PY 502, Computational Physics, Fall 2023

Anders W. Sandvik, Boston University

Numerical studies of quantum spin systems

Introduction to computational studies of spin systems

Using basis states incorporating conservation laws (symmetries)

- magnetization conservation, momentum states, parity, spin inversion
- discussion without group theory (1D)
- only basic quantum mechanics and common sense needed

Lanczos diagonalization (ground state, low excitations)
Dynamics; quantum annealing
How to characterize different kinds of ground states

- critical ground state of the Heisenberg chain
- quantum phase transition to a valence-bond solid in a $\mathrm{J}_{1}-\mathrm{J}_{2}$ chain

Quantum spins

 Commutation relations:

$$
\begin{aligned}
& {\left[S_{i}^{x}, S_{i}^{y}\right]=i \hbar S_{i}^{z} \quad(\text { we set } \hbar=1)} \\
& {\left[S_{i}^{x}, S_{j}^{y}\right]=\left[S_{i}^{x}, S_{j}^{z}\right]=\ldots=\left[S_{i}^{z}, S_{j}^{z}\right]=0 \quad(i \neq j)}
\end{aligned}
$$

Ladder (raising and lowering) operators:

$$
\begin{aligned}
& S_{i}^{+}=S_{i}^{x}+i S_{i}^{y}, \quad S_{i}^{-}=S_{i}^{x}-i S_{i}^{y} \\
& S_{i}^{+}\left|S_{i}^{z}\right\rangle=\sqrt{S(S+1)-S_{i}^{z}\left(S_{i}^{z}+1\right)}\left|S_{i}^{z}+1\right\rangle \\
& S_{i}^{-}\left|S_{i}^{z}\right\rangle=\sqrt{S(S+1)-S_{i}^{z}\left(S_{i}^{z}-1\right)}\left|S_{i}^{z}-1\right\rangle
\end{aligned}
$$

Spin (individual) squared operator: $S_{i}^{2}\left|S_{i}^{z}\right\rangle=S(S+1)\left|S_{i}^{z}\right\rangle$

$\underline{S=1 / 2}$ spins; very simple rules

$$
\begin{array}{ll}
\left|S_{i}^{z}=+\frac{1}{2}\right\rangle=\left|\uparrow_{i}\right\rangle, & \left|S_{i}^{z}=-\frac{1}{2}\right\rangle=\left|\downarrow_{i}\right\rangle \\
S_{i}^{z}\left|\uparrow_{i}\right\rangle=+\frac{1}{2}\left|\uparrow_{i}\right\rangle & S_{i}^{-}\left|\uparrow_{i}\right\rangle=\left|\downarrow_{i}\right\rangle \\
S_{i}^{z}\left|\downarrow_{i}\right\rangle=-\frac{1}{2}\left|\downarrow_{i}\right\rangle & S_{i}^{+}\left|\uparrow_{i}\right\rangle=0 \\
\left.L_{i}\right\rangle=\left|\uparrow_{i}\right\rangle & S_{i}^{-}\left|\downarrow_{i}\right\rangle=0
\end{array}
$$

Quantum spin models

Ising, XY, Heisenberg hamiltonians

- the spins always have three (x, y, z) components
- interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components

$$
\begin{aligned}
& H=\sum_{\langle i j\rangle} J_{i j} S_{i}^{z} S_{j}^{z}=\frac{1}{4} \sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j} \\
& H=\sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right]=\frac{1}{2} \sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right] \\
& H=\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}=\sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right] \quad \text { (Heisenberg) }
\end{aligned}
$$

Quantum statistical mechanics

$$
\langle Q\rangle=\frac{1}{Z} \operatorname{Tr}\left\{Q \mathrm{e}^{-H / T}\right\} \quad Z=\operatorname{Tr}\left\{\mathrm{e}^{-H / T}\right\}=\sum_{n=0}^{M-1} \mathrm{e}^{-E_{n} / T}
$$

Large size M of the Hilbert space; $\mathrm{M}=2^{\mathrm{N}}$ for $\mathrm{S}=\mathbf{1 / 2}$

- difficult problem to find the eigenstates and energies
- we are also interested in the ground state ($\mathrm{T} \rightarrow 0$)
- for classical systems the ground state is often trivial

Why study quantum spin systems?

Solid-state physics

- localized electronic spins in Mott insulators (e.g., high-Tc cuprates)
- large variety of lattices, interactions, physical properties
- search for "exotic" quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)

- some spin hamiltonians can be engineered (ongoing efforts)
- some bosonic systems very similar to spins (e.g., "hard-core" bosons)

Quantum information theory / quantum computing

- possible physical realizations of quantum computers using interacting spir
- many concepts developed using spins (e.g., entanglement)
- quantum annealing

Generic quantum many-body physics

- testing grounds for collective quantum behavior, quantum phase transition
- identify "Ising models" of quantum many-body physics

Particle physics / field theory / quantum gravity

- some quantum-spin phenomena have parallels in high-energy physics
- e.g., spinon confinement-deconfinement transition
- spin foams, string nets: models to describe "emergence" of space-time and elementary particles

Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

superexchange mechanism

CuO_{2} planes, localized spins on Cu sites

- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J $\approx 1500 \mathrm{~K}$

Many other quasi-1D and quasi-2D cuprates

$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}
$$

Ladder systems

- even/odd effects

non-magnetic impurities/dilution
- dilution-driven phase transition
- $\mathrm{Cu}(\mathrm{S}=1 / 2)$
- $\mathrm{Zn}(\mathrm{S}=0)$

The antiferromagnetic (Néel) state and quantum fluctuations

The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

$$
H=J \sum_{\langle i j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=J \sum_{\langle i j\rangle}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right]
$$

Does the long-range "staggered" order survive quantum fluctuations?

- order parameter: staggered (sublattice) magnetization; $\left[\mathrm{H}, \mathrm{m}_{\mathrm{s}}\right] \neq 0$

$$
\begin{aligned}
\vec{m}_{s} & =\frac{1}{N} \sum_{i=1}^{N} \phi_{i} \vec{S}_{i}, \quad \phi_{i}=(-1)^{x_{i}+y_{i}} \quad(2 \mathrm{D} \text { square lattice) }) \\
\vec{m}_{s} & =\frac{1}{N}\left(\vec{S}_{A}-\vec{S}_{B}\right)
\end{aligned}
$$

If there is order ($\mathrm{m}_{\mathrm{s}}>0$), the direction of the vector is fixed ($\mathrm{N}=\infty$)

- conventionally this is taken as the z direction

$$
\left\langle m_{s}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} \phi_{i}\left\langle S_{i}^{z}\right\rangle=\left|\left\langle S_{i}^{z}\right\rangle\right|
$$

- For $S \rightarrow \infty$ (classical limit) $<\mathrm{m}_{\mathrm{s}}>\rightarrow$ S
- what happens for small S (especially $S=1 / 2$)?

Numerical diagonalization of the hamiltonian

To find the ground state (maybe excitations, $\mathrm{T}>0$ properties) of the Heisenberg $S=1 / 2$ chain

$$
\begin{aligned}
H & =J \sum_{i=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}=J \sum_{i=1}^{N}\left[S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}+S_{i}^{z} S_{i+1}^{z}\right] \\
& =J \sum_{i=1}^{N}\left[S_{i}^{z} S_{i+1}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)\right]
\end{aligned}
$$

Simplest way computationally; enumerate the states

- construct the hamiltonian matrix using bit-representation of integers

$$
\begin{aligned}
&|0\rangle=|\downarrow, \downarrow, \downarrow, \ldots, \downarrow\rangle \\
&|1\rangle=|\uparrow, \downarrow, \downarrow, \ldots, \downarrow\rangle \\
&\mid=0 \ldots 000)(=0 \ldots 001) \\
&|2\rangle=|\downarrow, \uparrow, \downarrow, \ldots, \downarrow\rangle \\
& \hline(=0 \ldots 010) \quad \\
& a, b \in\left\{0,1, \ldots, 2^{N}-1\right\} \\
&|3\rangle=|\uparrow, \uparrow, \downarrow, \ldots, \downarrow\rangle \quad(=0 \ldots 011)
\end{aligned}
$$

bit representation perfect for $S=1 / 2$ systems

- use $>1 \mathrm{bit} /$ spin for $S>1 / 2$, or integer vector
- construct H by examining/flipping bits

spin-state manipulations with bit operations

Let a[i] refer to the i:th bit of an integer a (i.e., not array element)

- In Julia the bit-level function $\operatorname{xor}\left(\mathrm{a}, 2^{\wedge} \mathrm{i}\right)$ can be used to flip bit i of a
- bits i and j can be flipped using $\operatorname{xor(a,2^{\wedge }\mathbf {i}+2^{\wedge }\mathbf {j})~}$

| | j | | | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| $2^{i}+2^{j}$ | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| | 0 | 0 | | | | | | |

Other Julia bit-level functions

$a \ll N, a \lll N$

- shifts N bits to the "left"
$a \gg N$
- shifts right
\&, I
- bit-wise and, or

Translations and reflections of states

r	$\mathrm{T}^{\text {r }}$	$\mathrm{T}^{\text {r }} \mathrm{P}$
0	270 0 0 1 1 0 1 1	16 1 1 0 1 1 0 0
1	54 0 0 1 1 0 1 1 0	170 1 1 0 0 0 1 10
2	$\left.$108 0 1 1 0 1 1 0 \right\rvert\, 0	99 0 1 1 0 0 0 1
3	16 1 1 0 1 1 0 0	198 1 1 0 0 0 1 1 0 1
4	177 1 0 1 1 0 0 0 1 9	141 0 0 0 1 1 0 1 1
5		
6	198 1 1 0 0 0 1 1 0	54 0 0 1 1 0 1 1
7	141 0 0 0 1 1 0 1 1	108 0 1 1 0 1 1 0

The $S=1 / 2$ Heisenberg chain hamiltonian can be constructed according to:

$$
\begin{aligned}
& \text { do } a=0,2^{N}-1 \\
& \text { do } i=0, N-1 \\
& \quad j=\bmod (i+1, N) \\
& \text { if }(a[i]=a[j]) \text { then } \\
& \quad H(a, a)=H(a, a)+\frac{1}{4} \\
& \text { else } H(a, a)=H(a, a)-\frac{1}{4} \\
& \quad b=\operatorname{llip}(a, i, j) ; H(a, b)=\frac{1}{2} \\
& \text { endif } \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

j is the "right" nearest-neighbor of i

- periodic boundary conditions

Diagonalizing the hamiltonian matrix

- on the computer
- gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H, then

$$
\langle n| A|n\rangle=\left[U^{T *} A U\right]_{n n}
$$

is the expectation value of some operator A in the n :th eigenstate
Problem: Matrix size $M=2^{N}$ becomes too large quickly

- maximum number of spins in practice; $\mathrm{N} \approx 20$
- M^{2} matrix elements to store, time to diagonalize $\propto \mathrm{M}^{3}$

Using conservation laws (symmetries) for block-diagonalization

We can choose the basis in such a way that the H becomes block-diagonal

- the blocks can be diagonalized individually
- we can reach larger N (but not much larger, $\mathrm{N} \approx 50$ is max)

