)$				
N	(+1, +1)	(+1, -1)	(-1,+1)	(-1, -1)
8	7	1	0	2
12	35	15	9	21
16	257	183	158	212
20	2518	2234	2136	2364
24	28968	27854	27482	28416
28	361270	356876	355458	359256
32	4707969	4690551	4685150	4700500

Total spin S conservation

- difficult to exploit
- complicated basis states

$$\mathbf{S}^{2} = \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$
$$= 2 \sum_{i < j} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + \frac{3}{4} N$$

Example: Thermodynamics

some quantities can be computed using only the magnetization m_z=0 sector
spin-inversion symmetry can be used, smallest blocks

- spin-S state is (2S+1)-fold degenerate (no magnetix field) \rightarrow weight factor
- possible spin dependence of expectation value \rightarrow average over m_z=-S,...,S

The Lanczos method (review)

If we need only the ground state and a small number of excitations

- can use "Krylov space" methods, which work for much larger matrices
- basis states with 10⁷ states or more can be easily handled (30-40 spins)

The Krylov space and "projecting out" the ground state

Start with an arbitrary state $|\psi\rangle$

• it has an expansion in eigenstates of H; act with a high power Λ of H

$$H^{\Lambda}|\Psi\rangle = \sum_{n} c_{n} E_{n}^{\Lambda}|n\rangle = E_{0}^{\Lambda} \left(c_{0}|0\rangle + c_{1} \left(\frac{E_{1}}{E_{0}}\right)^{\Lambda}|1\rangle + \ldots\right)$$

For large Λ , if the state with largest IE_nI dominates the sum

• one may have to subtract a constant, using H-C, to ensure ground state

• even better to use linear combination of states generated for different Λ

$$|\psi_a\rangle = \sum_{m=0}^{\Lambda} \psi_a(m) H^m |\Psi\rangle, \quad a = 0, \dots, \Lambda$$

• diagonalize H in this basis

In the Lanczos basis, H is tridiagonal, convenient to generate and use

• Normally M=50-200 basis states is enough; easy to diagonalize H

Constructing the Lanczos basis

First: construct orthogonal but not normalized basis {fm}. Define

 $N_m = \langle f_m | f_m \rangle, \quad H_{mm} = \langle f_m | H | f_m \rangle$

The first state **If**₀> is arbitrary, e.g., random. The next one is

 $|f_1\rangle = H|f_0\rangle - a_0|f_0\rangle$

Demand orthogonality

 $\langle f_1 | f_0 \rangle = \langle f_0 | H | f_0 \rangle - a_0 \langle f_0 | f_0 \rangle = H_{00} - a_0 N_0 \quad \rightarrow \quad a_0 = H_{00} / N_0$

All subsequent states are constructed according to

$$|f_{m+1}\rangle = H|f_m\rangle - a_m|f_m\rangle - b_{m-1}|f_{m-1}\rangle$$

 $a_m = H_{mm}/N_m, \quad b_{m-1} = N_m/N_{m-1}$

Easy to prove orthogonality of all these states ($< f_{m+1} | f_m > = 0$ is enough)

The hamiltonian in the Lanczos basis

Rewrite the state generation formula

$$H|f_m\rangle = |f_{m+1}\rangle + a_m|f_m\rangle + b_{m-1}|f_{m-1}\rangle$$

Because of the orthogonality, the only non-0 matrix elements are

$$\langle f_{m-1} | H | f_m \rangle = b_{m-1} N_{m-1} = N_m$$

$$\langle f_m | H | f_m \rangle = a_m N_m$$

$$\langle f_{m+1} | H | f_m \rangle = N_{m+1}$$

But the f-states or not normalized. The normalized states are:

$$|\phi_m\rangle = \frac{1}{\sqrt{N_m}}|f_m\rangle$$

In this basis the Hamiltonian matrix is

$$\langle \phi_{m-1} | H | \phi_m \rangle = \sqrt{b_{m-1}}$$

$$\langle \phi_m | H | \phi_m \rangle = a_m$$

$$\langle \phi_{m+1} | H | \phi_m \rangle = \sqrt{b_m}$$

Operator expectation values

Diagonalizing the tri-diagonal matrix \rightarrow eigenstates in the Lanczos basis

- eigenvectors **v**_n, energies **E**_n
- only some number of low-energy states ($<< \Lambda$) are correct eigenstates of H

To compute expectation values we go back to the original basis

$$\psi_n(a) = \sum_{m=0}^{\Lambda} v_n(m)\phi_m(a), \quad a = 1, \dots, M$$

Convergence properties of the Lanczos method

Ground state converges first, then successively excited states

Break-down of orthogonality

- will eventually happen for large m
- causes artificial degeneracies
- cured by re-orthogonalization
- all states have to be stored

λT

Explicit re-orthogonalization

after each Lanczos step (using the method with normalized states

$$\begin{aligned} |\phi_{m+1}\rangle &\to \frac{|\phi_{m+1}\rangle - \sum_{i=0}^{m} q_i |\phi_i\rangle}{1 - \sum_{i=0}^{m} q_i^2} \\ q_i &= \langle \phi_i |\phi_{m+1}\rangle \end{aligned}$$