The transition probability can typically be written as

$$
P(A \rightarrow B)=P_{\mathrm{attempt}}^{A}(B) P_{\mathrm{accept}}^{A}(B)
$$

where the two factors have the following meaning:
$P_{\text {attempt }}^{A}(B)$ - The probability of selecting B as a candidate among a number of possible new configurations
$P_{\text {accept }}^{A}(B)$ - The probability of actually making the transition to B after the selection of B has been done

If B has been selected but is not accepted (rejected); stay with A
For an Ising model
$>$ Select a spin at random as a candidate to be flipped (attempt)
$>$ Actually flip the spin with a probability to be determined (accept)
$>$ Stay in the old configuration if the flip is not done (reject)

$P_{\text {attempt }}^{A}(B)=1 / N_{\text {spin }}$ uniform, independent of A, B
$P_{\text {accept }}^{A}(B)$ constructed to satisfy detailed balance condition

$$
\frac{P_{\mathrm{accept}}^{A}(B)}{P_{\mathrm{accept}}^{B}(A)}=\frac{W(B)}{W(A)}
$$

Two commonly used acceptance probabilities
Metropolis: $P_{\text {accept }}^{A}(B)=\min \left[\frac{W(B)}{W(A)}, 1\right]$

Heat bath: $\quad P_{\text {accept }}^{A}(B)=\frac{W(B)}{W(A)+W(B)}$
Easy to see that these satisfy detailed balance
The ratios involve the change in energy when a spin has been flipped (or, more generally, when the state has been updated in some way)

Metropolis algorithm for the Ising model

Spin update

- Select a spin at random

$$
E=J \sum_{\langle i, j\rangle} \sigma_{i} \sigma_{j}, \quad \sigma_{i}= \pm 1
$$

- Calculate the change in energy if the spin is flipped
- Use the energy change to calculate the acceptance probability P
- Flip the spin with probability P; stay in old state with 1-P
- Repat from spin selection

Current configuration: S
Configuration after flipping spin j: \tilde{S}_{j}
Acceptance probability: $P\left(S \rightarrow \tilde{S}_{j}\right)=\min \left[\frac{W\left(\tilde{S}_{j}\right)}{W(S)}, 1\right]$

$$
W(S)=\mathrm{e}^{-E(S) / T}=\mathrm{e}^{-\frac{J}{T} \sum \sigma_{i} \sigma_{j}}=\prod \mathrm{e}^{-\frac{J}{T} \sigma_{i} \sigma_{j}}
$$

Only factors containing spin j survive in W-ratio

$$
\frac{W\left(\tilde{S}_{j}\right)}{W(S)}=\exp \left[+\frac{2 J}{T} \sigma_{j} \sum_{\delta(j)} \sigma_{\delta(j)}\right], \quad \delta(j)=\text { neighbor of } j
$$

We want a simulation "time" unit which is normalized by the system size N (probability of a given spin having been selected after a time unit should be N independent).
1 Monte Carlo step (MC steps): N random spin-flip attempts
Measurements of physical observables done after equilibration
$>$ the correct Boltzmann distribution is approached after some time that depends on the initial configuration
Binning: Accumulate data over bins consisting of M MC steps
$>$ Averages and statistical errors calculated from bin averages
Flow of a complete simulation

- Generate arbitrary starting state
- Carry out a number of MC steps for equilibration
- Carry out a number of bins
- each bin consists of M MC steps
- measurements done after every (or every few) MC step
- save bin averages in a file after each bin (or save internally in program)
- Calculate averages and statistical errors

Illustration of simulation

Evolution of the magnetization, 2D Ising model, T/J=2.2 (below Tc)

- $<\mathrm{M}>=0$, but time scale for M-reversal increases with L
- Symmetry-breaking occurs in practice for large L

Magnetization distribution $\mathrm{P}(\mathrm{m})$

The distribution depends on T and L

- single peak around $\mathrm{m}=0$ for $\mathrm{T}>\mathrm{Tc}$
- double peak around $+<m>$ and $-<m>$ for $T<T c$

Symmetry breaking (sampling of only $\mathrm{m}>0$ or $\mathrm{m}<0$ states) occurs in practice for large L

- because extremely small probability to go between them

