Simplest example; magnetization conservation

$$
m_{z}=\sum_{i=1}^{N} S_{i}^{z}
$$

- blocks correspond to fixed values of m_{z}
- no H matrix elements between states of different m_{z}
- A block contains states with a given m_{z}
- corresponds to ordering the states in a particular way

Other symmetries (conserved quantum numbers)

- can be used to further split the blocks
- but more complicated
- basis states have to be constructed to obey symmetries
- e.g., momentum states (using translational invariance)

Pseudocode: using magnetization conservation

Constructing the basis in the block of n_{\uparrow} spins \uparrow

Store state-integers in ordered list $\mathbf{S}_{\mathbf{a}}, \mathbf{a}=\mathbf{1 , \ldots . . , \mathrm { M }}$

$$
\begin{aligned}
& \text { do } s=0,2^{N}-1 \\
& \quad \text { if }\left(\sum_{i} s[i]=n_{\uparrow}\right) \text { then } a=a+1 ; s_{a}=s \text { endif } \\
& \text { enddo } \\
& M=a
\end{aligned}
$$

How to locate a state (given integer s) in the list?

- stored map $s \rightarrow$ a may be too big for $s=0, \ldots, 2^{N}-1$
- instead, we search the list s_{a} (here simplest way)

$$
\text { Example; } \mathrm{N}=4, \mathrm{n}_{\uparrow}=2
$$

$$
\begin{array}{ll}
s_{1}=3 & (0011) \tag{0101}\\
s_{2}=5 & (0101) \\
s_{3}=6 & (0110) \\
s_{4}=9 & (1001) \\
s_{5}=10 & (1010) \\
s_{6}=12 & (1100)
\end{array}
$$

Finding the location \boldsymbol{b} of a state-integer \boldsymbol{s} in the list

- using bisection in the ordered list

Pseudocode; hamiltonian construction

- recall: states labeled $\mathrm{a}=1, \ldots, \mathrm{M}$
- corresponding state-integers (bit representation) stored as s_{a}
- bit i, sa[i], corresponds to S_{i}

```
do }a=1,
    do }i=0,N-
    j= mod}(i+1,N
        if (sa
        H(a,a)=H(a,a)+\frac{1}{4}
        else
        H(a,a)=H(a,a)-\frac{1}{4}
        s= flip( sa,i,j)
        call findstate(s,b)
        H(a,b)=H(a,b)+\frac{1}{2}
        endif
    enddo
enddo
```

loop over states
loop over sites
check bits of state-integers
state with bits i and j flipped

Momentum states (translationally invariant systems)

A periodic chain (ring), translationally invariant

- the eigenstates have a momentum (crystal momentum) k

$$
T|n\rangle=\mathrm{e}^{i k}|n\rangle \quad k=m \frac{2 \pi}{N}, \quad m=0, \ldots, N-1
$$

The operator T translates the state by one lattice spacing

- for a spin basis state

$$
T\left|S_{1}^{z}, S_{2}^{z}, \ldots, S_{N}^{z}\right\rangle=\left|S_{N}^{z}, S_{1}^{z}, \ldots, S_{N-1}^{z}\right\rangle
$$

$[\mathrm{T}, \mathrm{H}]=0 \rightarrow$ momentum blocks of H

- can use eigenstates of T with given k as basis (H blocks labeled by k)

A momentum state can be constructed from any representative state

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|S_{1}^{z}, \ldots, S_{N}^{z}\right\rangle
$$

Construct ordered list of representatives If la> and lb> are representatives, then

$$
T^{r}|a\rangle \neq|b\rangle \quad r \in\{1, \ldots, N-1\}
$$

$$
\begin{aligned}
& \text { 4-site examples } \\
& (0011) \rightarrow(0110),(1100),(1001) \\
& (0101) \rightarrow(1010)
\end{aligned}
$$

Convention: the representative is the one corresponding to the smallest integer

$$
|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r}|a\rangle, \quad|a\rangle=\left|S_{1}^{z}, \ldots, S_{N}^{z}\right\rangle \quad k=m \frac{2 \pi}{N}
$$

The sum can contain several copies of the same state

- if $T^{R}|a\rangle=|a\rangle$ for some $R<N$
- the total weight for this component is

$$
1+\mathrm{e}^{-i k R}+\mathrm{e}^{-i 2 k R}+\ldots+\mathrm{e}^{-i k(N-R)}
$$

- vanishes (state incompatible with k and not in k block) unless $k R=n 2 \pi$
- the total weight of the representative is then N/R

$$
k R=n 2 \pi \rightarrow \frac{m R}{N}=n \rightarrow m=n \frac{N}{R} \rightarrow \bmod (m, N / R)=0
$$

Normalization of a state $\operatorname{la}(\mathrm{k})>$ with periodicity R_{a}

$$
\langle a(k) \mid a(k)\rangle=\frac{1}{N_{a}} \times R_{a} \times\left(\frac{N}{R_{a}}\right)^{2}=1 \rightarrow N_{a}=\frac{N^{2}}{R_{a}}
$$

Basis construction: find all allowed representatives and their periodicities

$$
\begin{aligned}
& \left(\mathbf{a}_{1}, a_{2}, a_{3}, \ldots, \mathbf{a}_{\mathbf{m}}\right) \\
& \left(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \ldots, \mathbf{R}_{\mathrm{m}}\right)
\end{aligned}
$$

The block size \mathbf{M} is initially not known

- approximately $1 / \mathrm{N}$ of total size of fixed m_{z} block
- depends on the periodicity constraint for given k

The Hamiltonian matrix. Write $S=1 / 2$ chain hamiltonian as

$$
H_{0}=\sum_{j=1}^{N} S_{j}^{z} S_{j+1}^{z}, \quad H_{j}=\frac{1}{2}\left(S_{j}^{+} S_{j+1}^{-}+S_{j}^{+} S_{j+1}^{-}\right), \quad j=1, \ldots, N
$$

Act with H on a momentum state

$$
H|a(k)\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r} H|a\rangle=\frac{1}{\sqrt{N_{a}}} \sum_{j=0}^{N} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{r} H_{j}|a\rangle,
$$

$\mathrm{H}_{\mathrm{j}} \mid \mathrm{a}>$ is related to some representative: $H_{j}|a\rangle=h_{a}^{j} T^{-l_{j}}\left|b_{j}\right\rangle$ Here $h_{a}{ }^{j}=1 / 2$ for

$$
H|a(k)\rangle=\sum_{j=0}^{N} \frac{h_{a}^{j}}{\sqrt{N_{a}}} \sum_{r=0}^{N-1} \mathrm{e}^{-i k r} T^{\left(r-l_{j}\right)}\left|b_{j}\right\rangle
$$

an off-diagonal operator if the spins are flippable

Shift summation index r and use definition of momentum state

$$
\begin{aligned}
& H|a(k)\rangle=\sum_{j=0}^{N} h_{a}^{j} \mathrm{e}^{-i k l_{j}} \sqrt{\frac{N_{b_{j}}}{N_{a}}}\left|b_{j}(k)\right\rangle \quad \rightarrow \text { matrix elements } \\
& \langle a(k)| H_{0}|a(k)\rangle=\sum_{j=1}^{N} S_{j}^{z} S_{j}^{z}, \\
& \left\langle b_{j}(k)\right| H_{j>0}|a(k)\rangle=\mathrm{e}^{-i k l_{j}} \frac{1}{2} \sqrt{\frac{R_{a}}{R_{b_{j}}}}, \quad\left|b_{j}\right\rangle \propto T^{-l_{j}} H_{j}|a\rangle,
\end{aligned}
$$

