" 1
® @ @ @ @ @ @ O @

Ln4+1 = Tn + A75Un—|—1/2

What is the step error here?
- we expanded x to 2nd order. Is the step error 3rd order?

Let’s do a different derivation to cubic order
- forward and backward x steps:
Tpi1l = Tpn + Dpvp + %A%an + %A?dn + O(A})
Tn—1 = Tn, — Dyvy + SA7ay, — %Afdn + O(A}) add these —
Tpil = 28y — Tno1 + AZa, + O(A})
consider z, — 1 = x(tp_1/2 + A¢/2) — 2(t,_1/2 — A¢/2)
=[Tn_1/2 + (At/2)vn_1/2 + 3(At/2)an_1/2 + §(A/2)%an_1/0 + ..]
— [zp_1/2 — (At/2)v5—1/2 + %(At/2)2an_1/2 — %(At/z)san_1/2 +..]
= AyUp_1/2 + O(A}) — z, —x, 1 = Up—1/20¢ + O(A})
use thisin =, 1 =2z, — 2,1 + Aa, + O(A})

v(-172) x(0) w(U/2) x(1) () x(2) v(572) x(3)

\'4

Tpil = 2Ty — Tn_1 + AZa, + O(A}) .

LTn — Tp—1 = Un—l/ZAt T O(A?) — Up—1/2 = K(l’n — Tp-1) + O(Af)
Tpt1 = Tp + Ap(Vy—1/2 + Aray) :

Here it looks like the error in xn+1 should be O(4+3)

However, earlier we saw that Vnitj2 = Un + (Ae/2)an + (Ar/2)%an + O(AP)
Vnt1/2 = Un-1/2 + anly + O(A) Vn_tj2 = Un — (Ay/2)an + (Ay/2)%a, — O(AY)

and so the error in x is actually O(4+*)
We arrive at an algorithm identical to the Leapfrog algorithm
Unt1/2 = Un—1/2 + Bl Tpil — Tp = Tp — Tn_1 + AZa, + O(A})

Tyl = Tp + AgUpi1/2

The Leapfrog step error is actually O(4+%)

The form without explicit v is called the Verlet algorithm
Tni1l = 2Tn — Tn_1 + AZa, + O(A})

Initial conditions: xo, x4 1

If needed, the velocity obtained as v, +1/2 = K(xrﬁ—l —) + O(A7)
t

Un—|—1/2 — vn—1/2 + Atan Ay = O.Il, 0:01 |

R S —
Tl = Tn + Atvn+1/2 0.»000_ :
. . . 0.4998 i 4
Julia Leapfrog implementation | |
0.4996 [+ Jdi
for i=1:nt -
t=dt*(‘i-1) 50.4994—-
a=acc(x,t) 0.4992 1
v=v+dt*a
X=x+dt*v Owwv b d |
end 0.4988 - ,MIUU.UU | VVIUUIUU a
. 0 10 20 30 40 50
Properties of the method t
. . =1 -] | |
- time-reversal symmetric for o d%,;r(‘:f_ 1 i —aTm /
- errors bounded for periodic motion a=acc(x,v,t) e -
X=x+dt*v 07 ~
- small step error at low effort v=v+dt*a =
Test: same oscillator as before end 06} |
Note: Implementation almost identical to Euler 05' A

- jUSt swap two Iines! 0 10 20 , 30 40 50

Accumulated errors in the Leapfrog/Verlet algorithm
The number of time steps N can be large; N=T/A4t

How does the error at time T depend on T and 4t?
Write the position at time step n as the exact value plus a deviation
Ty = T, + Op
and use in the Verlet algorithm
Tnil = 2%y — Tpn1 + Aa, + O(A}) —
Ty = 205+ 20 = —(Ong1 — 205 + p1) + Afan + O(A)
Here we see discrete versions of second derivatives
Recall: For any function f(t) defined on the time grid:
a1 = fo+ Aifn+ 547 fo + §AT F, + O(A])
a1 = fo— Difu+ 387 fu — AL f, + O(A})
add these:
fatt = 2fn + fa1 = AL fu + O(A})

(2sy — 225 + 275 1) /A = —(0nt1 — 200 + 0n—1) /A7 + an + O(A])
(fot1 = 2fn + foo1)/AF = fu + O(A7)

Replace discrete time derivatives by continuum versions:
i°(t) = =(t) + a(t) + O(A2)

The exact solution satisfies - — Exact time dependence a
ex . — Interpolated Verlet solution
L (t) — a(t) i + Verlet solution

and we are left with
0(t) = O(A7)

Why is it OK to get rid of the
discretization here?

We can always construct a
smooth interpolation between
the discrete values xn

- €.g., a high-order polynomial

The equation for the error is rather incomplete
o(t) = O(AF)
We can also write it as an actual equation
O(t) = AZg(t)
though we do not know anything about the function g(t)
For the accumulated error at time t=T we have to integrate

o= [- [[uow a2 [[

We cannot go any further without making assumptions for g(t)
- g(t) could oscillate around 0, leading to cancelations and small errors
- this is the case for periodic motion
- g(t) could increase rapidly as t increases, causing large errors
- the solution then likely goes completely bad after some time
- g(t) could be roughly time independent, leading to: §(7') = O(AZT?)
- may be common for “well behaved” regular, non-periodic motion
Note: 4t must be sufficiently small for the above arguments to be valid

Leapfrog/Verlet method including damping
We assumed velocity-independent force (acceleration) in
Upt1/2 = Un—1/2 + Dian we do not have v, for an=a(xn,Vn,t)

Tpil = Ty + DyUpi1/2
We can still use this form, with an = a(xn,vn-1/2,t), where error is O(4)
- X error is then O(4:°) instead of O(4+*) [see by expanding a(v) in v]
To do better, fi{st separate out dissipative part of force:
a(z,v,t) = E[F(rf) — G(v)]
Consider the approximation
ATy, Vs tn) = [F(Tn,t,) — G(v,-1/2)]/m
and use this for intermediate (*) velocity and position:
Upy1/2 = Up—1/2 + D¢[F (2, t,) — G(vp—1/2)]/m
Tpi1 = Tp + D¢Vpy1/2 has O(4) error

Then we can obtain v, with O(4:3) error: v, = (Zp41 — Tn—1)/(24})

Uy, = (Zpg1 — Tn_1)/(2A;)+O(A?)
Now we can use this in the acceleration an(xn,vn,t); O(4+?) error
Summary of procedure:

’lA}n—i—l/Q = Up—1/2 + At[F('/Ena tn) - G(/Un—l/2)]/m
-/%n—l—l =Ty T At/ﬁn—{-l/Q

Up = (-/in+1 - '/I;n—l)/(QAt)

Upi1/2 = Un_1/2 + Diay .
ntl/ n-1/ vr used here in an

Tl = Tp + DyUpi/2
More than twice as much work as the standard Leapfrog method
Upy1/2 = Un—1/2 + Dian
Tpy1l = Tp + DyUpiq /o
but the O(4+?) error is now maintained (work pays off)
Test by running friction.ipynb on the web site (tomorrow’s discussion)

Runge-Kutta (RK) Method
A classic method with very small step error; O(4+°)
Let’s first apply it to a single 1st-order equation:

o(t) = flz(t),]
It’s instructive to first look at a simpler method with O(4+3) error

2nd-order RK method
Apply the mid-point rule (recall from numerical integration)

t'n—i—l -
Ln+l1 = xn+/ f[l“(f), t]dt — Atf['llj(tn—i-l/Q)a tn—{-l/Q] T O(A;)
Jt,

But here we do not have x(t,,1/2) = %, 112
We can approximate it using the first-order form

7’5]‘ (xn,t,) * indicates an intermediate value of x. Erroris O(A?)

- series expand f() in the integration formula to see that
Trnt1 = Tn + B¢ f (Bnt1/2,tnt1/2) + O(A})
lllustrates the use of intermediate values with larger error

Lpn+1/2 = Tn +

4th-order RK method
Use Simpson’s formula:

t+1

A
Tpitl = ilfn—|—/ t) f]df = In + _t(fn + 4fn—+—1/2 + fn+1) +O(A5)

where we need to find an approximation to fn.1/2 and fn.1 with O(4+*) errors
The way to do this is a bit involved/obscure...

Tpt1/2 = Tn + Arf(Tn,t,)/2 first intermediate approximation

A;7,+1/2 Tp + A f(Znt1/2,tn+1/2)/2 improved intermediate approximation
similar for xn+1. Scheme boils down to evaluating these:

ki = Aif(x,, t,)

ko = Ayf(xy +k1/2,1,41/2),

ks = Ao f (e + k2/2,1,41/2)

ky = Avf(xpn + k3, tny1)
and then .

Tpt1 = Ty + 8(kl + 2ko + 2ks + ky) with O(4¢°) step error

RK method for two coupled 1st-order equations

i(t) = f(z,y.t) §(t) = g(z,y,1)

Simple generalization of the previous case:

Tn+1

Yn+1

This is more general than Newton’s equations

Atf(mnaynatn)a

Atg(Tn, Ynrtn),

Aef(zn + k1/2,yn +11/2,8041)2),
Atg(zn +k1/2,yn +11/2, 10 11/2),
Aef(zn + k2/2,yn +12/2, 80 11)2)
Atg(zn + k2/2,yn +12/2,t011/2),
Aef(zn + k3, yn + 13, tnt1),
Aeg(zp + k3, yn + 13, tni1),

1
Ty + g(kl + 2ko + 2k3 + ky4),

?

1
Yn + g(ll + 2l5 + 213 + 1y),

T=yly=v, y=alz,y,t)

ki = Aif(x,,, t,)

ko = Ay f(xy +k1/2,t41/2),
ks = A¢f(xn + ka/2,t411/2)
ke = A¢f(zn + k3, tn41)

1
Tn4+1 — Ty + g(kl + 2]{,’2 + 2]63 +]{4)

RK formulas for equations of motion

ki = DT, Ui tn),

i = Agvy,

ko = Asa(zn +11/2,00 +k1/2,8011/2),
lo = Aiv, +k1/2),

ks = Aca(zn +12/2,00 + k2/2,8011/2),
la = Ai(vn +k2/2),

ks = Aia(zn + 13,00 + k3,8041),

lh = Ailvn + k3),

1

Upntl = Ynt g(kl + 2ko + 2k3 + ky),
il

Tpnil = ZTp+t 6(31 + 2l + 213 + 1y).

Friction (dissipative, v-dependent forces) can be included directly here

Test of the 4th-order RK method

Same harmonic oscillator as before

0.50000
0.49998
0.49996

o

[0 0.49994

0.49992

0.49990

(0.49988

I J I ! I) I

— A=D2
— A=0.1

| I | ! | I |

0

10 20 30 40
t

The energy error is not bounded
- not even for periodic motion

No time-reversal symmetry

- can be important in some applications

50

0.8

0.7

E(t)

0.6

0.5

Leapfrog

Euler

- [— a=0.01 é
— A=0.001

0 10 20 30 40 50
t

Ay =0.1,0.01

0.4996 -

7N

R
0.4994
5

0.4992

0.4990
0.4988 —v \/

|

|

0.5000
0.4998 \ ’ ! \ =

UV Uum

| I | I |

0 10 20 30 0 50

t

May be better than Leapfrog when E is not conserved (damping, driving)

