"Measuring" physical observables

Order parameter of ferromagnetic transition: Magnetization

$$
M=\sum_{i=1}^{N} \sigma_{i}, \quad m=\frac{M}{N}
$$

Expectation vanishes for finite system; calculate $\langle | m\left\rangle,\left\langle m^{2}\right\rangle\right.$
Susceptibility: Linear response of $\langle\mathrm{m}\rangle$ to external field

$$
\begin{aligned}
& E=E_{0}-h M, \quad E_{0}=J \sum_{i, j} \sigma_{i} \sigma_{j} \\
& \chi=\left.\frac{d\langle m\rangle}{d h}\right|_{h=0} \quad \quad \quad(\text { we can also consider } \mathrm{h}>0 \text { here })
\end{aligned}
$$

Deriving Monte Carlo estimator

$$
\begin{aligned}
& \langle m\rangle=\frac{1}{Z} \sum_{S} m \mathrm{e}^{-\left(E_{0}-h M\right) / T}, \quad Z=\sum_{S} \mathrm{e}^{-\left(E_{0}-h M\right) / T} \\
& \chi=-\frac{d Z / d h}{Z^{2}} \sum_{S} m \mathrm{e}^{-\left(E_{0}-h M\right) / T}+\frac{1}{Z} \frac{1}{T} \sum_{S} m M \mathrm{e}^{-\left(E_{0}-h M\right) / T} \\
& \frac{d Z}{d h}=\frac{1}{T} \sum_{S} M \mathrm{e}^{-\left(E_{0}-h M\right) / T}
\end{aligned}
$$

$$
\chi=\frac{1}{N} \frac{1}{T}\left(\left\langle M^{2}\right\rangle-\langle M\rangle^{2}\right)=\frac{1}{N} \frac{1}{T}\left\langle M^{2}\right\rangle, \quad(h=0)
$$

Extrapolating to infinite size, this gives the correct result only in the disordered phase (gives infinite susceptibility for $\mathrm{T}<\mathrm{Tc}$)
We can also define the susceptibility estimator as

$$
\chi=\frac{1}{N} \frac{1}{T}\left(\left\langle M^{2}\right\rangle-\langle | M| \rangle^{2}\right)
$$

Gives correct infinite-size extrapolation for any T
Specific heat

$$
C=\frac{1}{N} \frac{d E}{d T}=\frac{1}{N} \frac{d}{d T} \sum_{C} E(C) \mathrm{e}^{-E(C) / T}=\frac{1}{N} \frac{1}{T^{2}}\left(\left\langle E^{2}\right\rangle-\langle E\rangle^{2}\right)
$$

Correlation function

$$
C(\vec{r})=\left\langle\sigma_{i} \sigma_{j(\vec{r}, i)}\right\rangle
$$

Average over all spins i

$$
C(\vec{r})=\frac{1}{N} \sum_{i=1}^{N}\left\langle\sigma_{i} \sigma_{j(\vec{r}, i)}\right\rangle
$$

Statistical errors ("error bars")

Calculation based on M "bins". What is the statistical error? Consider M independent calculations (each based on n configs)
Statistically independent averages $\bar{A}_{i}, i=1, \ldots, M$

$$
\begin{array}{cr}
\text { Full average } & \text { Standard deviation } \\
\bar{A}=\frac{1}{M} \sum_{i=1}^{M} A_{i} & \sigma^{\prime}=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(\bar{A}_{i}^{2}-\bar{A}^{2}\right)}
\end{array}
$$

But, we want the standard deviation of the average

$$
\sigma=\sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M}\left(\bar{A}_{i}^{2}-\bar{A}^{2}\right)}
$$

The bins have to be long enough (\# of MC steps, n, large enough) to be essentially statistically independent (can be quantified by "autocorrelations" - later)

Squared magnetization for different system sizes
(no external field): development of phase transition

Finite-size scaling

$\left.\mathrm{T}>\mathrm{T}_{\mathrm{c}}:<\mathrm{M}^{2}\right\rangle \rightarrow 0$ (as $1 / \mathrm{L}^{2}$, trivial from short-range correlations)
$\mathrm{T}=\mathrm{T}_{\mathrm{c}}:\left\langle\mathrm{M}^{2}\right\rangle \rightarrow 0$ (non-trivial power law)
$\left.\mathrm{T}<\mathrm{T}_{\mathrm{c}}:<\mathrm{M}^{2}\right\rangle \rightarrow$ constant >0
Extracting an exponent: $A=a L^{\alpha} \longrightarrow \ln (A)=\ln (a)+\alpha \ln (L)$

- Power-law: straight line when plotted on log-log scale
- The $1 / L^{2}$ form for $T / J=2.5$ not yet seen because of cross-over behavior; close to the critical point, larger L required

Critical behavior and scaling

Correlation length ξ defined in terms of correlation function

$$
C\left(\vec{r}_{i j}\right)=\left\langle\sigma_{i} \sigma_{j}\right\rangle-\left\langle\sigma_{i}\right\rangle^{2} \sim \mathrm{e}^{-r_{i j} / \xi}, \quad \vec{r}_{i j} \equiv\left|\vec{r}_{i}-\vec{r}_{j}\right|
$$

The correlation length diverges at the critical point

$$
\xi \sim t^{-\nu}, \quad t=\frac{\left|T-T_{c}\right|}{T_{c}} \quad \text { (reduced temperature) }
$$

v is an example of a critical exponent

Universality

Critical exponents do not depend on microscopic details of the interactions; only on the dimensionality of the system and the order parameter:

- Ising, gas/liquid (scalar Z2-symmetric order parameter)
- XY spins, phase of superconductor (2D, O(2) order parameter)
- Heisenberg spins (3D, O(3) order parameter)

Phase transitions fall into universality classes characterized by different sets of critical exponents

