Comments on singularities

Open-interval formulas can be used

- singular point(s) should be at end(s); divide up interval in parts if needed
- but convergence with number of points n may be very slow

Divergent part can some times be subtracted and solved analytically
More sophisticated methods exist for difficult cases

Other methods
Gaussian quadrature:

- non-uniform grid points; n+1 points = exact result for polynomial of order n
- several Julia packages, e.g., FastGaussQuadrature.jl

Gauss-Kronrod quadrature:

- uses two Gaussian quad. evaluations for different n, similarly to Romberg
- package QuadGK.jl uses a version of this method

Adaptive grid (adaptive mesh):

- dynamically adapted to be more dense where most needed
Infinite integration range

Change variables to make range finite




Multi-Dimensional integration
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Can be carried out numerlcally dimension-by-dimension
Example, function of two variables H\
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Integrating numerically over x first, gives a function of y: hy T
Yy
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F(y) = / dzf(z,y)
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This has to be done for values of y on a grid, to be used in ha
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Very time consuming for large dimensionality D; scaling MP of effort
- M represents mean (geom) number of grid points for 1D integrals




Monte Carlo Integration
An integral over a finite volume V:
- is (by definition) the mean value of the function times the volume

b
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The mean value <f> can be estimated by sampling
- generate N random (uniformly distributed) x values x; in the range, then

N
f:%;f(xi)%(f% when N — oo

For finite N, there is a statistical error:

_ 1 interepretation of the mean error:
<f = <f>> X —== If the “simulation” is repeated many times,
\/N the averaged squared error (variance) tends
The statistical result for the to a value a/N, for with a some constant
integral should be expressed as
I=T+0=V(f+0o/V) oo N™12

Computing the “error bar” ¢ is an important aspect of the sampling method



Standard ilustration of MC integration; estimate of =

Consider a circle of radius 1, centered at (x,y)=0. Define a function:
mean value inside
the surrounding box

f(:c,y)Z{
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if 22 +9%2 <1
if 22 4+9y% >1

Expected fraction of “hits”
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Use MC sampling to compute: A = / dy/ def(z,y) =7
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Statistical errors

Expressing a statistical estimate as A * ¢, the meaning normally is
- o represents one standard deviation of the computed mean value A

- under the assumption of normal-distributed fluctuations

Then, the probability of the true value being
- within [A-c,A+0] is 68%

- within [A-20,A+206] is 95%
- within [A-306,A+30] is 99.7%
For M independent samples Ai:
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1 M B 1 M - This is the standard deviation
oA = i Z(Al — A2 = 7 E(Ag — A?) of the distribution of values {A}
i=1 i=1

But the “error bar” is the standard
_ /A2 _ (A)Q deviation of the mean of {A}



The mean value fluctuates less than the width oA of the distribution
- imagine taking the number of samples M to infinity:

B 1 I A A2 will approach a constant value
04 = \ M _1< i —A)*  _ihe standard deviation of the distribution
M —» oa cannot be the
e Z A will approach a constant value proper statistical
M — - the actual value <A> of A error of A

M

Variances add: variance of the sum > _;—; Aiis M 031

- standard deviation of the sumis vV Mo 4

- divide by M; standard deviation of the meanis 04 /vV M

- here M should be replaced by M-1 (reflecting infinite uncertainty if M=1)
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Data binning
The statistical error (“error bar”) has its conventional meaning only
if the values {Ai} are normal distributed

- typically they obey some completely different distribution

Apply central limit theorem to obtain normal distributed “bin averages”
A bin average is based on M samples as before, but now B of them
- B different mean values (estimates of A): A4,, 4,,...,Ap

M
— 1
Ap = Wi z; Ayi  Av,is value #i belonging to bin b

Regardless of the distribution of individual values
- if M is large enough, the bin averages are normal-distributed

Use standard formulas with the bin data:
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Emergence of normal distribution

- example: sampling f=1circle in square

- lets just consider the estimate of the mean <f>

For each sample, the probabilities of f=0,1 are:
P(f=1)=n/4, P(f=0)=1-—7/4

For N samples, the possible , _ {0 12 N-1

average values A are "N'’N 7 N

the probabilities of these averages are

P (A B %) B ml(NNi m)! (g)m (1 N E)N_m

H=1 N=2 =2




Evolution of P(A)
from N=1 to 100

Note: We can think of the
probability distribution of
a continuum of A values

P(A) is a sum of delta-functions;
reflects discrete set of possible

values

For large N, a small broadening of
the deltas (e.g., bars or Gaussians)
give a continuous distribution

P(<x>)

<X>




