
Critical behavior and scaling

The correlation length diverges at the critical point

Correlation length   ; defined in terms of correlation function

ν is an example of a critical exponent
Universality
Critical exponents do not depend on microscopic details of
the interactions; only on the dimensionality of the system and
the order parameter: 
• Ising, gas/liquid (scalar Z2-symmetric order parameter)
• XY  spins,  phase of superconductor (2D, O(2) order parameter)
• Heisenberg spins  (3D, O(3) order parameter)
Phase transitions fall into universality classes characterized
by different sets of critical exponents
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Other critical exponents
Order parameter for T < Tc (e.g., magnetization)

In practice, calculate 
Susceptibility corresponding to order 

Specific heat

Diverges at the critical point

Singular at Tc

The exponent α can be positive or negative (no divergence
If negative; 0 can correspond to log divergence)



Magnetization of 2D Ising ferromagnet

for infinite system



Magnetization squared

The exponent      can be extracted for large L



Comparison with known 2D Ising model exponent

If Tc is not known, use it as an adjustable 
parameter and look for power-law behavior 



Finite-size scaling
For a system of length L, the correlation length 
Express divergent quantities in terms of correlation length, e.g.,

The largest value is obtained by substituting 

At what T does the maximum occur?

The peak position of a divergent quantity can be taken
as Tc for finite L (different quantities will give different Tc)

can be extracted by studying peaks in 

Similarly for specific heat;



Susceptibility:

Diverges at the transition:



On a logarithmic scale



Specific heat

(actually 𝛼=0 and log divergence for 2D Ising)



2D Ising model; 

In general; find Tc and exponents so that large-L curves scale



Binder ratio
Useful dimensionless quantity for accurately locating Tc
Infinite-size behavior:

Implies finite-size scaling forms

Hence Q should be size-independent at the critical point

Q(L) curves for different L cross at Tc; often  small corrections

<latexit sha1_base64="ZE5imbeCDbx+rvnHhPjqonLFQW0=">AAACCHicdVA9SwNBEN3z2/gVtbRwMQhWx10SE+1EG0sFo0Iuhr3NJC7u7h27c0KIljb+FRsLRWz9CXb+Gzcfgoo+GHi8N8PMvDiVwmIQfHhj4xOTU9Mzs7m5+YXFpfzyyqlNMsOhxhOZmPOYWZBCQw0FSjhPDTAVSziLrw76/tk1GCsSfYLdFBqKdbRoC87QSc38eiSZ7kigN+omMkMaWaEoXkQxIGvmC4FfrFRLpYAGfrgdVMpVRyqlsFjdpaEfDFAgIxw18+9RK+GZAo1cMmvrYZBio8cMCi7hNhdlFlLGr1gH6o5qpsA2eoNHbummU1q0nRhXGulA/T7RY8raropdp2J4aX97ffEvr55he6fREzrNEDQfLmpnkmJC+6nQljDAUXYdYdwIdyvll8wwji67nAvh61P6Pzkt+mHFLx+XC3v7ozhmyBrZIFskJFWyRw7JEakRTu7IA3kiz9699+i9eK/D1jFvNLNKfsB7+wQTGZoK</latexit>

h|m|i ⇠ t�

<latexit sha1_base64="E2VhuIMMDq0SZaSqs1+6OIMxgjM="></latexit>

hm2i ⇠ t2�

<latexit sha1_base64="Bb7xaNA798Rgz9NAnql36ky0Xr4="></latexit>

hm2i ⇠ L�2�/⌫

<latexit sha1_base64="IqANp7g3+aYgyCUTKbWeWaVi1Bg="></latexit>

h|m|i ⇠ L��/⌫

<latexit sha1_base64="4B448FPSMD5SYvF4q+/9YN1Rg1o="></latexit>✓
Q2n =

hm2ni
hmni2 , n = 1, 2, . . .

◆



Binder ratio:

Q is size independent at Tc (useful for locating Tc)



Crossing points for, e.g., sizes 
L, 2L can be extrapolated
to infinite L to give an accurate 
value for Tc
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4

i i are
computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Systematic crossing-point analysis (2D Ising)

⇒ scaling corrections in crossings

  ~L-(1/ν+ω)    for T* → Tc

   ~L-ω          for U* → U(Tc)

Fit with Lmin=12: Tc=2.2691855(5). Correct: Tc=2.2691853...
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Drift in (L,2L) crossing points
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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Use correction with free exponent

U = U(�L1/⌫ , L�!1 , L�!2 , . . .)
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1/L

Scaling theory with
corrections predicts:
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T ⇤(L, 2L) = Tc + aL�(1/⌫+!)

𝜔 is an exponent
governing scaling 
corrections, 𝜔=2
for 2D Ising



Autocorrelation functions
Value of some quantity at Monte Carlo step i:
The autocorrelation function measures how a quantity becomes
statistically independent from its value at previous steps

Asymptotical decay

(averaged over time i)

Critical slowing down

At a critical point for system of length L; Q=order parameter

Integerated autocorrelation time



General finite-size scaling hypothesis

Test this finite-size scaling form

The ratio                                 should control the behavior
of finite-size data also close to Tc 

What is the exponent σ? 
We know that for fixed (small) t, the infinite L form should be

To reproduce this, the scaling function          must have the limit 

We can determine the exponents as follows

Hence 

Find g by graphing                       versus



2D Ising autocorrelation functions for |M|
T/J=3.0 > Tc

Exponentially decaying autocorrelation function
- convergent autocorrelation time as L increases 



T/J = 2.269 = Tc

Autocorrelation time diverges with L



Critical slowing down
Dynamic exponent Z: 

For the Metropolis algorithm (Metropolis dynamics)



How to calculate autocorrelation functions
If we want autocorrelations for up to K MC step separations,
we need to store  K successive measurements of quantity Q

Then, shift values after each step, add latest measurement:

Accumulate time-averaged correlation functions of Q (variable q)
for t=2:k

tobs[t]=tobs[t-1]
end
tobs[1]=q
for t=0:k-1

acorr[t]=acorr[t]+tobs[1]*tobs[1+t]
end

Store values in vector tobs[1:K]; first k steps to fill the vector.


