Why Julia?
There are traditionally two categories of computer languages:

Compiled - script file translated to machine code and linked to libraries once
- the executable program file is static, data types static

- examples: C/C++, Fortran

- fast, suitable for demanding high-performance computing
- not user-friendly handling of external packages, e.g., graphics

Interpreted - the script file is translated line-by-line at run time
- there is no static executable, allows more flexible functionality
- examples: Python, Perl, R

- slow; most time is spent translating the script over and over again
- more flexible handling of data (dynamic, automatic data typing)

- friendly integration of packages, graphics, notebooks,...

- not user-friendly for improving efficiency (e.g., precompiled parts)

Julia: first successful “best of both worlds” language O
- v0 launched in 2012, v1.0 in 2018, now v1.9.3 » Q0
Key: Just-in-time (just-ahead-of-time) compilation u Ia
- goes through the script line-by-line, but saves

compiled machine code for efficiency-critical parts
(loops, entire functions)

Almost as fast as C/C++ and Fortran (within ~10%)
- designed specifically for high-performance scientific computing

https://julialang.org

As dynamic as Python
- data types can change dynamically, but can also be declared

Good mechanism for incorporating external packages/libraries
- C/C++ and Fortran codes can also be incorporated easily

Library module “Base” is automatically included, extensive functionality

Other modules can easily be imported and used
- growing user community, many packages available in different fields

Introduction to Julia
The language has many features; here we just cover the basics
- PY502 is not a software engineering course

- We will not cover advanced programming
- We will (later) pay attention to code performance (execution speed)

Teaching method: brief general principles + code examples
- commented codes available on the course web site

http://physics.bu.edu/py502/lect1/examples/

Variable types and elements to get started

[int].jl] Integer declaration and wrap-around (mod) behavior

[int2.j1] Integer declarations; modified version of intl, run-time error due to type mismatch
[randomarray.jl] Function with two methods; generates array of Float32 or Float64 random numbers
[matrix.jl] Matrices and matrix operations

There are not yet any good Julia books (?)

Documentation on the Julia site is quite good https://julialang.org
- please read and practice elements we do not cover here!

Three ways to run Julia

1) Code written in file, run from terminal command line
$ julia yourcode.jl (list of arguments may follow)
This is the way for serious work
2) Using interactiv REPL (read-execute-print-loop) session

$julia (opens interactive session)
B Documentation: https://docs.julialang.org
Type "?" for help, "1?" for Pkg help.

Version 1.6.1 (2021-04-23)
Official https://julialang.org/ release

|
|
|
/1
|
_ |
|
julia>

- Useful for learning and testing (small code pieces)

- Package manager (import modules with specific functionality)

3) Run in Jupyter notebook Examples with animations:
- Install the Julia kernel first http://docs.juliaplots.org

Bit representation of integers
A “word” representing a number in a computer consists of B bits

- normally B=32 or 64, also in some cases 16 or 128
- a group of 8 bits is called a “byte” (normally a word is 4 or 8 bytes)

B-1 3 2 10 bit index i = 0,1,...,B-1
0|0f1] ----[0[1[0]1 bit values b(i) = 0/1

For signed integers, the last bit (B-1) is called the “sign bit”
- be-1 = 0 for positive (or zero) values, bs-1 = 1 for negative values

For positive (or 0) integer |, the value corresponding to the bits is

B-1
L 00 0000 = 0
I=2 b®)?2 00 0001 = 1
i=0 00....0010 = 2,....

For | < 0, “two’s complement” representation:

B2 . Positive to negative: 111111 = -1
I = Z b(i)QZ — b(B — 1)2B_1 - reverse all bits 111110=-2
i=0 - add 1 (ignore overflow) 111101 =-3,....

- most practical way for computer algebra
- integer operations have“wrap around” behavior (mod 28 for unsigned)

