Complex numbers
These complex types are available:

ComplexFl6 - same as Complex{Floatl6}
ComplexF32 - same as Complex{Float32}
ComplexF64 - same as Complex{Float64}

The numbers refer to the number of bits in both real and imag part
The imaginary constant i is denoted im
A complex number can be assigned by adding real and imag parts:

c =1.7 + 4.01m Note a literal constant multiplying a named
or with the complex function variable or constant does not need * in Julia
c = complex(1.7,4.0) This is the recommended way

Many functions for complex operations are available
Some examples in complex.jl online
Rational numbers

There is a type for rational numbers, notation a//b
- check the Julia documentation if you need to use

Characters
A single character is of the type Char; using 4 bytes (32 bits)
The Unicode system is used
- Char(c) is the Unicode character corresponding to integer c
- A character is entered within *’

a = ‘A’ assigns the value A to the variable a
- A character can be converted to its number by Int()

println(Int(‘A’),” “,Int(’K’)) givesthe output: 65 22823
A character can be referred to using \u or \U
- followed by the number of a character in hexadecimal format
- characters are in windows 0-D7FF and E00O - 10FFFF (not all assigned)

c=\U5927'
println(c)

produces X
Unocodes 0-127 are the conventional ASCII characters

Strings (character strings) - text

An object of type String consists of one or more characters
a = “Hello”

assigns the word Hello to the variable a; using “ ” (not *’)
A string of length 1 is not the same as a Char

a = “H" length-1 string (type is String)

b = ‘H’ character (type is Char) a == false
- a Char always uses 4 bytes

- a character stored in a string uses 1-4 bytes

Example: a = “abcKZEDEF”
1,2,3,4,5,6,7,8,9,10/11,12 index (bytes)
alblc|] K 5 D|E|F character

- The size of the string in bytes (number of indices, here 12): lastindex(a)

- The length of the string, length(a), is the number of characters (8)
a[i] is the character starting at index i; error if no start at i

- cumbersome feature, avoided if only ASCII characters (1 byte each)
Further illustrations in online program string.l

Writing and reading files
A file has to be created or opened before working with it
- a file then becomes associated with an I0Stream object

f=open(“file.dat"”) or filename=“file.dat”

f is now the I0OStream object f = open(filename)
- used to refer to the file

This way of opening allows only to read the file

- the file must exist already

f = open(filename,”r"”) open for reading (“r” optional)

f = open(filename,”w") creates file or destroys existing file
f = open(filename,”a"”) for writing, appends existing file
A file should be closed after it has been used

close(f)
The standard input and output streams are always open
stdin normally the keyboard (optional to include)

stdout normally the screen

Examples of reading from a file:

data = parse(Float64,readline(f)) item on a line or last item on line
data = parse(Float64, readuntil(f,str)) item followed by the string str
data = readline(f) a line of binary data

Examples of writing printin() is print() with a newline character

print(f,a,” “,b,”) following after whatever is printed
println(f,a,” “,b) - next print will be on the next line

. - with print(), next output will be on same line
Colored output with print) P

printstyled(f,a,color=:blue)
Formatted output best done with @printf (macro) - see Julia doc
Binary output/input
Large data sets should be written in binary form (more compact)

write(f,data) ‘data’ could be a big array (you will not be able too “see” it)
Read in binary data this way
read! (f,data) the next item in the file must match the size of ‘data’

Examples of files, writing, reading online in write.jl and read.jl

Scope of variables
Scope = part of code where a variable is visible

Scopes are nested

scope blocks

- Inner scopes can access variables only in outer scopes

There can be more than one global scope
- each module is its own global scope

Local scope blocks (examples)

- functions, loops (for, while), macros

Role of scopes
- avoid naming conflicts

(same names in different scopes ok)
- run-time optimization by compiler
There are two types of local scopes
- hard and soft (functions are hard, loops are soft)
Different rules for how a local variable is assigned

if there is already a global one with the same name
lllustrated in scope.jl and scoperror.jl; see also Julia doc

local>

local

100&9 global
loca>

Some differences between
the REPL and running files

