The Schrodinger equation in discretized real space

Example of grid-based method for 2D and 3D problems
Basis of states localized in small volume element
$>$ large number of such states neded in 2D and 3D
$>$ the resulting $\mathrm{N} * \mathrm{~N}$ matrix is too big to be fully diagonalized
$>$ special methods exist for lowest states of sparse matrices

- N up to several million (even 10s or 100s of millions)

Cubic d-dimensional space elements;
volume $=\Delta^{d}$
Label by coordinate or number
$\phi_{j}(\vec{x})=\frac{1}{\Delta^{d / 2}}$ inside element
Coordinate of element \vec{r}_{j}
Non-overlapping $\langle j \mid l\rangle=\delta_{j l}$ (orthonormal basis)

Strictly speaking, these are not valid wave functions (discontinuous)
However, we will obtain a scheme that gives the correct physics in the limit $\Delta \rightarrow 0$ (we could also in principle use
 some continuous localized functions)
Size of the basis in a box with side L: $N=(L / \Delta)^{d}$
Matrix elements of Hamiltonian $H=K+V$
The potential energy is diagonal
$V_{j l}=\langle j| V|l\rangle=\delta_{j l} \int d x^{d}\left|\phi_{j}(\vec{x})\right|^{2} V(\vec{x}) \approx \delta_{j l} V\left(\vec{r}_{j}\right)$
Kinetic energy

$$
K_{j l}=\langle j| K|l\rangle=\frac{1}{2} \int d x^{d} \phi_{j}^{*}(\vec{x}) \nabla^{2} \phi_{l}(\vec{x})
$$

How do we deal with the non-differentiability?

Using central difference operator in place of derivatives
$>$ Can we do this when the functions are not smooth?
$>$ We will show that it in fact produces correct results

Work in one dimension for simplicity

- Can be directly generalized to higher dimensionality

Replace second derivatives of the basis functions by

$$
\begin{aligned}
\frac{1}{\Delta^{2}} \delta^{2} \phi_{j}(x) & =\frac{1}{\Delta^{2}}\left[\phi_{j}(x-\Delta)-2 \phi_{j}(x)+\phi_{j}(x+\Delta)\right] \\
& =\frac{1}{\Delta^{2}}\left[\phi_{j-1}(x)-2 \phi_{j}(x)+\phi_{j+1}(x)\right]
\end{aligned}
$$

Produces non-zero values in the neighboring elements

The kinetic energy matrix elements are
$K_{j l}=\frac{1}{2} \int d x^{d} \phi_{j}^{*}(\vec{x}) \frac{1}{\Delta^{2}} \delta^{2} \phi_{l}(\vec{x})=\left\{\begin{array}{cl}-\Delta^{-2} / 2, & \text { for } j=l \pm 1 \\ \Delta^{-2}, & \text { for } j=l\end{array}\right.$
This means that when K acts on a state
$K|j\rangle=-\frac{1}{\Delta^{2}}\left[\frac{1}{2}|j-1\rangle-|j\rangle+\frac{1}{2}|j+1\rangle\right]$
Non-zero matrix elements of the full Hamiltonian
$H_{j, j}=V\left(r_{j}\right)+\frac{1}{\Delta^{2}} \quad H_{j \pm 1, j}=-\frac{1}{2} \frac{1}{\Delta^{2}}$
Generalizes to 2D and 3D; kinetic energy "hops" localized particle between nearest-neighbor volume elements

$$
H_{j, j}=V\left(\vec{r}_{j}\right)+\frac{d}{\Delta^{2}} \quad H_{\delta[j], j}=-\frac{1}{2} \frac{1}{\Delta^{2}}
$$

$\delta[j]$ denotes a neighbor of $\mathrm{j}(2,4,6$ neighbors in 1D, 2D, 3D)

