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Numerical studies  
of quantum spin systems

Introduction to computational studies of spin systems 

Using basis states incorporating conservation laws (symmetries)

• magnetization conservation, momentum states, parity, spin inversion

• discussion without group theory (1D)


- only basic quantum mechanics and common sense needed


Lanczos diagonalization (ground state, low excitations)


Dynamics; quantum annealing


How to characterize different kinds of ground states

• critical ground state of the Heisenberg chain

• quantum phase transition to a valence-bond solid in a J1-J2 chain
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Quantum spins
Spin magnitude S; basis states |Sz1,Sz2,...,SzN>,   Szi = -S, ..., S-1, S
Commutation relations: 
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S=1/2 spins; very simple rules
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Ladder (raising and lowering) operators:
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Quantum spin models
Ising, XY, Heisenberg hamiltonians 
• the spins always have three (x,y,z) components

• interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components  
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Large size M of the Hilbert space; M=2N for S=1/2 
- difficult problem to find the eigenstates and energies 

- we are also interested in the ground state (T→0)

    - for classical systems the ground state is often trivial



Why study quantum spin systems?
Solid-state physics 
• localized electronic spins in Mott insulators (e.g., high-Tc cuprates) 
• large variety of lattices, interactions, physical properties 
• search for “exotic” quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices) 
• some spin hamiltonians can be engineered (ongoing efforts) 
• some bosonic systems very similar to spins (e.g., “hard-core” bosons)
Quantum information theory / quantum computing 
• possible physical realizations of quantum computers using interacting spins 
• many concepts developed using spins (e.g., entanglement) 
• quantum annealing
Generic quantum many-body physics 
• testing grounds for collective quantum behavior, quantum phase transitions 
• identify “Ising models” of quantum many-body physics
Particle physics / field theory / quantum gravity 
• some quantum-spin phenomena have parallels in high-energy physics 

• e.g., spinon confinement-deconfinement transition 
• spin foams, string nets: models to describe “emergence” of space-time 

and elementary particles
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Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO2 planes, localized spins on Cu sites
- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J≈1500K

Many other quasi-1D and quasi-2D cuprates
• chains, ladders, impurities and dilution, frustrated interactions, ...

Ladder systems
- even/odd effects

non-magnetic impurities/dilution
- dilution-driven phase transition

• Cu (S = 1/2)
• Zn (S = 0)



The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

\

H = J
�

⇥ij⇤

⌅Si · ⌅Sj = J
�

⇥ij⇤

[Sz
i Sz

j + 1
2 (S+

i S�
j + S�

i S+
j )]

Does the long-range “staggered” order survive quantum fluctuations? 
• order parameter: staggered (sublattice) magnetization; [H,ms] ≠ 0
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If there is order (ms>0), the direction of the vector is fixed (N=∞) 
• conventionally this is taken as the z direction
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• For S→∞ (classical limit) <ms>→S

• what happens for small S (especially S=1/2)?



Numerical diagonalization of the hamiltonian
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To find the ground state (maybe excitations, T>0 properties) 
of the Heisenberg S=1/2 chain

Simplest way computationally; enumerate the states
• construct the hamiltonian matrix using bit-representation of integers

|0⇤ = | ⇥, ⇥, ⇥, . . . , ⇥⇤ (= 0 . . . 000)
|1⇤ = | �, ⇥, ⇥, . . . , ⇥⇤ (= 0 . . . 001)
|2⇤ = | ⇥, �, ⇥, . . . , ⇥⇤ (= 0 . . . 010)
|3⇤ = | �, �, ⇥, . . . , ⇥⇤ (= 0 . . . 011)

bit representation perfect for S=1/2 systems
• use >1 bit/spin for S>1/2, or integer vector
• construct H by examining/flipping bits

Hab = hb|H|ai
a, b 2 {0, 1, . . . , 2N � 1}



spin-state manipulations with bit operations
Let a[i] refer to the i:th bit of an integer a (i.e., not array element) 

a
2i + 2j

ieor(a, 2i + 2j)

• In Julia the bit-level function xor(a,2^i) can be used to flip bit i of a
• bits i and j can be flipped using xor(a,2^i+2^j)

Translations and reflections of states

a << N, a <<< N
• shifts N bits to the “left”

a >> N
• shifts right

Other Julia bit-level functions

&, I
• bit-wise and, or



do a = 0, 2N � 1
do i = 0, N � 1

j = mod(i + 1, N)
if (a[i] = a[j]) then

H(a, a) = H(a, a) + 1
4

else
H(a, a) = H(a, a)� 1

4
b = flip(a, i, j); H(a, b) = 1

2
endif

enddo
enddo

The S=1/2 Heisenberg chain hamiltonian 
can be constructed according to:

j is the “right” nearest-neighbor of i
• periodic boundary conditions



Diagonalizing the hamiltonian matrix 
• on the computer
• gives the eigenvalues and eigenvectors
If U is the matrix whose columns are the eigenvectors of H, then
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is the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly 

• maximum number of spins in practice; N≈20

• M2 matrix elements to store, time to diagonalize ∝M3

Using conservation laws (symmetries) for block-diagonalization

H

We can choose the basis in such a way that the H becomes block-diagonal

• the blocks can be diagonalized individually 
• we can reach larger N (but not much larger, N≈50 is max)


