## Comments on singularities

Open-interval formulas can be used

- singular point(s) should be at end(s); divide up interval in parts if needed
- but convergence with number of points $n$ may be very slow

Divergent part can some times be subtracted and solved analytically
More sophisticated methods exist for difficult cases

## Other methods

Gaussian quadrature:

- non-uniform grid points; $\mathrm{n}+1$ points $\rightarrow$ exact result for polynomial of order n
- several Julia packages, e.g., FastGaussQuadrature.jl


## Gauss-Kronrod quadrature:

- uses two Gaussian quad. evaluations for different n , similarly to Romberg
- package QuadGK.jl uses a version of this method

Adaptive grid (adaptive mesh):

- dynamically adapted to be more dense where most needed


## Infinite integration range

Change variables to make range finite

## Multi-Dimensional integration

$$
I=\int_{a_{n}}^{b_{n}} d x_{n} \cdots \int_{a_{2}}^{b_{2}} d x_{2} \int_{a_{n}}^{b_{n}} d x_{1} f\left(x_{1}, x_{2}, \ldots, x_{n}\right),
$$

Can be carried out numerically dimension-by-dimension Example, function of two variables

$$
I=\int_{a_{y}}^{b_{y}} d y \int_{a_{x}(y)}^{b_{x}(y)} d x f(x, y)
$$

Integrating numerically over $x$ first, gives a function of $y$ :

$$
F(y)=\int_{a_{x}(y)}^{b_{x}(y)} d x f(x, y)
$$

This has to be done for values of $y$ on a grid, to be used in


$$
I=\int_{a_{y}}^{b_{y}} d y F(y)
$$

Very time consuming for large dimensionality D; scaling $\mathrm{M}^{\mathrm{D}}$ of effort - $M$ represents mean (geom) number of grid points for 1D integrals

## Monte Carlo Integration

An integral over a finite volume V:

- is (by definition) the mean value of the function times the volume

$$
I=\int_{a}^{b} f(x) d x=(b-a)\langle f\rangle
$$

The mean value <f> can be estimated by sampling

- generate N random (uniformly distributed) x values $\mathrm{x}_{\mathrm{i}}$ in the range, then

$$
\bar{f}=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \rightarrow\langle f\rangle, \text { when } N \rightarrow \infty
$$

For finite $\mathbf{N}$, there is a statistical error:

$$
\langle\bar{f}-\langle f\rangle\rangle \propto \frac{1}{\sqrt{N}}
$$

The statistical result for the
interepretation of the mean error: integral should be expressed as

$$
I=\bar{I} \pm \sigma=V(\bar{f}+\sigma / V) \quad \sigma \propto N^{-1 / 2}
$$

Computing the "error bar" $\sigma$ is an important aspect of the sampling method

## Standard ilustration of MC integration; estimate of $\pi$

Consider a circle of radius $\mathbf{1}$, centered at $(\mathbf{x}, \mathbf{y})=\mathbf{0}$. Define a function:

$$
f(x, y)= \begin{cases}1, & \text { if } x^{2}+y^{2} \leq 1 \\ 0, & \text { if } x^{2}+y^{2}>1\end{cases}
$$

mean value inside
the surrounding box
Use MC sampling to compute: $\quad A=\int_{-1}^{1} d y \int_{-1}^{1} d x f(x, y)=\pi=4\langle f\rangle_{\square}^{\downarrow}$ " ${ }^{\downarrow}$ Expected fraction of "hits"
inside circle $=\pi / 4$


The error after N steps

Four repetitions of a simulation, dots showing partial results as the mean value evolves

We should compute the statistical error properly

## Statistical errors

Expressing a statistical estimate as $\mathrm{A} \pm \sigma$, the meaning normally is

- $\sigma$ represents one standard deviation of the computed mean value A
- under the assumption of normal-distributed fluctuations

Then, the probability of the true value being

- within $[\mathrm{A}-\sigma, \mathrm{A}+\sigma$ ] is $68 \%$
- within $[\mathrm{A}-2 \sigma, \mathrm{~A}+2 \sigma]$ is $95 \%$
- within $[\mathrm{A}-3 \sigma, \mathrm{~A}+3 \sigma]$ is $99.7 \%$

For $M$ independent samples $A_{i}$ :

$$
\begin{aligned}
\bar{A} & =\frac{1}{M} \sum_{i=1}^{M} A_{i} \\
\sigma_{A} & =\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(A_{i}-\bar{A}\right)^{2}}=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(A_{i}^{2}-\bar{A}^{2}\right)} \\
& =\sqrt{\overline{A^{2}}-(\bar{A})^{2}}
\end{aligned}
$$



This is the standard deviation of the distribution of values $\left\{A_{i}\right\}$

But the "error bar" is the standard deviation of the mean of $\left\{A_{i}\right\}$

The mean value fluctuates less than the width $\sigma_{\mathrm{A}}$ of the distribution - imagine taking the number of samples $M$ to infinity:

$$
\sigma_{A}=\sqrt{\frac{1}{M} \sum_{i=1}^{M}\left(A_{i}-\bar{A}\right)^{2}}
$$

will approach a constant value

- the standard deviation of the distribution

$$
\bar{A}=\frac{1}{M} \sum_{i=1}^{M} A_{i} \quad \begin{aligned}
& \text { will approach a constant value } \\
& - \text { the actual value }<\mathrm{A}>\text { of } \mathrm{A}
\end{aligned}
$$

$\longrightarrow \sigma_{\mathrm{A}}$ cannot be the

Variances add: variance of the sum $\sum_{i=1}^{M} A_{i}$ is $M \sigma_{A}^{2}$

- standard deviation of the sum is $\sqrt{M} \sigma_{A}$
- divide by M; standard deviation of the mean is $\sigma_{A} / \sqrt{M}$
- here $M$ should be replaced by $\mathbf{M}-1$ (reflecting infinite uncertainty if $M=1$ )

$$
\sigma=\sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M}\left(A_{i}-\bar{A}\right)^{2}}=\sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M}\left(A_{i}^{2}-\bar{A}^{2}\right)}=\sqrt{\frac{\overline{A^{2}}-(\bar{A})^{2}}{M-1}}
$$

## Data binning

The statistical error ("error bar") has its conventional meaning only if the values $\left\{A_{i}\right\}$ are normal distributed

- typically they obey some completely different distribution

Apply central limit theorem to obtain normal distributed "bin averages"
A bin average is based on $M$ samples as before, but now $B$ of them

- B different mean values (estimates of A): $\bar{A}_{1}, \bar{A}_{2}, \ldots, \bar{A}_{B}$

$$
\bar{A}_{b}=\frac{1}{M} \sum_{i=1}^{M} A_{b, i} \quad \mathrm{~A}_{\mathrm{b}, \mathrm{i}} \text { is value \#i belonging to bin } \mathrm{b}
$$

Regardless of the distribution of individual values

- if $M$ is large enough, the bin averages are normal-distributed

Use standard formulas with the bin data:

$$
\bar{A}=\frac{1}{B} \sum_{b=1}^{B} \bar{A}_{b} \quad \sigma=\sqrt{\frac{1}{B(B-1)} \sum_{b=1}^{B}\left(\bar{A}_{b}-\bar{A}\right)^{2}}=\sqrt{\frac{1}{B(B-1)} \sum_{b=1}^{B}\left(\bar{A}_{b}^{2}-\bar{A}^{2}\right)}=\sqrt{\frac{\overline{A^{2}}-(\bar{A})^{2}}{B-1}}
$$

## Emergence of normal distribution

- example: sampling $f=1$ circle in square
- lets just consider the estimate of the mean <f>

For each sample, the probabilities of $\mathrm{f}=0,1$ are:

$$
P(f=1)=\pi / 4, \quad P(f=0)=1-\pi / 4
$$

For N samples, the possible average values $A$ are

$$
A \in\left\{0, \frac{1}{N}, \frac{2}{N}, \ldots, \frac{N-1}{N}, 1\right\}
$$

the probabilities of these averages are

$$
P\left(A=\frac{m}{N}\right)=\frac{N!}{m!(N-m)!}\left(\frac{\pi}{4}\right)^{m}\left(1-\frac{\pi}{4}\right)^{N-m}
$$

$$
f(x, y)= \begin{cases}1, & \text { if } x^{2}+y^{2} \leq 1 \\ 0, & \text { if } x^{2}+y^{2}<1\end{cases}
$$





## Evolution of P(A)

from $\mathrm{N}=1$ to 100
Note: We can think of the probability distribution of a continuum of $A$ values
$P(A)$ is a sum of delta-functions; reflects discrete set of possible values

For large $\mathbf{N}$, a small broadening of the deltas (e.g., bars or Gaussians) give a continuous distribution

$P(A)=\sum_{m=0}^{N} \frac{N!}{m!(N-m)!}\left(\frac{\pi}{4}\right)^{m}\left(1-\frac{\pi}{4}\right)^{N-m} \delta(A-m / N)$

