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Numerical studies
of quantum spin systems

Introduction to computational studies of spin systems

Using basis states incorporating conservation laws (symmetries)
* magnetization conservation, momentum states, parity, spin inversion
- discussion without group theory (1D)
- only basic quantum mechanics and common sense needed

Lanczos diagonalization (ground state, low excitations)
Dynamics; quantum annealing
How to characterize different kinds of ground states

- critical ground state of the Heisenberg chain
» quantum phase transition to a valence-bond solid in a J1-J2 chain



Quantum spins
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Spin (individual) squared operator: S7|S7) = S(S + 1)|S7)
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Quantum spin models

Ising, XY, Heisenberg hamiltonians

- the spins always have three (x,y,z) components
* interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components
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Quantum statistical mechanics
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Large size M of the Hilbert space; M=2N for S=1/2
- difficult problem to find the eigenstates and energies
- we are also interested in the ground state (T—0)
- for classical systems the ground state is often trivial

M—1

Z ="Ir {e_H/T} — Z e~ En/T

n=0




Why study quantum spin systems?

Solid-state physics

e |ocalized electronic spins in Mott insulators (e.g., high-Tc cuprates)

¢ large variety of lattices, interactions, physical properties

e search for “exotic” quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)
e some spin hamiltonians can be engineered (ongoing efforts)
e some bosonic systems very similar to spins (e.g., “hard-core” bosons)

Quantum information theory / quantum computing

e possible physical realizations of quantum computers using interacting spir
e many concepts developed using spins (e.g., entanglement)

¢ quantum annealing

Generic quantum many-body physics
e testing grounds for collective quantum behavior, quantum phase transition
¢ identify “Ising models” of quantum many-body physics

Particle physics / field theory / quantum gravity

e some quantum-spin phenomena have parallels in high-energy physics
® e.d., spinon confinement-deconfinement transition

¢ spin foams, string nets: models to describe “emergence” of space-time
and elementary particles



Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)
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superexchange mechanism

CuO:2 planes, localized spins on Cu sites
- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J=~1500K

Many other quasi-1D and quasi-2D cuprates
* chains, ladders, impurities and dilution, frustrated interactions, .

Ladder systems
- even/odd effects
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non-magnetic impurities/dilution
- dilution-driven phase transition

H — JZS



The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

H= JZS _JZSZSZ L(SHST + 578

Does the Iong range “staggered” order survive quantum fluctuations?
« order parameter staggered (sublattice) magnetization; [H,ms] # 0

Z ¢iSi, ¢ = (—1)%1¥ (2D square lattice)
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If there is order (ms>0), the direction of the vector is fixed (N=c0)
- conventionally this is taken as the z direction
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* For S— (classical limit) <ms>—S
- what happens for small S (especially S=1/2)?



Numerical diagonalization of the hamiltonian

To find the ground state (maybe excitations, T>0 properties)
of the Heisenberg S=1/2 chain

N
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1=1
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Simplest way computatlonally; enumerate the states
e construct the hamiltonian matrix using bit-representation of integers

0) =111 1,-..,1) (=0...000)

1> - /\’\,7\/7...’\’> (:O ..001) H,, = (b|H]|a)

2> — \/7/\7\/7"'7\/> (: 0010) a,bE{O,l,...,2N—1}
3N =[11,1,...,1) (=0...011)

bit representation perfect for S=1/2 systems

e use >1 bit/spin for S>1/2, or integer vector
 construct H by examining/flipping bits




spin-state manipulations with bit operations
Let a[i] refer to the i:th bit of an integer a (i.e., not array element)
* In Julia the bit-level function xor(a,2*i) can be used to flip bit i of a
* bits i and j can be flipped using xor(a,2*i+24})
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Other Julia bit-level functions Translations and reflections of states
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* bit-wise and, or
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The S=1/2 Heisenberg chain hamiltonian
can be constructed according to:

doa=0,2Y —1
do:=0,N —1
j =mod(i+ 1, N)
if (a[i] = a[j]) then
H(a,a) :H(a,a)—I—%
else
H(a,a) = H(a,a) — %
b = flip(a, 4, j); H(a,b) = 3
endif
enddo
enddo

j is the “right” nearest-neighbor of i
* periodic boundary conditions



Diagonalizing the hamiltonian matrix
* on the computer
e gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H, then
T
(n|Aln) = [U*"AU|,n
IS the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly
* maximum number of spins in practice; N=20
- M? matrix elements to store, time to diagonalize «M3

Using conservation laws (symmetries) for block-diagonalization
We can choose the basis in such a way that the H becomes block-diagonal

H

* the blocks can be diagonalized individually
» we can reach larger N (but not much larger, N=50 is max)



