## Motion in two or three dimensions

Vector equations of motion

$$
\begin{aligned}
\dot{\vec{x}}(t) & =\vec{v}(t) \\
\dot{\vec{v}}(t) & =\frac{1}{m} \vec{F}[\vec{x}(t), \vec{v}(t), t]
\end{aligned}
$$

Each component forms its own equation; all coupled through $\mathbf{F}$ Example: Planetary motion (2D plane)

$$
\vec{F}(r)=-\frac{G M m}{r^{3}} \vec{r}
$$

We should use reduced mass; one-body problem for $\mu=\frac{M m}{(m+M)}$

- but if M >>>> $m$ we can use $m$

$$
\begin{array}{llrl}
\begin{aligned}
\dot{x} & =v_{x} \\
\dot{v}_{x} & =-G M x / r^{3} \\
\dot{v}_{y} & =-G M y / r^{3}
\end{aligned} & r=\sqrt{x^{2}+y^{2}} & & \text { Applied in hw } \\
\dot{y} & =v_{y} & x(n+1) & =x(n)+\Delta_{t} v_{x}(n+1 / 2) \\
& & \text { (assignment } r \\
\text { Leapfrog } & y(n+1) & =y(n)+\Delta_{t} v_{y}(n+1 / 2) & \\
\text { proceduss) }
\end{array}
$$

