
Monte Carlo Simulations in Statistical Physics
Classical interacting many-particle systems; examples
Ø atoms and molecules in simple liquids, gases, solids
Ø macromolecular systems; polymers, liquid crystals
Ø spin models of magnetism
Quantum fluctuations can often be neglected (not always)

Problem: Evaluate thermal expectation values 

N particles with positions and momenta  

Partition function (state sum)



Hamiltonian (energy function) for identical particles in
potential U and with pair-interaction V

If the observable A is velocity-independent (real-space
correlation functions, response of local density to external
perturbations, etc.), the momentum integrals cancel

Only the potential energy matters



For the kinetic energy the position integrals cancel

Most of statistical physics concerns velocity-independent 
quantities; the mathematical problem of interest is

With N approaching infinity (thermodynamic limit)

Few exact solutions; numerical simulations for finite N important

This gives the equipartition theorem 



Lattice and spin models

Spin models, describing magnetism of solids with spinful atoms
Ø large spin S behaves as classical angular momentum
Ø quantum fluctuations important for small S (1/2,1,3/2)

Degrees of fredom “live” on vertices of a lattice
Ø Continuous or discrete variables on the vertices

Interactions: often of
the Heisenberg form



Ising models
Two states on each lattice site

Can arise for quantum mechanical S=1/2:
Strong anisotropies; z-interactions can dominate

This is the Ising model
Ø important in the theory of magnetism
Ø also effective model for other stat mech

problems (“lattice gases”, binary alloys, 
atom adsorption on surfaces,...)

With only nearest-neighbor interactions (J), the Ising model
can be solved analytically in 1D and 2D
Ø Numerical simulations important in most other cases



Two-dimensional Ising model

denotes nearest neighbors
Ferromagnetic or antiferromagnetic ground state (T=0)

Related by transformation:                           on one sublattice

Thermal expectation value of some quantity A



Phase transition

magnetization (ferromagnet)

sublattice (staggered) magnetization (antiferromagnet)

Spontaneous ordering (symmetry breaking) at critical temperature
Tc/J = 2/ ln(1 +

�
2)



Monte Carlo simulations of the 2D Ising model
Stochastic sampling of spin configurations to estimate

Spin configurations
configurations; can sample very small fraction for large N

Trivial Monte Carlo sampling fails at low T, because the sum
is then dominated by configurations with large ordered domains,
which are very unlikely to be generated in random sampling

Extreme case: T=0. Only two configurations contribute, but
the probability to generate them is 1/2N-1

Solution: Importance sampling:
Ø Generate configurations according to Boltzmann distribution



Importance sampling
First, rewrite expectation value as

P(S) can be interpreted as the probability of configuration S
- W(S) is called the weight of the configuration
Uniform sampling of N configurations

Importance sampling: The probability to pick S is P(S)

This sampling selects exactly the important configurations, and
hence the statistical errors will be much smaller at low T.

But how do we accomplish importance sampling in practice?
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W (S) = e�E(S)/T
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hAi ⇡
PN

i=1 W (Si)A(Si)PN
i=1 W (Si)



Imagine ensemble of huge number of states in equilibrium
Number of states A is N0(A), proportional to P(A)
We now make some random change in each state (e.g., flip spins)

Possible transitions: 

If we want the distribution to remain P(A) after the update

Number of states A after the “update”

This is the master equation for the stochastic process

detailed-balance solution (condition): For every A, B
Many possible solutions; an obvious solution, called the



Time average of a Markov process same as ensemble average
If we make random updates on a single configuration, and
satisfy detailed balance,                                                       ,
and if the updates are such that any configuration can be 
reached in a series of updates (ergodicity). 
Then, the time distribution of configurations A will approach 
the distribution P(A) independently of the initial configuration

Alternative form of the detailed-balance condition

With

We have to construct transition probabilities satisfying this

Time evolution of a single configuration; Markov process


