Writing and reading files

A file has to be created or opened before working with it

- a file then becomes associated with an I0Stream object
f=open(“file.dat"”) or filename="file.txt"”

f is now the I0Stream object f = open(filename)

- used to refer to the file

This way of opening allows only to read the file

- the file must exist already

f = open(filename,”r”) open for reading (“r” optional)
f = open(filename,”w”) creates file or destroyes existing file
f = open(filename,”a”) for writing, appends existing file

A file should be closed after it has been used

close(f)
The standard input and output streams are always open
stdin normally the keyboard

optional to include
stdout normally the screen (op)

Examples of reading from a file:

data = parse(Float64, readline(f)) item on a line or last item on line
data = parse(Float64, readuntil(f,str)) item followed by the string str
data = readline(f) a line of binary data

Examples of writing printin() is print() with a newline character

print(f,a,” “,b,”) following after whatever is printed
println(f,a,” *“,b) - next print will be on the next line

: - with print(), next output will b l
Colored output with with print(), next output will be on same line

printstyled(f,a,color=:blue)
Formatted output best done with @printf (macro) - see Julia doc
Binary output/input
Large data sets should be written in binary form (more compact)

write(f,data) ‘data’ could be a big array (you will not be able too “see” it)
Read in binary data this way
read! (f,data) the next item in the file must match the size of ‘data’

Examples of files, writing, reading online in write.jl and read.jl

Scope of variables
Scope = part of code where a variable is visible
Scopes are nested

scope blocks

- Inner scopes can access variables only in outer scopes

There can be more than one global scope
- each module is its own global scope

Local scope blocks (examples)
- functions, loops (for, while), macros

Role of scopes
- avoid naming conflicts

(same names in different scopes ok)
- run-time optimization by compiler
There are two types of local scopes
- hard and soft (functions are hard, loops are soft)
Different rules for how a local variable is assigned

If there is already a global one with the same name
lllustrated in scope.jl and scoperror.jl; see also Julia doc

local>

local

locab global
1oca>

Some differences between
the REPL and running files

Composite types
The constructor ‘struct’ for creating a composite type named System
struct System

size::Int _
temp: : Float64 These are the fields of System
conf::Array{Int,1}

end

An object of type system can now be created, e.g.,
sys=System(a,b,c)

where a,b,c must match the field types of System

The fields are accessed as: sys.size, sys.temp, sys.conf

There is a function fieldnames() that returns the field names

sys can be passed as an argument to a function like any object

A struct is an unmutable object
- but in sys the array field is still mutable (can be changed in a function)

There is also mutable struct
Example in struct.jl

