
9/6/21, 5:20 PMMathematical Operations and Elementary Functions · The Julia Language

Page 3 of 17https://docs.julialang.org/en/v1/manual/mathematical-operations/

!x negation

x && y short-circuiting and

x || y short-circuiting or

Negation changes true to false and vice versa. The short-circuiting opeations are explained on the

linked page.

Note that Bool is an integer type and all the usual promotion rules and numeric operators are also

defined on it.

Bitwise OperatorsBitwise Operators

The following bitwise operators are supported on all primitive integer types:

ExpressionExpression NameName

~x bitwise not

x & y bitwise and

x | y bitwise or

x ⊻ y bitwise xor (exclusive or)

x >>> y logical shift right

x >> y arithmetic shift right

x << y logical/arithmetic shift left

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234

Bitwise boolean Operations from julialang.org
Performs boolean operations on
- individual bits of one argument
- same-index bits of two arguments

Examples of these ops

in program ‘bitwise.jl’ on the web site

- shifts all bits

- leaves sign bit (1s are shifted in if negative)

- does not preserve sign (0s shifted in on right)

- same as xor(x,y)

Vectorized operators
All operators acting on single variables have vectorized “dot” versionsFor an array x (any number of dimensions):
 .op x performs “op” on each element

Example, for a vector x of lengt n
for i=1:n
 x[i] = x[i]^2
end

does the same as
x .= x.^2

can also be expressed with the @. macro
@. x = x^2

Examples in program timing.jl online

- this program also introduces functionality for timing code for performance

x = x.^2 also works, but allocates

a new x if x already exists (slower)

Complex numbers
These complex types are available:
ComplexF16 - same as Complex{Float16}
ComplexF32 - same as Complex{Float32}
ComplexF64 - same as Complex{Float64}
The numbers refer to the number of bits in both real and imag part
The imaginary constant i is denoted im
A complex number can be assigned by adding real and imag parts:
c = 1.7 + 4.0im Note a literal constant multiplying a named

variable or constant does not need * in Juliaor with the complex function
c = complex(1.7,4.0) This is the recommended way
Many functions for complex operations are available
Some examples in complex.jl online
Rational numbers
There is a type for rational numbers, notation a//b
- check the Julia documentation if you need to use

Characters
A single character is of the type Char; using 4 bytes (32 bits)
The Unicode system is used
- Char(c) is the Unicode character corresponding to integer c
- A character is entered within ‘’
a = ‘A’ assigns the value A to the variable a

- A character can be converted to its number by Int()
println(Int(‘A’),” “,Int(’ ’)) gives the output: 65 22823

A character can be referred to using \u or \U
- followed by the number of a character in hexadecimal format

c=‘\U5927’
println(c)

5927 is hexadecimal for 22823

produces

- characters are in windows 0-D7FF and E000 - 10FFFF (not all assigned)

Unocodes 0-127 are the conventional ASCII characters
Examples in prgram unicode.jl online

Strings (character strings) - text
An object of type String consists of one or more characters

a = “Hello”
assigns the word Hello to the variable a; using “ ” (not ‘ ’)
A string of length 1 is not the same as a Char

a = “H”
b = ‘H’

length-1 string (type is String)
character (type is Char) a == b false

- a Char always uses 4 bytes
- a character stored in a string uses 1-4 bytes

index (bytes)
character

- The size of the string in bytes (number of indices, here 12): lastindex(a)
- The length of the string, length(a), is the number of characters (8)

Example: a = “abc DEF”

a[i] is the character starting at index i; error if no start at i
- cumbersome feature, avoided if only ASCII characters (1 byte each)
Further illustrations in online program string.jl

 a b c D E F
1 2 3 4 5 6 7 8 9 10 11 12

