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Computational Studies
of Quantum Spin Systems

Anders W. Sandvik

Department of Physics, Boston University,
590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

Abstract. These lecture notes introduce quantum spin systems ancgbkesmputational methods
for studying their ground-state and finite-temperaturgprbes. Symmetry-breaking and critical
phenomena are first discussed in the simpler setting of MOaté studies of classical spin sys-
tems, to illustrate finite-size scaling at continuous anst-firder phase transitions. Exact diago-
nalization and quantum Monte Carlo (stochastic seriesresipa) algorithms and their computer
implementations are then discussed in detail. Applicatimfithe methods are illustrated by results
for some of the most essential models in quantum magnetisth,&s theS= 1/2 Heisenberg an-
tiferromagnet in one and two dimensions, as well as extenuwtels useful for studying quantum
phase transitions between antiferromagnetic and magtigttisordered states.

Keywords: Quantum spin system, antiferromagnet, valence-bond,splightum phase transition,
finite-size scaling, quantum Monte Carlo, exact diagoaélin, Lanczos method
PACS: 75.10.Jm, 75.40.Mg, 75.40.Cx, 02.70.Ss

1. INTRODUCTION

One of the primary goals of theoretical physics is to provide the simplest models cap-
turing various complex physical phenomena. In condensed matter physics, as well as in
statistical mechanics more broadly, spin systems often serve in this role. As the Ising
model and other idealized classical spin models have been invaluable in forming our un-
derstanding of thermal phase transitions and critical phenomena, so are various quantum
spin models now instrumental in developing a theoretical framework for exotic quantum
many-body states and quantum phase transitions, i.e., phase transitions driven by quan-
tum fluctuations (controlled by some tunable interaction parameter) at températide

[1, 2]. With their many possible ordered and disordered ground states and different types
of excitations arising from them, quantum spin systems also provide rich opportunities
to study other manifestations of collective quantum behavior [3, 4].

Although often used as simplified prototypical model systems for various phenom-
ena, and not always intended for describing fully all the details of specific real materials,
guantum spin systems have also been very successful in explaining quantitatively the an-
tiferromagnetic properties of a variety of Mott insulators with localized electronic spins.

A prime example of this is provided by the undoped parent compounds of the high-
temperature superconductors and other related quasi-two-dimensional and quasi-one-
dimensional copper oxides. Their experimentally measured magnetic response func-
tions can be remarkably well reproduced by ®ie- 1/2 Heisenberg model on two-
dimensional (2D) planes [5, 6], isolated chains [7, 8], and “ladders” [9] consisting of
two or more coupled chains. In agreement with model calculations, 2D layered systems
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exhibit an exponentially divergent correlation lengthlais lowered (until ordering sets
in below some critical temperature due to 3D couplings os@mnopies), while chain
and ladder compounds exhibit only short-range (power-laexponentially decaying)
correlations. In addition to cuprates, many other inorganid organic antiferromagnets
also show similarly good agreement between theory and empats [10].

A prominent research theme in contemporary condensed mpditysics is to model
and explainmagnetically disordered ground state$ 2D or quasi-2D materials with
non-uniform or frustrated (competing) antiferromagnétieractions [11, 12, 13, 14].
Quantum phase transitions in 2D spin systems challengdaksical Ginzburg-Landau
framework [15] for understanding and classifying phasaditions based on order
parameters, as exemplified by the recent theory of “decdlifiqpgantum critical points
[2, 16], which separate antiferromagnetic (Néel) and n@wnetic valence-bond solid
(VBS) ground states [17]. In a field-theory proposed to dbscthis quantum phase
transition (the non-compact &odel), deconfined spinons (collecti8e- 1/2 degrees
of freedom) are the “elementary particles”, out of which tiwe order parameters can
be formed due to condensation (in the Néel state) or confine(irea VBS state) [16].
Apart from the interest in such unusual phase transitiorimdensed matter physics,
there are also intriguing connections to deconfinement unggaheories in particle
physics [18]. Interacting quantum spins have also recdmlgome interesting in the
context of ultra-cold atoms in optical lattices [19, 20]vasd| as in quantum information
theory [21]. Fundamental many-body concepts such as detargt entropy [22] are
currently explored in various ground states of quantum spstems [23].

Exact solutions of quantum spin systems are very rare begonadlimension, where
there are several important cases (enough to fill a wholedkoypydia [24], in fact). In
two dimensions there are also some examples [25, 26], batailyranalytical calcula-
tions rely on approximations or assumptions that cannotdmeausly justified. Purely
computational studies of model hamiltonians are theredtse essential. Unbiased nu-
merical results are important for testing theories andydital calculations (in particu-
lar, continuum field theories for the low-energy physicshrkbver, numerical “simula-
tions” can also in their own right serve as laboratories fgi@ration and discovery, and
may thus stimulate further theoretical and experimente¢ibgpments.

In classical statistical physics, almost any model can baistl in detail using Monte
Carlo or molecular dynamics simulations (although theeeadso challenging classical
systems, e.g., ones with very slow, “glassy” dynamics [2T}e situation is different
in guantum mechanics. There are still enormous hurdlesifijpjcomputational studies
of generic quantum spin hamiltonians, especially ones fmitsirated interactions and,
going beyond pure spin models, strongly correlated fermsimtems. Devising efficient
practically useful numerical algorithms for these typesystems is one of the greatest
challenges in theoretical physics. Thanks to a series offgignt developments over the
past couple of decades, large-scale computational sthdiesalready become possible
for some important classes of quantum lattice models. V@myel 1D systems can be
studied using the density matrix renormalization group ®&) method [28, 29] or
related methods formulated using matrix-product stat#s3Q]. Quantum Monte Carlo
(QMC) methods with loop-cluster updates [31, 32, 33] can seduto study a wide
range of spin and boson models in any number of dimensiop&aly on lattices with
up 1¢ sites or more in the ground state, and much larger still aigdel temperatures.
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In addition to breakthroughs in efficient algorithms, thepmssive improvements in
computer performance have of course played an importamimalecent progress, too.
The most dramatic gains have, however, been achieved aslaakBetter algorithms,
and there is reason to believe that this will continue to leectise in the future as well.

Topics. Two classes of computational methods will be discussed ésdHecture
notes: Numerical (exact) diagonalization and quantum ddrlo simulation. Exact
diagonalization methods will be developed primarily for §tems, followed by some
discussion of extensions to 2D square-lattice systemsusd@f symmetries for block-
diagonalization will be developed and used in both compiiégonalization T > 0
calculations) and with the Lanczos method (for obtaining ¢inound state and low-
energy excitations in a given symmetry sector). QMC simohet based on the series
expansion of the partition function (stochastic seriesa@spon; SSE) will be developed
for T > O calculations (and applied also in the limit— 0). Computer programs written
in close correspondence with the pseudocodes are availabiee [34].

Beyond describing the technical aspects of the numerictiads, an integral goal of
these lecture notes is to introduce the most essential guresiin models (hamiltonians)
and to present some of their physical properties from a coatipmal perspective. While
the discussion is largely self-contained as far as the difgos and implementations are
concerned, the physics of the systems is for the most patisigd in a rather “light”
fashion, in the form of elementary calculations (e.g., spave theory) and qualitative
descriptions illustrated by numerical results. Connedito complementary analytical
approaches (e.g., predictions based on field theories)|spepainted out, with key
references for further study. The topics range in maturaynfwell established basics to
very recent and ongoing research on exotic quantum phasstioas.

Outline. The quantum spin models to be discussed in the subsequéianseare
first introduced in Sec. 2, along with a brief summary of vasitypes of ground states
and quantum phase transitions. Classical phase trarsithonte Carlo simulations, and
finite-size scaling techniques are reviewed Sec. 3 in oalset the stage for quantum-
mechanical finite-lattice calculations and data anal¥siact diagonalization techniques
and their applications to 1D spin systems are discussedirdSBasic properties of the
Heisenberg chain and its extension with frustrated intemas are illustrated with nu-
merical results (including the frustration-driven quantphase transition into a dimer-
ized VBS state). Extensions of the methods to 2D systemslspesammarized, and
used to study the low-energy states (quantum-rotor stafesnall antiferromagnetic
systems. Sec. 5 begins with a general discussion of pattyraise followed by the al-
ternative series-expansion formulation of quantum gstesismechanics, on which the
SSE QMC method is based. The SSE method is then developethihfdetheS=1/2
Heisenberg model. lllustrative results for chains, laddand 2D planes are presented,
including a study of quantum-criticality in dimerized 2Dssgms. Applications of the
SSE method to “J-Q” models with four- and six-spin interaet are also discussed, and
the Néel-VBS transitions occurring in these systems asaifumof the strength of the
multi-spin iteractions are studied. Sec. 6 concludes withief survey of other recent
works related to the topics of the lecture notes.
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2. QUANTUM SPIN MODELS, THEIR GROUND STATES
AND QUANTUM PHASE TRANSITIONS

In solid-state physics, quantum spin hamiltonians desedtike effective magnetic inter-
actions between localized electronic spins. As such, theye derived starting from the
full problem of interacting electrons [35, 36, 37]. Here wil mot discuss their relation-
ships with real materials in detail, but just introduce samedl established models with
Heisenberg couplings and other, similar interactions. Taivate and prepare for the
quantitative numerical calculations in the later sectjomshis introductory part we will
first survey some of the possible types of ground states aadtqon phase transitions.
We will discuss the nature of the quantum fluctuations in syistems from different
perspectives, including spin wave theory and singlet pgifvalence bonds).

The Heisenberg exchange is the most important spin-spénaction and forms the
starting point for understanding many materials and phemanin quantum magnetism.
Two spins are coupled according to the hamiltonian

Hij:JijS~Sj:Jij(SXST+SyS{+SZSJZ)- (1)

Often this pair interaction is summed over only nearesgmgor sitegi, j), but longer-
range interactions can also be included. The type of grotatd,ghe nature of the ex-
citations, and the finite-temperature properties of a systéh Heisenberg interactions
depend strongly on the underlying lattice. The dimensitynplays a crucial role. Ac-
cording to the Mermin-Wagner-Hohenberg theorem [38, 39patinuous symmetry
of a quantum system with short-range interactions, hergliigal SU(2) spin rotation
symmetry, can be broken neitherfat> 0 in one dimension nor &t > 0 in two dimen-
sions. This normally rules out magnetic order in 1D Heisegleodels (unless there
are long-range interactions, in which case the theorem rdoeaspply—we will discuss
an example of this in Sec. 4.3.3), but in two dimensions tloeugd state can be mag-
netic, i.e.,(S) # 0 (with all these vector expectation values parallel in adieragnet
and alternating between two opposite directions in a hbipaanhtiferromagnet). Beyond
dimensionality, the microscopic details of the lattice #melcoupling strengths; (e.g.,
uniform, modulated in some periodic pattern, or in some oamddisordered way) are
also decisive, and many different types of ground statesgaadtum phase transitions
can be realized. Some of these states and transitions bumostiery well understood
and subjects of ongoing research.

Apart from a brief review of spin wave theory for genealwe will in these lecture
notes focus on the simplest caseSsf 1/2 spins, corresponding to individual uncom-
pensated electronic spins. This is often the most intergsthse, aS§— o is the classi-
cal limit, andS= 1/2, thus, maximizes the effects of quantum fluctuations ain in
some case$= 1 or higher can actually lead to even larger quantum effeats, in the
case of the “Haldane state” of tie= 1 chain [26]). We will only consider antiferromag-
netic interactionsJ;; > 0 in (1), which from a theoretical perspective are more gger
ing than ferromagnetic couplings. Antiferromagnetic ratgions in strongly-correlated
systems are also more prevalent in nature. A much broadaioamgiantum many-body
physics can be entered by also allowing anisotropies ingmoe, i.e., different, y, and
zcoupling strengths in (1). In addition to the relevance afsanisotropies in many real
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magnetic materials, the mapping betw&:a 1/2 spins and “hard-core” bosons makes
such models interesting also for other reasons. The sptmjsic Heisenberg interac-
tion can be considered the essence of quantum magnetisraybpwnd we will focus
almost exclusively on this case here.

Section Outline. After discussing the antiferromagnetic (Néel) state ardrihiture
of its quantum fluctuations based on spin wave theory in S&¢ch&0 important classes
of non-magnetic states—spin liquids and valence-bondiseliwill be discussed in
Sec. 2.2. In Sec. 2.3 the special properties of 1D systemisrafty reviewed. Sec. 2.4
introduces the extended quantum Heisenberg models angbs 6f quantum phase
transitions that we will study in much more detail in the tagections, in applications of
the various computational methods.

2.1. The Néel state and its quantum fluctuations

On the 2D square lattice (and other bipartite 2D and 3D ledtiwith uniform inter-
actions) the ground state of the Heisenberg model with oalrest-neighbor interac-
tions is antiferromagnetically (Néel) ordered, with ndighing spins being oriented, on
average, in an antiparallel (staggered) fashion. Noteaimagximally ordered antiferro-
magnetic state, e.g.,1|T|,...) on a chain (or a checkerboard patternfaind | spins
on the 2D square lattice), is not an eigenstate of the Hegggritamiltonian, whereas a
fully polarized ferromagnetic state, e.§3,111 ...), is an eigenstate (and, in the case of
ferromagnetic interactions, has the minimum energy). This be easily seen with the
pair interaction (1) written as

Hij=Jij(SXS)j(+SyS)j,+SZSJZ):Jij[azsjz+%($+57+$sj+)]' ©

When acting on the perfect Néel state, the raising and Imgeoperators flip pairs
of spins, causing local defects, whereas they destroy tHegtderromagnetic state.
The antiferromagnetic order must therefore always be edlby quantum fluctuations,
whereas the fully polarized ferromagnetic state is the iggdostate also in the presence
of the off-diagonal interactions. The amount of magnetaeo(if any) remaining in the
true ground state of a system with antiferromagnetic ictévas depends sensitively on
details of the lattice and the interactions included in tamlitonian.

Note again that the magnetic order parameter of a systenHeidenberg interactions
(e.g, the magnetization of a ferromagnet or the sublattiagmatization of an antiferro-
magnet) is a vector in spin space. The sublattice magnietivaperator is

1 N

whereq = +1 is the staggered phase factor, e.g., on the 2D squarelattic(—1)% ™,
wherex; andy; are the lattice (integer) coordinates of sitk a Néel state the expectation
value (mg) = mX 4+ my + méz is non-zero in the thermodynamic limit. The order can
form—the spin-rotational symmetry can be broken—in angdation in spin space. For
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convenience one normally associatesztspin components with this direction, so that
the staggered magnetizati¢ms) = |(S)|. In a finite system a non-zero magnitutgof

the Néel order can form, even though the direction of theargemains fluctuating over
all angles and, thugms) = 0. In a calculation for a finite system one should therefore
detect the presence of order using a quantity which is inodgra of the direction, e.g.,
(mg) or {|mg|). We will see many examples of finite-lattice calculatiortelaFirst, let us
discuss some of the basic properties of the symmetry-bridéeh state in more detail.

2.1.1. spin wave theory

The Néel state and its excitations in 2D and 3D systems camerstood within a
simple linear spin wave theory (discussed in more detail amyrstandard works, e.g.,
the review article by Manousakis [6] and the book by Matti§][3Such a calculation
starts from a maximally ordered state of staggered spinghafithe exact ground state
in the classical limit where the spin magnituSe— . This is regarded as a vacuum
state, on top of which quantum effects are included systeaigt by adding bosons,
representing the deviations of the spins fr{8fj = S, in such a way as to obtain a good
approximation to the ground state of the system for fiSite

The relationship between spins and bosonsSer 1/2 is illustrated in Fig. 1. The
reason for using this mapping is that it is easier to carrycaldulations with the bosons,
due to their simpler commutation relations. Linear spin@tneory corresponds to non-
interacting bosons and is, by construction, exactYes c. Results for finiteS can be
systematically improved by including interactions in tbefi of an 3/ Sexpansion. Here
we just outline the lowest-order calculation.

If we neglect the constraint that the boson numbéor each site should be within the
range 0...,2S (the physical subspace), we can use the following simplegsb order
in 1/S) mapping between the spin operators in the original hamidio (2) and boson
creation and destruction operatefsanda; (and the number operatans= a"a);*

i €1sublattice: §=S—n, S =v2Sa, § =2Sg" 4

j €l sublattice: §f=n;-§ SJ*:\/Z_Sa]-*, ST:\/Z_Sq. )
It is useful to look at Fig. 1 to understand this mapping—afyvam the obvious way in
which the off-diagonal operators can affect the statesjustéhas to be careful with the
different factors associated with boson creation/desbmand spin raising/lowering
(discussed in standard quantum-mechanics texts). Theréaat (4) are correct for
n; < S, but note that they are also exact &« 1/2 in the physical subspace. In principle,
one can write down more complicated expressions that ameellby correct for anysand
n; in the physical subspace (and also automatically decobplphysical and unphysical
subspaces), but these are only relevant when going beyoeat Ispin wave theory.

1 Often two species of bosona, and bj, are used, corresponding to the two sublattices. In momentu
space, the use of a single boson species implies that we @revbeking in the full Brillouin zone of the
original lattice withN momenta, instead of one witli/2 momenta corresponding to a two-site unit cell.
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bosons - - o ® — — @ — —

FIGURE 1. Correspondence betwe&n= 1/2 spins and bosons, here illustrated for a 1D chain. The
fully staggered reference state (left) is the vacuum foobhegwith — indicating zero boson occupation).
For each spin flipped with respect to the reference state tisema bosond)) at the corresponding site
(right). ForS= 1/2 the boson occupation numbers are 0 or 1 on each site, whitlidrary spins they
are Q...,2S Linear spin wave theory corresponds to non-interactirgphs, and the occupation number
constraints are not enforced. Higher-order calculatiariy Egradually restore the constraints.

We now transform the terms in the hamiltonian (2) using th@pirag (4). Because
we are considering a bipartite system, where the two sédad j are always on different
sublattices, we obtain the off-diagonal term

3(S§'S +5°S)) — S@a +a'a)), (5)
and the diagonal interaction is
SZSJZ—>—SZ+S(ni+nj)—ninj. (6)

spin wave theory should formally be regarded as a |&gaiculation. In the lowest-
order calculation we should therefore discard the intewadermnin; in (6), because
it is a factor ¥ Ssmaller than the non-interacting contributions from (5) ). Let us

for definiteness consider the two-dimensional squaretattithN = L2 sites. We then
have the effective hamiltonian

N
H=—-2NSJ+4SJS n+SJY (aaj+ata)). (7)
i; | g)( i+ & J)

Here it should be noted that we consider a finite system bunasshat the symmetry
is broken (the direction of the staggered magnetizatiorbeas locked) which can be
strictly true only in the limitN — o (unless some symmetry-breaking field is added to
H). This is fine, however, because we will anyway take the Idit> « at the end.

The boson hamiltonian (7) can be easily diagonalized (ugtten in terms of number
operators). To construct this solution, we first Fouriensfarm,

a=N"2y M, a- N‘l/zge—ik‘fak, ®)
r

where the real-space operators have been labeled by ttteie laoordinate vectors
instead of just the site indéxand the momenturk is in the first Brillouin zone of the
square lattice (i.e., the reciprocal square latticBlgites). The hamiltonian is then

H=—-2NSJ +4SJZ N + ZSJ% w(aka k +arat,), (9)
ij
where, with the lattice constant set to 1 (ikg,ky = n2m/L, n€ {0,...,L—1}),
Y = 3[cogky) + cogky)]. (10)
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The next step is to carry outBogolubov transformatioto boson operators mixing the
original +k and—k operators;

ax = cosh(©)ax + sinh(O)a’,, (11)

which has the inverse
a = cosh(O)ay — sinh(©y)a ™. (12)

Itis easy to verify that the operatomg obey the standard bosonic commutation relations
for any®y. The trick is to choose these “angles” for e&cbuch that all operators of the
form axa_x anda, a*, cancel out in the hamiltonian (9). This is the case if

2cosh©y) sinh(©y)
costt(©y) + sint ()

The Bogolubov-transformed hamiltonian (the spin wave ftamian) is then diagonal
in the occupation numbers;

= k- (13)

H=Eo+Zwkak+ak, (14)
where, after some algebra making use of Eq. (10), the cansaarbe written as
Eo— —ZSJZ Ry 2, (15)
1+4/1—y

and the dispersion relation in (14) for the spin wave stefe) is given by

o =4S /1— 2. (16)

For momenta close t¢0,0) and (1, 1), this dispersion is lineamy = ck and ax =
c|(, ) — k|, respectively, with velocity (the spin wave velocity}- 21/2SJ.

The ground statf) of (14) is the vacuum for spin waves, where the energy isgyst
given by (15). The sum can be evaluated numerically, modlydasa straight-forward
summation over the momenta on large lattices, and extrapglByo/N to N — oo (or
converting the sum divided By to an integral, the numerical evaluation of which gives
theN = o value directly). The result i§y/IJN = —0.65795 forS=1/2.

Note that while the ground state does not contain any Bogeolubbosons (spin
waves), it does contain some amount of the origarlosons. The sublattice magne-
tization is directly related to the density of these bosavtsch is uniform and can be
computed at any site or averaged over the sites;

N

1
(my) =S (0fa'al0) =S5 5 (Olaail0) (17)
1=
Using the Bogolubov transformation, this becomes
1 :
(mg) =S— Zsml’?(@k). (18)
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In the most interesting case 8& 1/2, this evaluates tams) = 0.3034, or~ 61% of the
“classical” value ¥2. Thus, the quantum effects (zero-point fluctuations gegmted by
the presence of of bosons) reduce, but do not destroy, tigerborge order.

In principle it is not clear whether spin wave theory shouddrbliable for smalk.
There has been much discussion of this issue, but the metiexdid fact give a good
description of the 2D Heisenberg model on the square lathsewe will see later,
unbiased QMC calculations give results &5 and (ms) differing from those quoted
above by only - 2%. This can be trace@, posteriorj to the true value ofms) being
quite large (i.e., spin wave theory can be expected to beratrwhen the density of
bosons is low). In cases where the true sublattice magmietizes small or vanishes,
spin wave theory normally does not work that well, even whaingto higher orders in
1/S(which increases the complexity of the calculation verygigantly [40, 41, 42]).

2.1.2. Destruction of the Néel order

When going beyond bipartite lattices with uniform intefans, or by supplementing
the Heisenberg model with additional interactions (ergluding more than two spins)
the quantum fluctuations can become so significant that thengrstate loses its long-
range Néel order (retaining only short-range antiferronedig correlations). There are
several other possible types of ordered and disordereshdrstates, some of which have
no classical counterparts. Much of the current interestiangum spin models is related
to the existence of non-magnetic states and quantum phesstions between them
and the Néel state [2]. This is also the main theme of the nigalegalculations to be
discussed in these lecture notes. One long-standing niotiMar studying such transi-
tions stems from the cuprate high-3uperconductors, the undoped parent compounds
of which are antiferromagnets corresponding closely toklyezoupled Heisenberg lay-
ers (many properties of which can be understood based orgke $ayer) [6]. In these
systems the magnetic order is destroyed upon doping by mobirge carriers. This is
a very challenging electronic many-body problem, wherematational studies are also
playing an important role [43, 44, 45]. While the full soluti of the high-T problem
will of course require more complicated models (perhapseseamiety of the t-J or Hub-
bard model), some generic aspects of the physics close tarmtugqu phase transition
out of the Néel state can, however, be understood based miosly models [46].

Apart from the cuprates and related antiferromagneticesyst there are also many
materials with non-uniform or frustrated spin interacdml, 12, 13], which can lead
to non-magnetic low-temperature states. Many of thesesstand the possible quan-
tum phase transitions between them, are still not well ustded. It is therefore useful
to search for and study prototypical quantum spin modelsrdadize various types of
ground states and quantum phase transitions. Studies ofuqnghase transitions also
have a broader context of understanding “exotic” manifesia of quantum mechanics
at the collective many-body level [2]. There are even irdng connections with par-
ticle physics—close analogies exist between phase transiin supersymmetric gauge
theories in 2+1 dimensions and “deconfined” quantum-aiifoints that may separate
the 2D Néel and VBS ground states [18].
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2.2. Spin liquids and valence-bond solids

Within linear spin wave theory, a non-magnetic state cpweads to boson density
(n;) =S This kind of state is, however, not a good representati@cfal non-magnetic
ground states of Heisenberg and related quantum spin mduoktsuse it does not
contain any correlation effects. To discuss more intangstion-magnetic states, it is
useful to first look at the quantum fluctuations from a difféneerspective.

For two isolated sping j (a dimer,N = 2), the ground state of tHe= 1/2 antiferro-
magnetic Heisenberg hamiltonian (1) is the singlet;

) = ITily) =1Lty
] /2 :
Although the two spins in such a singlet are always perfeaily-correlated (entangled),
the individual spins are strongly (maximally) fluctuatirapd there is no static spin
order;(S) = (S;j) =0. In contrast, the perfect Néel statesio 2,[7;| ;) and|];1;), are
product states (i.e., of the forjp) ® |¢;)) with no fluctuations (and no entangljement—
loosely speaking, the degree of entanglement correspantiset deviations from a
product state). Note that fdf = 2 the (eigen) energy of the singletis3J;j /4, whereas
the expectation value of the energy in the Néel states is rhigtier,—J;; /4 (and the
states are not eigenstates). The tendency of interacting &pentangle by forming pair-
wise singlets to minimize the energy remains in multi-spistems, but whei > 2 a
spin cannot simultaneously form pure singlet pairs withitaliheighbors. The system
can instead be thought of as a superposition of differerglairpairings. No pair is
then in a pure singlet, and the energy contribution from éaiginactionH;j is therefore
always higher than the singlet energyJ;j /4. This can be regarded as a reduction of
guantum fluctuations (leading to less than maximal two-gpitanglement) foN > 2,
bringing the state (or, more correctly, the density mawbgach interacting pair closer to
a product state. A state with antiferromagnetic long-raogker, breaking the rotational
invariance of the hamiltonian, can form in the thermodyraliniit if there are enough
fluctuations in the singlet pairings (and note that, from filkespective of singlets, the
Néel state has larger fluctuations than, e.g., a state of Skaglet pairings—to be
precise, fluctuations should always be specified with rdgpesome reference state). If
the system is one-dimensional, or if the interactions amngty frustrated(competing),
or if the lattice geometry and couplings favor the formatafrsinglets in a specific
pattern (e.g., in a system of weakly coupled dimers), amtifeagnetic order may not
be present in the ground state whéna- oo,

19)

Valence-bond states.The above intuitive picture of a state of fluctuating singlet
can in fact be made rigorous. Any singlet state can be exphindeasis states that are
products of singlet pairs, atalence bondsDenoting by(i, j) a singlet of spins and j,
asin Eqg. (19), a normalized valence-bond basis statl f@ven) spins is of the form

@) = N"Y4(i1, ja)(i2, J2) -+ (iny2s ing2))s (20)

where each site index appears exactly once (i.e., each ghamds to one singlet).
This basis isover-completén the singlet subspace, and, thus, any singlet state can be
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FIGURE 2. Valence-bond states in two dimensions. The thick linesasgnt singlets. The arrows show

a spin configuration compatible with the valence bonds the. spins on each bond are antiparallel—the
valence-bond state is a superposition of all such spin corgtgpns). A valence-bond state with only short

bonds (or any superposition of such states), as shown héne extreme case of all bonds of length one,
has no magnetic order in two dimensions. There can, howkeander in the valence bonds. (a) and (b)
represent typical configurations of a disordered RVB spjniti and a columnar VBS, respectively.

expanded in these states, but the expansion coefficiemeanaique. The valence-bond
basis and computational methods using it are discussedfé R&, 48, 49, 50]. Here
we just note that some types of states are more naturallyessed in the valence-bond
basis than in the standard basis of individiahd | spins.

For the valence-bond basis to be (over-)complete, arbitesagths of the bonds must
be allowed. Restricting the lengths renders the basis ipteten (although one can
actually restrict the bonds to only connect sites on tweedéht sublattices). Some types
of states are still completely dominated by short bonds, (e probability of a bond
of lengthr decreases rapidly with). Such short-bond states in two dimensions have
no magnetic long-range order (while in three dimensiony tan be Néel ordered)
and are often called spin liquids oesonating valence-bon(RVB) states. Various
types of crystalline order can also form in the bond confiiors, leading to periodic
modulations in observables such(&- S;j) (wherei, j are nearest-neighbor sites). Such
ordered states (which break lattice symmetries) are caliéehce-bond solidé/BSs),
or valence-bond crystals. Representative configuratibnglence bonds in RVB and
VBS states are illustrated in Fig. 2.

2.3. One-dimensional systems

1D systems are rather special and deserve their own inttioduStudies of quantum
spin chains date back to Bethe’s exact solution 0f3kel/2 Heisenberg model, which
was published in 1931 [51] and worked out in greater detaniestime thereafter [52].
The solution is very complicated (often requiring complexnerical calculations [53,
54]), however, and many properties of the heisenberg chane wnly obtained much
later and with complementary methods (in particular, reraization-group treatments
of effective low-energy field-theories [55, 56, 57, 58, 59])

As we have already noted, there can be no magnetic order inldel§enberg sys-
tem (but VBS order is allowed, since it breaks a discrete sgtryh The spin correlation
functionC(r) = (S - S.r) of the Heisenberg chain decays with the distanag(—1)" /r
(with a multiplicative logarithmic correction, which we Wdiscuss later). Thus, the
ground state is critical (or quasi long-range ordered, @wtirge of ordering). Includ-
ing a frustrated second-nearest-neighbor interactiosesguwhen sufficiently strong, a
quantum phase transition into a VBS state (some times alkmidhe spin-Pierls state),
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FIGURE 3. TemperatureX) or coupling §) dependence of the order parameter (e.g., the magnetizatio
of a ferromagnet) at a continuous (a) and a first-order (b}@l@nsition. A classical, thermal transition
occurs at some temperatufe= T, whereas a quantum phase transition occurs at gpmgc atT = 0.

where the spin correlations decay exponentially with distg60].

While quasi-1D antiferromagnets were actively studiedegxpentally already in the
1960s and 70s, these efforts were further stimulated byré¢tieal developments in the
1980s. Haldane conjectured [55], based on a field-theoryoaph, that the Heisenberg
chain has completely different physical properties foegar spin $=1,2,...) and
“half-odd integer” spin$=1/2,3/2,...). It was known from Bethe’s solution that the
S=1/2 chain has a gapless excitation spectrum (related to thermlaw decaying
spin correlations). Haldane suggested the possibilitheSt= 1 chain instead having a
ground state with exponentially decaying correlationsagdp to all excitations; a kind
of spin liquid state [26]. This was counter to the expectafizased on, e.g., spin wave
theory) that increasing should increase the tendency to ordering. Haldane's cungec
stimulated intense research activities, theoretical dsageexperimental, on th§=1
Heisenberg chain and 1D systems more broadly. There is nowpletely conclusive
evidence from numerical studies that Haldane was right §&21,63]. Experimentally,
there are also a number of quasi-one-dimensi&all/2 [64] andS= 1 [65] (and
also largerS [66]) compounds which show the predicted differences ingketation
spectrum. A rather complete and compelling theory of spideisenberg chains has
emerged (and includes also the VBS transitions for halfiatiEberS), but even to this
date various aspects of their unusual properties are siiijoworked out [67]. There are
also many other variants of spin chains, which are alsoddittigaa lot of theoretical and
experimental attention (e.g., systems including variousairopies, external fields [68],
higher-order interactions [69], couplings to phonons [70], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalizaticetinods to study th8=1/2
Heisenberg chain, as well as the extended variant withrftest interactions (and also
including long-range interactions). In Sec. 5 we will intigate longer chains using the
SSE QMC method. We will also study ladder-systems congjstinseveral coupled
chains [9], which, for an even number of chains, have proggesimilar to the Haldane
state (i.e., exponentially decaying spin correlationsg@aygped excitations).

2.4. Models with quantum phase transitions in two dimensioa

The existence of different types of ground states implied ffhase transitions can
occur in a system al = 0 as some parameter in the hamiltonian is varied (which
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experimentally can be achieved in quantum magnets, e.@, faaction of pressure
or external magnetic field [74]—it should be noted, howetteat the possibilities are
more limited than in models). As in classical, temperaturigeth phase transitions,
suchquantum phase transitiortsmn be continuous or first-order, as illustrated in Fig. 3.
Normally a phase transition is associated withcader parameterwhich is zero in
the disordered phase and non-zero in the ordered phasehe.giagnetizatiom of a
ferromagnet or the sublattice magnetizationof an antiferromagnet. In Secs. 4 and 5
we will also discuss examples of order-order (Néel-VB)ditons. Continuous phase
transitions are associated with scaling and universalitych we will discuss in more
detail in Sec. 3. In these lecture notes we will not dis¢apslogical phase transitions
which are not associated with any local order parameterdifferent states across such
transitions are distinguishable only through some glotyablogical quantity [76].

In this section we introduce some spin models exhibitinghua phase transitions
in two dimensions. As we have already seen, the2b 1/2 Heisenberg model with
nearest-neighbor interactions has Néel ordef at 0. The question is then how to
destroy this order and create some different kind of grouatt sSpecific studies based
on QMC calculations will be presented in Sec. 5. The discushiere serves as an
introduction to the kind of models and physical quantitres tve will have in mind when
discussing computational techniques. Some QMC resultdwishown for illustration
purposes already in this section, but at this point we do eetirio worry about how they
were obtained—it suffices to say that the data are numeyriea#ict (to within statistical
errors that are in most cases too small to be discerned ingine=§).

There are also 1D analogues of most of the transitions discusere and some of
them will be discussed in Sec. 4.3. Systems in three dimesasian exhibit transitions
similar to those in two dimensions, but most computatioeséarch is currently focused
on 1D and 2D systems, partially because 3D systems are muehchallenging. The
quantum fuctations are normally also more prominent in 1@2iD systems, and some
of the most interesting open questions related to real matdeare associated with the
quasi-2D nature of the systems (although there are alsestieg 3D systems [74]).

2.4.1. Dimerized systems

The perhaps simplest way to obtain a non-magnetic grounel sta 2D Heisenberg
model is tadimerizethe system [75], i.e., to introduce weak and strong antifeagnetic
couplings (bonds)}; > 0 andJ, > J; > 0O, respectively, in a pattern such that each spin
belongs exactly to one strong bond. There are several wags this, three of which
are illustrated in Fig. 4. Whedy = 0, these systems consistf2 independent pairs
of spins (dimers) with intra-dimer couplini, and, as we have already discussed, the
ground state of each such a pair is a singlet; thus the graatel af the whole system
is a singlet-product (valence-bond) state, which cleady ho magnetic order. On the
other hand, fod, = J; the ground state has Néel order. The question is then how the
ground state evolves as a function of the coupling rgtie J»/J;. One might perhaps
think that some amount of Néel order should appear once therdiare coupled, i.e.,
for any g < o. It turns out, however, that there is actually a phase ttimmsat some
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FIGURE 4. Dimerized systems with two different coupling strength$wszn nearest neighbors; a
bilayer (a) with the dimers across the layers and singlertayith columnar (b) and staggered (c) dimers.

critical valueg. (which depends on the dimer arrangement). While this tti@mstan be
analyzed using several analytical and numerical appraadimite-size scaling of QMC
data is currently the only way to obtain unbiased quantgatesults (see, e.g., [77] for
a discussion of how spin wave theory breaks down close tolthegptransition).

Fig. 5 shows some QMC results for the columnar dimer model@f4tb). The order
parameter is the staggered magnetization, with the carnebpg operator defined in
Eq. (3). This is a vector operator, and, for a finite lattite gxpectation value vanishes
due to the spin-rotational symmetry of the hamiltonianstjgare (mg), was computed
in the simulations. Fig. 5(a) shows results foi L lattices versus the coupling ratio
g, and Fig. 5(b) shows data for several valuesgofraphed versus /L (which is
often the most convenient way of graphing data when examittie convergence to
a non-zero value foL — ). Here it is clear that the behavior changegyat 1.9;
below this coupling the sublattice magnetization extrapesd to a non-zero value in the
thermodynamic limit, whereas for larggiit decays to zero.

In the Néel state, the leading finite-size correctiongmé) are[] 1/L (a result which
can be obtained using spin wave theory [78, 79]). This canees guite clearly in
Fig. 5(b) forg = 1 and 15. The extrapolation fog = 1 (see Ref. [50], from which the
results for this coupling are taken) givass) = 0.3074. This is only about 1% higher
than the linear spin wave resultns) = 0.3034. As discussed above in Sec. 2.1.1, the
success of spin wave theory for this model can be explarngasterioriby the fact that
the quantum fluctuations are rather weak, reducing the tigslanagnetization only
by about 40% from the classical value. For largethe agreement between spin wave
theory and QMC results quickly becomes much worse. In thid kif dimerized model
linear spin wave theory typically over-estimates the caitg [80, 81, 77], while in other
cases, such as a system with uniform couplings with diffestrengths in thex and
y lattice directions (coupled chains) linear spin wave thgmedicts a critical point at
non-zero coupling when, in fact, there is none [82]. Varimogrovements can be made
of the spin wave theory (going to higher order ifiSLincorporating self-consistency,
etc. [6, 40, 41, 80, 77, 83)), but a system at or close to a guaphase transition cannot
be captured correctly by these approximative methods.

An important question regarding the quantum phase transiti dimerized systems
is its universality clasga concept to be discussed further in Sec. 3). A quantum many-
body system ind dimensions can formally be mapped, using path integrals an
effective classical system in 2+1 dimensions (as we wikkass in Sec. 5), and effective
continuum field-theories can be constructed for the lowggnbehavior, including the
quantum phase transition. Many properties have been peeldic this way based on
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FIGURE 5. QMC results for the squared sublattice magnetization intwiiedimensional Heisenberg
model with columnar dimerization. (a) shows results vethescoupling ratiq for different lattice sizes
and (b) shows the size dependence for several valugsAfquantum phase transition where the Néel
order vanishes occurs gt 1.9.

renormalization-group treatments of one such field thedhe-nonlinearo-model in
2+1 dimensions [5, 84]. Based on symmetry arguments alamewould then expect
the transition to be in the universality class of the 3D dtzdddeisenberg model. There
are, however, subtle issues in the quantum-classical mgpand QMC simulations are
therefore needed to test various predictions. We will seengtes of such comparisons
between results of simulations and field theories in Sec.tbléesults for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systemsFig. 4 (and several
other cases [87, 88]) are in good agreement with the expesatrecent studies of
the staggered dimers (c) show unexpected deviations [8®htle still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system withifamomagnetic inter-
actions on a triangular lattice. Looking at this problemtfissthin the Ising model,
the spins on a single triangle cannot simultaneously be-pamtllel to both their
neighbors—there are six configurations with minimum eneagyl these all have one
“frustrated” bond (two parallel neighbors), as shown in.FEigBeing a consequence of
the lattice, this is often referred to geometric frustrationUpon increasing the system
size, the ground-state degeneracy grows with the systeamaizl in the ensemble in-
cluding all these configurations there is no order of any k&t 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors ing¢tdanensions) model, there is,
however, order at = 0 (but not afT > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane 8t ARgle with respect
to their neighbors on the same triangle, as shown for a singlegle in Fig. 6. This is
referred to as a three-sublattice Néel state. There haverbany studies of thB=1/2
variant of this model. This was, in fact, the system for which RVB spin-liquid state
was initially proposed [92]. There is now, however, compelinumerical evidence for
the three-sublattice Néel order actually surviving therquim fluctuations [93, 94].
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FIGURE 6. Ising (left) and planar (right) spin configurations with rimmum energy on a triangle with
antiferromagnetic nearest-neighbor interactions.

(@) (b)

FIGURE 7. The square-lattice§ = 1/2 Heisenberg model with only nearest-neighbor interastion
J; > 0 has an antiferromagnetic ground state, in (a) illustréigdpen and solid circles fofS) > 0
and(SJ?) < 0. In (b), next-nearest-neighbor interactiahs> 0 are shown as dashed lines. Whe# @
J»/J < —0.6 (approximately) the ground state may be a columnar VBS) @) = 0 on all sites but
modulations in the bond correlatio(§ - S;j) (wherei, j are nearest-neighbors) as shown with thicker lines
for the more strongly correlated bonds forming a columnétepa. ForJ,/J; > 0.6, the ground state has
collinear (striped) magnetic order, as shown in (c).

On the square lattice, frustration effects can be investtgay adding interactions
beyond nearest neighbors. A well studied case is thik thodel, wherel; andJ, refer,
respectively, to the strengths of the nearest- and nexeseaeighbor interactions. The
system is frustrated if bothh > 0,J, > 0 or if J; < 0,J, > 0. Even with Ising spins,
this is a highly non-trivial system, with unresolved quess still attracting interest
[95, 96, 97]. We will discuss the frustrated Ising systentHar in Sec. 3.4.

In the case of quantum spins, tBe= 1/2 J-J, Heisenberg model with all antiferro-
magnetic couplings is one of the prototypical models wittuargqum phase transition
out of the standard Néel state, in this case as a functioreatdhipling ratiog = J»/J;.
While many different calculations show rather consistetitht the Néel order vanishes
at a critical coupling ratig@. ~ 0.4 [98, 99, 100, 101, 102, 103, 104], the order of the
phase transition and the nature of the non-magnetic groate are still controversial
issues. Most studies indicate some type of VBS state, withl@anmar one being the
prime candidate, but an RVB spin liquid state has also begpgsed [105].

For largerg, aboveg ~ 0.6, there is again magnetic order. This can be understood in
the limitg — oo, where the system decouples into two separate squareelblgisenberg
antiferromagnets. Ag = o (J; = 0) the relative direction in spin space of the antiferro-
magnetic order within these subsystems is arbitrary, buarfy J; > 0 the subsystems
lock to each other and formollinear spin order, with vertical or horizontal stripes of
parallel spins (a state breaking the $xtice rotation symmetry, in addition to the global
spin rotation symmetry). The transition between the nogimetic and collinear states
is most likely first-order.

The three different ground states of theJ, Heisenberg model witB= 1/2 spins are
illustrated in Fig. 7. Note that a classical version of thadal (Ising, XY, or Heisenberg)
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has a direct (first-order) Néel-collinefir= 0 transition exactly ay = 1/2 (which can be
easily verified just by computing the energies of those stfateg < 1/2 andg > 1/2).
The magnetically disordered state is thus induced by quafitictuations, and it has no
direct classical analogue. It is not clear whether this lohdtate persists fos= 1 or
higher spins—for some larg® perhaps alread$= 1, it must give way to a first-order
Néel-Collinear transition, as in the classical system.

The reason why it has been so difficult to reach a firm conciusiothe nature of the
non-magnetic state and the quantum phase transition beftheed the Néel state is that
large-scale unbiased computational studies othel/2 J;-J, model are currently not
possible, because of “sign problems” affecting QMC caliiafes of frustrated systems.
We will discuss this issue further in Sec. 5. There are norathbiased method that can
reach sufficiently large lattices, e.g., exact diagonéitimecan reach onli ~ 40 spins>

2.4.3. The J-Q class of models

VBS states of quantum spin systems in two dimensions wendiqtegl theoretically
more than two decades ago [107]. The VBS formation is aststwith a spontaneously
broken translational lattice symmetry. The VBS state andntum phase transitions
into it are therefore quite different from the non-magnstiates and transitions in the
“manually” dimerized systems discussed above in Sec. 2MtHiough there is a pattern
of “strong” and “weak” spin correlations in both cases, thawgtum fluctuations in
systems with manually and spontaneously broken transit®ymmetry are different
(being much more interesting in VBS states). Until reced#lige-scale computational
studies of VBS states and Néel-VBS quantum phase transitiad not been carried out
starting from microscopic hamiltonians, because of the Qditfh problems affecting
frustrated Heisenberg models (which at first sight are thetmatural systems in which
to explore the physics of non-magnetic states).

VBS states and the Néel-VBS transition have come into reddagus with a pro-
posal by Senthigt al.[16] that this transition is generically continuous andigfviolates
the “Landau rule”, according to which an order-order traagi(between states breaking
unrelated symmetries) should be first-order (except atttined multi-critical points).
In the “deconfined” quantum-criticality scenario, the VB&dd\éel order parameters
are manifestations of spinon confinement and condensatepectively. Spinons can
be thought of asS= 1/2 degrees of freedom, but not just corresponding to the bare
individual spins on the lattice sites, but more complexemiie objects “dressed” by
interactions. A non-compact GRield theory was proposed to describe such spinons
coupled to an emergent gauge field (which corresponds tortpepies of the valence-
bond background in which the spinons exist) [16]. A cent#sion is then whether
this low-energy physics of a continuum field theory realln eaise starting from a rea-

2 Recently developed variational methods based on tensoiupt states in principle become unbiased
in the limit of large tensors [21]. They have been appliedddous frustrated spin models [106]. The
computational complexity of such calculations is, howeweerrently too demanding to reach tensors
sufficiently large to produce unbiased results in practice.
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FIGURE 8. Graphical representation of possible arrangements ofyatsdf singlet-projector oper-
ators §;j in the J-Q model and its generalizations. (a) is the Heisgnbrchange, (b) the four-spin
interaction of the original J-Q model, and (c) a six-spirmction which leads to more robust VBS order.
These operators, and their9fbtated analogues, are summed over all positions on treradpattice.

sonable microscopic hamiltonian. Answering this questaruires large-scale compu-
tational studies of models exhibiting Néel-VBS transitson

Since the QMC sign problem prohibits large-scale studiethef);-J, Heisenberg
model and other similar frustrated systems, we have to tnyesbing else. In the “J-
Q" class of models [17, 108, 109], the Néel order is destrdygdn interaction (Q)
which is not frustrated, in the standard sense, but stillmetes with the Heisenberg (J)
interaction. To understand these J-Q models, note firsthidileisenberg interaction is,
up to a constant, equal to a singlet projector operédgr= —Sj + 711, where

Sj=3-S"S; (21)

The pair-singlet, Eqg. (19), is an eigenstate of this openaith eigenvalue 1, whereas a
triplet state is destroyed by it;

Silgd) =g, Sjlgi™ =0, (m=0,%1). (22)

Thus, whenS; acts on a singlet-triplet superposition, only the sing@nhponent sur-
vives (is “projected out”—note that the propeﬂ% = §j required of a projection op-
erator is satisfied). The standard Heisenberg interachiae favors the formation of
singlets on pairs of nearest-neighbor sites, but, as weisked in Sec. 2.2, the fluctua-
tions of these singlets among many different pairings ofgias leads to Néel order in
the ground state. The idea behind the J-Q models is to prejeglets on two or more
bonds in a correlated fashion, using products of se&ralperators on a suitable set of
different bonds. This favors a higher density of short vaéelmonds, thereby reducing or
completely destroying the antiferromagnetic order.
The original J-Q hamiltonian [17] on the square lattice cambitten as

H:fJ%Sj*QG%)Sj&I, (23)

where both thel andQ terms are illustrated in Fig. 8. TH@ interaction involves four
spins on a X 2 plaquette. An interaction with three singlet projectarsaicolumnar
arrangement is also shown, and operators with even moregboog, or with the projec-
tors arranged on the lattice in different (non-columnatjgyas, can also be considered
[1209]. WithJ > 0 andQ > 0 [and the minus signs in front of the interactions in Eq. ]23)
correlated singlets are favored on the lattice units forimethe product of singlet pro-
jectors. It is still not clear just from the hamiltonian whet a VBS state is realized for
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FIGURE 9. QMC results for the long-distance spin (a) and staggere@dty) correlation functions
(corresponding the Néel and VBS order, respectively) irgtioeind state of the J-Q model (23) versus the
coupling ratioJ/Q. A careful analysis of these correlation functions, as aslbther quantities, indicates
a single critical pointJ/Q)c ~ 0.045 where both the Néel order and VBS order vanish contirlyous

large Q/J—since the hamiltonian does not break any symmetries (tteeactions in
Fig. 8 are summed over all distinct lattice translations @tdtions), a VBS state only
forms if the hamiltonian also contains in it, implicitly, s effective interactions that
favor singlets in some ordered pattern. The J-Q model @&sexhibit a Néel-VBS
transition, aQ./J ~ 22 [17, 108, 110], and at lowe&}. if more than two singlet projec-
tors are used [108, 109]. We will discuss this in more deteBéc. 5. Here we just look
briefly at examples of correlation functions useful for cwerizing the Néel and VBS
states and the quantum phase transition between them.

Order parameters. As an alternative to the square of the full spatially avedage
sublattice magnetization (3), we can detect the presenabdsence of of Néel order
using the spin correlation function,

C(rij) =(S-5y), (24)

at long-distances. Fig. 9(a) shows J-Q model results foldalgest separation of the
spins,rmax = (L/2,L/2), on periodicL x L lattices. The results have to be analyzed
carefully to determine the transition point, but alreadis ttaw data suggest that the
Néel order vanishes, i.€C(r max) — 0 whenL — oo, for J/Q < 0.04.

VBS order can be detected in the dimer (or bond) correlatioietion, defined as

Dux(rij) = (Bx(ri)Bx(r j)), (25)
where the bond operator is given by

Bx(ri) = S(ri) - S(ri +X). (26)
Here, instead of using a subscrifn the spin operator for some arbitrary site labeling,

it is more convenient to use the corresponding lattice mwsiectorr;. Thenr; + X
corresponds to the site immediately next tén the positivex direction. The subscripts
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xxin (25) indicate that the two bond operat&gare both oriented in thedirection, and
this correlation function is, by symmetry, equalg, on anL x L lattice. One can also
consider bond correlatiori3,y, where the two bond operators are oriented differently. In
a VBS state such as the one illustrated in Fig. 7, one expggts) to exhibita columnar
pattern of smaller and larger values. A VBS order parametartben be defined as a
suitable difference between these modulated correlgtegs

Dix(r) = Dix(r) — 3[Dxx(r — X) + Dyx(r +X)]. (27)

This correlation function is shown in Fig. 9(b) at the latgattice separation for several
different system sizes. Here itis clear that VBS order existd = 0, up toJ/Q ~ 0.04,
roughly where the Néel order sets in. As we will discuss in.Seall calculations
so far point to a single critical point, without any interueg third phase or region of
coexistence of both Néel and VBS order.

3. CLASSICAL PHASE TRANSITIONS, MONTE CARLO
SIMULATIONS, AND FINITE-SIZE SCALING

Many aspects of quantum phase transitions, and how to antilgm based on numerical
finite-lattice data, are very similar to classical phaseditions. Here we discuss this
common formalism in the simpler context of classical phasmesitions, before turning
to calculations and data analysis for quantum systems.

In classical statistical mechanics the prototypical eXerpa system with a continu-
ous phase transition is the 2D Ising ferromagnet, the exdictisn [111, 112] of which
shows rigorously that such a phase transition exists. Tbigetis defined by

N
Ec=-3Y go —hY g, (28)
o % 10]j i; i

which is just the (potential) energy as a function of the sgin= +1. We useo to
collectively denote an entire spin configuratiani= (g, ...,0n). With the interaction
bonds(ij) restricted to nearest-neighbors on the simple 2D squatiedathe exact
critical temperature for an infinite systemTis/J = 2/In(1+1/2) ~ 2.269. The order
parameter is the magnetizatigm) = (g;). It has the asymptotid — T (T < T¢)
formmO \t|B, wheret is the reduced temperatutte= (T — T¢)/Te, and the exponent

B = 1/8. Suchcritical exponentsand other aspects of scaling behavior at continuous
phase transitions will be discussed in this section.

The exact solution of the Ising model is very special, ansadly one studies phase
transitions in other ways. Critical exponents appear diréa simple mean-field theo-
ries, but their values are typically not correct. Mean-fidglgory is nevertheless essential
as a starting point, which we here outline for the Ising mot@lee most important theo-
retical framework for phase transitions is teeaormalization groupwhich explains how
universal (depending only on symmetries and dimensignaildt details of the interac-
tions) non-trivial exponents (i.e., different from the geic mean-field values) can arise
(see, e.g., the book by Cardy [15]). To compute critical exqds and other properties in
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an unbiased way, one normally udédente Carlo simulationsvhere spin configurations
are stochastically sampled according to the Boltzmanmiloligion 2 In this section the
basics of Monte Carlo simulations are outlined (for moraiigtsee, e.g., the books by
Landau and Binder [115] and Newman and Barkema [116]). Tavauat and illustrate
finite-lattice calculations in general, we will also dissu®w properties in the thermo-
dynamic limit can be extracted from Monte Carlo data.

Section outline. The standard mean-field treatment of the Ising model is diseal
in Sec. 3.1. In Sec. 3.2 the Monte Carlo method is introduceti iessed to illustrate
how phase transitions and symmetry-breaking can occurdatige for large systems
(formally in the limit of infinite system size). In Sec. 3.3 weview the key aspects
of critical behavior (defining exponents, etc.) in the thedynamic limit, then discuss
the finite-size scalindiypothesis and demonstrate its usage by analyzing Monte Car
results for the 2D Ising model. First-order transitions discussed in Sec. 3.4, using
a frustrated 2D Ising model as an example of finite-size sgaiiethods for detecting
discontinuities. In Sec. 3.5 the important concepspiin stiffnesgwhich corresponds
to an elastic modulus of a solid) is introduced in the conte#xKY (planar vector)
spin models. The scaling properties of the spin stiffnesslastrated with Monte Carlo
results for the 3D and 2D XY models, the latter of which doesaxdibit a normal phase
transition into an ordered state, but exhibits a differiéasterlitz-Thoulessransition
into a critical low-temperature phase. In Sec. 3.6 we bridiscuss how the classical
criticality concepts are generalized to quantum phasaitians.

3.1. Mean-field theory of the Ising model

In mean-field theories the environment of a subsystem offamitmlattice is replaced
by an external field representing the average interactietvgden the subsystem and the
environment. The subsystem can be a single spin or a clusseveral spins. Here we
will just consider the simplest case of a single-spin catah for the Ising model, i.e.,
the infinite environment of a single spin is replaced by aadi¥e field.

It is convenient to write the hamiltonian (28) in an extendedn with general
interactionsl;j between all the spins (on an arbitrary lattice), and alslugean external
magnetic field;

1 N N N
Eg=—= Jjoo;—hY a. (29)
2i;1=1 i;

Note the factor 12, which compensates for each interacting pair being irezlugvice

in the sum (andj;; = 0). We do not impose any restrictions of the signs and madegu
of Jij, but for simplicity we assume that if there is a phase tramsithe ordered state is
ferromagnetic. To construct and motivate the single-sppraximation, we first group

3 Other important methods include high-temperature sestparesions [113] an@-expansions (where
& = dy, —d) around systems at their upper critical dimensifjr{114], where the exponents take their
mean-field values. Monte Carlo simulation is normally thestireliable method, however.

155

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



together all the interactions in (29) involving an arbiyrapini;

E=-0 (ZJijUj—l-h). (30)
J

Note that there is no factdy in front of the sum here, and we have usgd= J;.

We now assume thdt > 0, so thatm= (g;) > 0. We will investigate spontaneous
ordering in the absence of the field, by eventually letting 0. Adding and subtracting
a constant, we can write the terms within the parenthes&0irals

ZJijOj—Fh = mZJij+h+ZJij(Gj—m). (31)
J J J

In its most basic formulation, mean-field theory amountseglecting the second sum
in (31)—the fluctuation term—after which we are left with thasily solvable problem
of a single spin in an effective magnetic field of strendgn+ h;

whereJs is the sum of the original couplings

Js = zJij, (33)
]

and we assume a translationally invariant system, so tiesthm is independent of
The magnetizatiomin (32) is at this stage unknown and will be determined thioag
self-consistency conditiofp) = m.

Mean-field theory in the present formulation can be justifiélde neglected fluctua-
tions are much smaller, on average, than the other termd)ni(8., if

(|33 (a;—m)|)
Jsm+h

Om = <1 (34)
Here () denotes the expectation value under the actual probaldiitiyibution (the
Boltzmann distribution) of the spins, which we cannot cotemxkactly. In principle the
fluctuations can also be calculated within mean-field themsyan internal consistency
check. Even without doing any calculations, we can rouglddute the conditions
under whichdny, will be small. Clearly,dy is small if there is substantial order, i.e.,
when (1-m) = (1-(0j)) < 1, because then most; = 1 ~ m. This is the case if
h is large. It is also true foh = 0 if the symmetry is spontaneously broken ands
close to 1, i.e., folT <« T if there is a phase transition. Moreovéy, can be small
even ifmis not very large, if the sum overinvolves many non-zero (and relatively
large) coupling constanfiy —because of cancellations of fluctuations, the Suri; o;
will then typically (in most of the statistically importaspin configurations) be close
to my;Jj. In the extreme case of infinite-range uniform interactjalys= J/N for
all'i, j, andN — « (where we regard as a finite constant, e.gl,= 1, in order to
have a finite energy) all the fluctuations cancel out exactty @&, = 0 (and the mean-
field theory is then exact). This holds true exactly also fwrsrange interactions on
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an infinite-dimensional lattice. Thus, in general, evemiis not large, the fluctuation
measure, can be expected to be small for systems in high dimensiorisifod long-
range interactions. These are then the conditions undethwhiean-field theory can
be expected to be quantitatively accurate. Even in casesewhis not quantitatively
accurate, mean-field theory can still provide valuablegints qualitatively.

Let us now actually solve the mean-field problem (32), ilee, gingle-spin problem
(32) under the self-consistency condititm) = m. The magnetization is

So o'eU(Jsm+h)/T

(o) = S T = tanH(Jsm+ h) /T], (35)

and thus the self-consistency condition reads
m = tant(Jsm+h)/T]. (36)

This equation in general has to be solved numerically, wharh be done easily using
successive bracketing of the solution. For smakndh, we can proceed analytically
by expanding to leading order m, h. First, when the external field=0,m=0is a
solution for allT. Looking for other possible solutions, expanding (36) fodtlorder in

x = Jsm+ h, tanh(x) = x— x3/3, we have

T2%-T
m=3_= 37
2 % (37)

from which we can identify the critical temperatufe= Js below which the magnetiza-
tion can be non-zero. The asymptofic— T, behavior is

12
m= <3T°T T) . (h=0,T <Ty). (38)

C

We can also obtain thk — 0 field dependence of the magnetizationTafrom (36).
Keeping the leading-order termstirof the third-order expansion at= Js we get

h /3
m= <3J_> . (T=To. (39)

S

It is instructive to also look at the full numerical solutifer m. Fig. 10(a) shows some
examples of the field dependencenét different temperatures. For> T; the behavior

is analytic acros$ = 0, with a singularity described by (39) developingas- T.
Below T; the behavior is discontinuous, which corresponds to adirdér transition
versush between then < 0 andm > 0 states. The discontinuity corresponds to a
spontaneous magnetization at zero field, the full numesiaaition of which is graphed

in Fig. 10(b) and the asymptotic — T.~ behavior of which is given by (38). Here the
role ofh — 0" orh — 0~ in the calculation is to break the degeneracy betweer-the
solutions. The degeneracy for= 0 also corresponds to co-existence of the two ordered
states exactly at the first-order transition, as we will dsscmore generally in Sec. 3.4.
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FIGURE 10. Mean-field solution of the Ising model. (a) Magnetizationsees external field for temper-
atures above, at, and beldw The discontinuity foh — 0" andh — 0~ corresponds to the spontaneous
magnetization ab = 0. (b) Temperature dependence of the spontaneous madiuetiza

Translating the resulf; = Js with Js given in Eq. (33) givesle = 4J for the 2D
Ising model with nearest-neighbor interactions of strenhtThis is well above the
correct valueT:/J =~ 2.269. An over-estimation o can be expected on account of the
neglected fluctuations (which naturally lowgy).

The exponent® = 1/2 andd = 1/3 in (38) and (39) are generically the values of
these critical exponents within mean-field theories. Othgronents can also be com-
puted [15]. While power laws are indeed correct genericufest of continuous phase
transitions, the mean-field values are not correct in gén&saalready mentioned, for
the 2D Ising modelf3 = 1/8 from Onsager’s exact solution. In three dimensions itseval
in the Ising universality class 8 ~ 0.33, as determined using Monte Carlo simulations
and series expansion methods (and also, less precisety fisid-theoretical methods
and other analytical approaches). The mean-field critiqabeents are exact in four and
higher dimensions (four being theper critical dimensiorfor the Ising model—the
dimensionality above which the mean-field critical expdedrecome exact). We will
discuss critical behavior in greater detail further belafter developing the technical
aspects of Monte Carlo simulations to study criticality ragfice.

3.2. Monte Carlo simulations of the Ising model

In a Monte Carlo simulation, the goal is to generate a sequehspin configurations,
o(1),0(2),...,0(K), representing a statistically unbiased sample from thézBann
distribution, i.e., the probability?(c) of an arbitrary configuratiow to be among the
sampled ones should be proportional to the Boltzmaeightat temperaturd;

W, = e Eo/T, (40)

where we work in units such th&g = 1. The actual (properly normalized) Boltzmann
probability isP; =W, /Z, whereZ is the partition function

Z= ;e—Eo/T. (41)
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In Monte Carlo simulations we do not need the full partitiamdtion, only the un-
normalized weights (40). It is also important to note that sequence(1),...,0(K)
can be correlated (as we will discuss further below), but wlg aeed the probability
P(o) OW; and for now do not need to worry abot joint probabilities sasR(01, 0).

The Metropolis algorithm. The simplest way to generate a valid sequence of con-
figurations is with the Metropolis algorithm [117]. This kirof simulation starts from
an arbitrary spin configuratioa(1) (e.g., randomly generated). Thereafter, each suc-
cessiveo(k+1) is obtained stochastically from its predecess¢k) according to a few
simple steps based on flipping randomly selected spins witiolability related to the
desired distribution. We only need to store the current goméition and from now on
suppress the “time” indeik. We denote bys~' the configuration obtained when tth
spin of o has been flippeds ' = (014,...,—0j,...,0n). Normally one defines a Monte
Carlo sweepasN such flip attempts, so that N spins are flipped, on average, during
this size-normalized unit of simulation time. A Monte Cagiweep can be carried out
according to the following simple algorithfn:

doj=1,N
i =random([1,...,N] {1}
if (random[0—1]) < W,-i /W) 6i = —0;

enddo

This Metropolis algorithms based on thdetailed balance principlevhich is a general
theorem for a stochastic process (a Markov chain in som&ampiconfiguration space)
that should generate a probability distributddh By this we mean, roughly speaking,
that the set of sampled configurations should approach gtetditionW as the number
of configurations is increased, independently of the initiadition. Denoting byP(A —

B) the transition probability of “moving” to configuratioB if the current one isA,
the detailed balance principle states that the desiredhiisbn is generated if all the
transition probabilities satisfy the condition

P(A—B) W(B)
PB-A  WA) (42)

for all pairs of configurationg\ B for which P(A — B) > 0. In addition, the sampling
should beergodig i.e., any configuratio® with non-zero weightV/(C) must be reach-
able, in principle, with non-zero probability through aissrof moves starting from an
arbitrary configuration.

4 This pesudocode segment resembles a computer languagassEohtran, but with mathematical nota-
tion making it easier to read. Such pseudocodes will be usedighout these notes to illustrate imple-
mentations of algorithms (showing the essential stepsylthout trivial details that may in practice make
real working code somewhat longer). Numbers in curly bresKkeere{1}, will be used to label codes.
In most cases the syntax will be rather self-explanatorydires not require any detailed discussions of
definitions. In the segment above, and in many other onedltwfaandom denotes a random-number
generator, with the square brackéts...,N] and [0 — 1] indicating the range of uniformly distributed
integers and floating-point numbers, respectively.

159

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



In the Metropolis algorithm, as implemented in codg, the transition probability
consists of two factors;

P(o — U_i) = Pselec(i)Paccep{U_i)a (43)

wherePselec{i) is the probability of randomly selecting sgirwhich here always equals
1/N. The full transition probability in (42) can therefore b@leced by the probability
PacceptOf actually carrying out (accepting) the spin flip. This pabiity is not unique.
In the Metropolis algorithm it is taken as

Paccep{0 ') = min {WC" ,1} : (44)
Wy
One can easily confirm that this satisfies the detailed balaonndition (42). A proba-
bility formally has to be< 1, and this is taken care of above with the “minimum of”
function. In code{1}, comparing the weight ratio with a random number in the range
[0,1) automatically achieves the same result. Note that the oétibe Boltzmann fac-
tors depends only on the spins interacting with the flip-tdete o; (in the simplest case
just its nearest neighbors) and can be rapidly evaluatemholre physical terms, a spin
flip leading to a lower energy is always accepted, whereasitiguwation with higher
energy is accepted only with probabil®ccepf o) = expl(Ec — E4-i)/T].

The Metropolis algorithm leads to the correct distributadter some transient time,
which depends on the initial configuration, the temperatangl the system size. In a
simulation one should therefore discard some number ofgaraiions before “measur-
ing” physical observables. After thesquilibration measurements are normally carried
out after every or every few sweeps.

In the case of the ferromagnetic Ising model, the most ingmbiquantity to calculate
is the magnetization. It should be computed using all thessp take advantage of
self-averagingo improve the statistics. Thus, we will normally use

1 N
m:Ni;ai. (45)

We will here consider only simulations with the externaldibl= 0. We have already
discussed that fact that relevant symmetries of the hanilto(here the discrete spin-
inversion symmetry) are not broken in simulations of finitstems. For the Ising model,
one should therefore compute spin-inversion invarianeetqtion values such dar)

or {{m|) in order to detect the phase transition into the ferromagstite.

Symmetry-breaking and finite system3o obtain a qualitative understanding of how
symmetry-breaking in the thermodynamic limit is manifelsiie practice for large lat-
tices, it is useful to first look at an actual Monte Carlo tinegiss form. Examples for
two small systems at a temperature belvare shown in Fig. 11. Here one can see that
the magnetization fluctuates between positive and negedivess, and that the typical
time taken to reverse the signmfis longer for the larger system. Plotting the series over
a longer time makes this clearer, but note that the time thesyspends close to=0
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FIGURE 11. Time series for the magnetization generated in Monte Carlalations of the Ising model
onL x L lattices withL = 8 (top) andL = 16 (bottom) at temperatufe/J = 2.2 (< T¢ &~ 2.269). In both
cases the starting configuration was fully polarizexs 1, and the subsequent points are separated by
N = L2 Metropolis spin flip attempts (constituting one Monte Caleeep).

is visibly much smaller fot. = 16 thanL = 8, and this is of course directly related to a
typically longer reversal time. It is clear from results Bws these that the distribution
of mvalues is peaked at non-zero positive and negative valuds<$oT.. ForT > T; the
distribution is instead a single peak centerednat 0. Examples of such distributions
are shown in Fig. 12. In thermodynamics language, these tabtgtively different dis-
tributions can be understood as a consequence of the fregydngn) = E(m) — T Sm)

at low T being dominated by the internal enerfgywhich is low in largejm| configura-
tions), and at higfT by the entropys (which is large for smallm|).

A double-peaked magnetization distribution at low tempegmsuggests that even a
finite system can be considered as ordered, although thers@irsion symmetry is not
broken in the simulations. It appears very plausible thatypical reversal time should
diverge withL (and it is not difficult to check this with simulation data feeveralL
values and a suitably definition of a reversal), and then wersals would take place for
largeL, even during very long simulations. The reason for this jeat time scale is
that, in order for the magnetization to reverse, a seriesaaflIspin flips must necessarily
take the system through many configurations with~ 0, which have increasingly
high energy for increasing system size (and, thus, lowetzB@nn probability). For
a large system the distribution far < T; is therefore only sampled among the subset
of configurations with fixed sign afi—the stochastic process in practice becomas-
ergodic Broken symmetry and non-ergodic sampling are manifestictlg only for
N = oo, but in practice also for large but finite systems on time exd¢ss than the
typical magnetization reversal time. This time scale ofrseudepends on the details of
how the spin configurations are thermally sampled—in MordddCsimulations and in
a real magnets—but divergesids— o for any local sampling scheme.

Normally, in Monte Carlo simulations one does not invesggae time series and
the full distribution of physical quantities (although sertimes this is useful). By
computing(n?) or (|m|), we do not have to worry about the time scale of reversals.
We normally want to extrapolate finitgd-results to the thermodynamic limit, where
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FIGURE 12. Magnetization distributions fdr x L Ising models witi. = 16 (left) and 64 (right) at two
temperatures belowl(/J = 2.2) and aboveT/J = 2.6) the critical temperatur&/J ~ 2.27.

[(m)| = (|m]) = (mP)¥/2 (but note thatm?)/2 = (|m|) for finite N, because of the finite
width of the peaks in therdistribution).

Autocorrelations and statistical errors.Before calculating expectation values, we
have to discuss how to analyze Monte Carlo data statistidcabnsecutive configura-
tions generated with the Metropolis algorithm are not stally independent—only
configurations separated by a number of sweeps much largertiieautocorrelation
time are statistically independent. Th@&tocorrelation functiorfor a quantityQ is de-

nedss (QU+0Q(1) — ()
I+ 1) —

A= —r “o
wheret andi denote simulation time, normally in units of the Monte Caslweeps
defined above, and averages are over the referencé.tirhe normalization is such that
Aq(0) = 1 andAg(t — ») = 0. The asymptotic decay is exponentit(t) ~ e /%,
which can be used to the define the autocorrelation tiié&Normally one instead uses
the integrated autocorrelation timewhich also contains contributions from the often
dominant non-asymptotic behavior;

=5+ 3 Adlh) (@7)

Here we will not discuss autocorrelations at length, buy smimmarize their underlying
role in determining the statistical precision (“error Baf computed quantities.

The autocorrelation time fan of the Ising model roughly corresponds to the typical
time between magnetization reversals (as in Fig. 11). Qjhantities, such as? and
|m|, that are not sensitive to the signmof have shorter autocorrelation times (however,
often much longer than a single Monte Carlo sweep). A longaartelation time does
not bias a computed average (i.e., it is not wrong to meaQwaker every Monte Carlo
sweep even ifg > 1), provided that the total simulation time is much longeartig.
The autocorrelation time does, however, come into playli@iy or implicitly) when
computing statistical errors.

To calculate the statistical errors, one can subdivide algition into a numbeB
of bins, each containing some numblgr of Monte Carlo sweeps. For some quantity
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Q, averageﬁb, b=1,...,B are computed over each bin, and the final avel@gmd
error barog (one standard deviation of the average of the bin averagesjadculated

according to
B

- 1B _ 1 - —
Q=23 0=z (Q-Q% (48)
B b; T B(B-1) b;( )

The final estimate of the true expectation va{@ should then be quoted &5+ og.

The reason for binning the data is that, according to theraklimit theorem, the
distribution of bin averages is Gaussian for lakgéunlike the distribution of individual
measurements, as seen clearly for the magnetization idEjgand the computed error
bar then has a well defined unique meaning (e.g., we know liegprtobability of(Q)
being within one error bar @ is about 23). This is only true if the bin lengt is also
much longer than the autocorrelation time, so that the bamages can be regarded as
statistically independent. If that is the case, the erroshauld depend only on the total
number of sweepsjg [ 1/v/MB, where the factor of proportionality iS ,/Tq (and of
course also depends on the detailed form of the distributidhe individual measured
Q values). It is not necessary to calculatgexplicitly. If there is any doubt about the
bins being sufficiently long, one can check this by using heatarge number of bins
(e.g., in the range 100-1000) and saving all the bin averagelisk. The data can then
bere-binnedinto longer bins post-simulation, and the convergence®as a function
of the bin length can be tested. Saving the bin averages &nsdiways advisable, not
only for the purpose of analyzing the error bars, but alsadeoto make it easy to add
more data at some later time (to improve the results, if ndede

An important point that has to be mentioned is that the autetation time of any
local updating scheme, e.g., the Metropolis algorithmerjes forT — T, andN — oo,
We previously saw an example of this in the magnetizatioensal time of the Ising
model, but divergent autocorrelation times also affect@umntity (in particulan? and
|m|) that is sensitive to the fluctuations of the magnitudendfvhich in practice is the
case for most quantities of interest). It is therefore diftito obtain good results for large
systems close to a critical point. In many cases, includiegs$ing model, this problem
can be solved (or almost solved) by ustigster algorithmg118, 119], where clusters
of spins (constructed so as to satisfy detailed balancdlipped collectively (instead of
flipping individual spins one-by-one). While we will considan analogou®op-cluster
algorithm for QMC simulations in Sec. 5, we do not have to déscclassical cluster
algorithms here; they have been described extensivelyaditrature (e.g., in [115]
and [116]). It should be noted, however, that the Ising tegolbe discussed below, for
systems with up to 1024pins, were in fact obtained using a cluster algorithm. llato
be very difficult to generate (within reasonable time) ddténe same quality using the
Metropolis scheme for such large systems in the criticabreg

3.3. Finite-size scaling and critical exponents
Fig. 13(a) shows the temperature dependence of the squargaetization(n?) of

the 2D Ising model for several lattice sizes. An increasirstiiarp feature develops with
increasingL in the neighborhood of the knowh, and it appears very plausible that
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FIGURE 13. (a) The squared magnetization as a function of temperatuseferal x L Ising systems.
(b) The finite-size dependence at, below, and abipvét T the behavior is a power law? ~ L~/4,
which on this log-log scale corresponds to a line with slefi¢4. ForT > T the decay to zero is of the
form L=2, and this is also the rate of convergenceTor Te.

(m?) vanishes foN — o for T > T, and remains non-zero fdr < T. In this plot, error
bars are not visible because they are much smaller thannthevidths. The data were
generated on a very firle-grid to produce continuous-looking curves.

The size dependence (i¥) at three different temperatures is shown in Fig. 13(b).
ForT < T it converges with. to a non-zero value, while far > T it decays to 0 ak 2.
Exactly atT, the decay follows a non-trivial power-lay?) O L—28/V, where = 1/8
is the same exponent as in tNe= 0 magnetization foll < T, andv (the correlation-
length exponent, to be discussed below) equals 1 for thisemadthis behavior is an
example of finite-size scaling. A perfect power-law behawibcriticality holds strictly
only whenL — oo, while for small systems there can be significemtrections to scaling
(which are unusually small in the case of the Ising modeludised here). Normally we
do not know the exact value @f (which may of course be one reason why a simulation
is carried out), and procedures for locating the criticahpthen have to be devised.
There are many ways to do this, all building in some way or la@obn the fact that
the order parameter and related quantities should beha@asivial power laws (with
known or unknown exponents) for large lattices at a critpzzht.

Note that the squared magnetization is related to the spielation function,

C(rij) = (0igj), (49)

wherer;; is the distance between the spins. If there is long-rangeraeerC(r) — (m?)
whenr — o in an infinite lattice. For finite systems, the same is true(fommay) in the
limit L — oo, wherer maxis the longest distance on a periodic lattice, &gax= /2L for
anL x L lattice. If there is no order, thed(r) — 0, according to a power-law & and
exponentially forT > T.. Below T, in the infinite syztem the “connected” correlation
function,

C(r) =C(r) — (m)?, (50)

decays to zero exponentially as— c. The exponential forms of bo(r) andC*(r)
are characterized by a correlation lengthwhich diverges a3 — T; from either side.
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Note also thatn?) can be written exactly as a sum over the spin correlations;
1
() = €. (51)

TheL~2 convergence ofn?) (both below and abov&,) is simply related to the finite
correlation length.

Here it should be pointed out that the nature of the spin tadioms belowT. depends
on the symmetry of the order parameter we are dealing withakector order param-
eter, e.g., in the Heisenberg model (with classical or quargpins), the correlations of
the spin components parallel (longitudinal) to the ordeapeeter of a symmetry-broken
system decay exponentially, as in the Ising model. The wense correlations decay as
a power law, however. This is related to the continuous symnaéthe order parameter.
In the Ising model the symmetry is discrete—the orderea stedaks the spin-inversion
symmetry and the free-energy cost of a local magnetizatimtuétion is large (propor-
tional to the boundary of a flipped domain). This leads to tkgoeentially decaying
(connected) correlation function in the ordered phasehénHeisenberg model, on the
other hand, there are gapless spin-wave excitations (vane&bxcitations of the spins in
the directions transverse to the ordering direction andraee generally called Gold-
stone modes). Fluctuations due to these lead to a powemlavdf the transverse spin
correlations. The transverse correlation length is themé&dly infinite, and in a finite-
lattice calculation in which the rotational symmetry is eaplicitly broken (so that the
computed(m2) contains contributions from both longitudinal and transeecorrela-
tions), the size corrections to) are] 1/L. We already discussed this behavior in the
ground state of the 2[3= 1/2 Heisenberg antiferromagnet in Sec. 2.4, and Fig. 5(b)
shows the 1L corrections very clearly.

3.3.1. Scaling and critical exponents

To discuss finite-size scaling close to a critical point inrendetail, we first have to
review some basic aspects of critical phenomena in the tadynamic limit. We will
only list some of the key results and definitions here; seestarydard text on critical
phenomena (e.g., the book by Cardy [15]) for more details.

The correlation length is one of the most important conceptterlying the theory of
phase transitions and critical phenomena. In an infinitéesysas the critical tempera-
ture is approached, the correlation length diverges agugid a power law;

&~ t™ (52)

The exponenv is the same upon approachifig from above or below, but the pref-
actor in (52) is in general different fdr— 0™ andt — 0~ (however, ratios of these
prefactors—called amplitude ratios—are often univers@ljthin mean-field theory,
v =1/2 . Exactly atT, although the correlation length is formally infinite, thess
tem is not yet ordered. Instead, for an infinite system theetation function exactly at
Tc has the power-law form,

C(r) ~ =28, (53)

165

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



whered is the dimensionality of the system amdis another critical exponent (also
called the anomalous dimension, because it can be relatbé foactal dimensionality
of ordered domains at the critical point), the mean-fieldigadf which isn = 0. Long-
range order sets in only infinitesimally beloly, where the asymptotic long-distance
correlation approaches a constadft — o) = (m?).

We have already discussed the behavior of the order paratnetee symmetry-
broken state as— 0—;

(m) ~ [t]°. (54)
We will also be interested in the corresponding suscefitibiefined as
_dm; N 2
X="gr |, =5 () = (Im)?). (55)

whereh is the strength of a field coupling to the order parameter, eghe case of
the Ising ferromagnet a termhy ;i in the hamiltonian. The last expression in (55)
shows explicitly howy is directly related to the fluctuations of the order paramdtee
susceptibility diverges &f;

X~ (56)

Thus, upon approaching a critical point, the system becanfiegtely sensitive to a field

h coupling to the order parameter, and exactlifathe linear response forgm) = xh

ceases to be valid. Instead;Tatthe order parameter depends on the (weak) fietd/ds

According to the result in Eqg. (39), the mean-field value eféponent here I8 = 3.
The specific heat is also singularfat

C~ It (57)

wherea can be positive or negative. In mean-field theary= 0. Whena < 0, there is
no divergence, only a cusp singularityTat In some cases, e.g., for the 2D Ising model,
o = 0 but there is still a weak, logarithmic divergence of thecjieheat.

The critical exponents, 3, n, etc., that we have encountered above are not all inde-
pendent of each other. Relationships between the expoaenexplained by the renor-
malization group theory, which, in the type of order-disarttansitions we are discussed
here, shows that there are two more fundamental exponen¢esms of which the physi-
cally observable exponents can be written [15]. Expondatioms had been found using
other arguments even before the advent of this ultimateryhefophase transitions (in
the most complete form by Widom in the mid 1960s), e.g.,

y=v(2-n),

vd=2—-a, (58)

a+2B+y=2
Such relations are very useful for checking the consistaigyumerical calculations
of the exponents. Exponent relations involving the dimemaiity d are calledhyper-
scaling relationsand are less generic than the other relations. They are pticaple,

e.g., within mean-field theory, and, therefore, for any eystat or above the upper
critical dimension.
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3.3.2. The finite-size scaling hypothesis

The basic assumption underlying finite-size scaling théb®@] is that deviations
from the infinite-size critical behavior should occur whée torrelation lengtl§ (of
the infinite system) becomes comparable with the finite sysémgthL. If L > &, the
fact that the system is finite should be irrelevant and thaiiefisize behavior applies.
On the other hand, if <« &, thenL, noté&, should be the most relevant length-scale. In
order to see how the two length scales come into play, it ifulise express quantities
of interest in terms of the correlation length. Consider argity Q which exhibits a
power-law divergent behavior at (reduced temperatute— 0),

Q~ [t|™, (59)

e.g., the susceptibility (in which case= y). We can use Eq. (52) to expre$sas a
function of the correlation length;

it~ &Y, (60)

and using this we can wrif® as
Q~ gV, (61)

This form should apply fo < L, butwhené ~ L the divergence can no longer continue
on the finite lattice. The maximum val@,ax attainable byQ on the finite lattice should
then be obtained by replacidg— L in Eq. (61), giving

Qmax(L) ~ LKV (62)

In the same way, from Eq. (60) we can also deduce the scalititeeobduced tempera-
ture at whiché reached., which should also be the temperature at which the maximum
value of the quantit@ is reached,;

Itmax(L)| ~ L™V, (63)

It should be noted that this is just a proportionality, anel ttumber in front oL~/
depends on the quantity. The shift also applies to non-gar@rquantities—any feature
which develops singular behavior @s— T should shift at the rate~/V. If there is a
well-defined maximum or other distinguishable feature ime@uantity afl = T*(L),
then this temperature can be used as a size-dependerdldstitperature (and, again,
this temperature is not unique but depends on the quantitgidered).

The finite-size scaling laws (62) and (63) follow from a momenegral finite-size
scaling hypothesis [120], which, like the scaling theomyifdinite systems, was initially
proposed based on phenomenological considerations, utater derived using the
renormalization group theory. The hypothesis is that arenladle which is singular
at T; in the thermodynamic limit scales with the system size closg as a power of
L multiplied by a non-singular function of the rat§/L. Any singular quantity (not
necessarily divergent) should thus be of the form

Q(t, L) =L7f(&/L), (64)
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ismgdel on several differehtx L
lattices. (a) shows the temperature dependence, with tiealdine indicatingTc. Note the vertical log
scale. In (b) the data has been scaled using the exact vélties Ising exponenty; = 7/4 andv = 1,
andthe exactvalue dt int = (T —T¢)/Te.

which, usingé ~ [t|~¥/, we can also write as
Q(t,L) = L7g(tL"). (65)

This scaling law should hold both above>{ 0) and below t{ < 0) the critical point.
Exactly atT., we recover the size-scalif@(0,L) ~ L°. To relatec to the standard
critical exponents, we can use the fact that, for fikelbse to O, as the system grows the
behavior for any # 0 eventually has to be given by Eq. (58)t,L — ) ~ |t| ¥ (where

K is negative for a singular non-divergent quantity, e.ce,fthr the order parameter we
havek = —f3). To obtain this form, thecaling function ¢x) in (65) must asymptotically
behave ag(x) ~ x ¥ for x — co. In order for the size-dependence in (65) to cancel out,
we therefore conclude that=k /v, i.e.,

Q(t,L) = LXVg(tLYY). (66)
To extract the scaling functiog(x) using numerical data, one can define
y=QLLY, =t (67)

and ploty, versusx_ for different system sizes. If the scaling hypothesis igexctt
data for different (large) system sizes should fall onto shee curve, which then is
the scaling function (this is referred to as curesdlapsingonto each other)g(x) =
Vi (X). Fig. 14 illustrates this using Monte Carlo data for the megnsusceptibility
of the 2D Ising model. The peak location in panel (a) cleartywes toward the known
Tc with increasingd.. After scaling the data according to the above proceduseshawn
in panel (b), the curves indeed collapse almost onto eadr olbse td = 0, but further
away from the critical point deviations are seen for the $&nalystems. These are due to
corrections to scaling, which in principle can be descriwéti subleading exponents.
We can apply the scaling form (66) to the correlation lentgélf, for whichk = v and
theL-scaling is independent of model-specific exponents. laxadere the universality

168

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



class is not knowra priori, this is useful for extracting the exponewntby curve-
collapsingé /L data without having to simultaneously adjust another erptrin (66).

Practical definitions of the correlation length.The correlation length can be defined
in various ways, not necessarily just based on the asynopgletiay of the correlation
function (which is often difficult to extract reliably). Onmractical and commonly used
correlation length definition is based on the Fourier trarmsfof the correlation function,
often called the (static) structure factor,

S(q) = (0_q0q) = Ze aTC(r Zcos(q rC(r), (68)
wheredy is the Fourier transform of an individual spin configuration

1 g

Og=—=) gje " (69)
W2

We denote by the wave-vector of the dominant correlations—for a ferrgnetQ = 0,
for a 2D antiferromagne® = (1, 11), etc. To simplify the notatiorg will be used for the
deviationfrom Q. Theng; = 271/L corresponds to one of the wave-vectors closeg},to
e.g.,Q + (2m/L)X, whereX is the reciprocal-space unit vector in thelirection.

A correlation lengthé, can be defined using the structure factorg at0 andqy;

S0)
da= S -1 (70)

One can show that, for@gdimensional lattice, if the correlation function is givieynthe
Ornstein-Zernike fornfobtained in mean-field treatments [15]),

Coz(r) ~ 2@ Dexp(—r /&), (72)

thené;, is related to the original correlation lengfhappearing in the exponential decay
of this correlation function according to

(1+d)(3+d)
éa=¢ ad . (72)
Thus, ford = 1 and 3,8, = &, whereas the 2D case is special, wWith= & (15/16)1/2
(or, one may say that = 1, 3 are special cases, since the factor differs from one atso fo
all d > 3). The Ornstein-Zernike form is normally valid in disorddiphases for > ¢
[15]. Deviations from this form at short distances implyttié2) is not true exactly, but
regardless of the short-distance behavior this relatiddshexactly wherf — oo,

In the case of a long-range ordered classical sységmormally diverges a3 —

0, for anyL, because there are no fluctuations in the ground state (hod, the
structure factor vanishes far= 0. In order to remove the contributions from the non-

decaying part of the correlation function in an orderedaystwe can use the connected
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FIGURE 15. Temperature dependence of the two correlation length diefisi Eqs. (70) and (73),
normalized by the sizk for L x L Ising models. The vertical lines indicatg.

correlation function (50). Althougtm)? is not uniquely defined for a finite system, one
can, e.g., subtra€@(rmax). As an alternative, we can use a different correlation lengt
definition, based on the structure factogaandg, = 2q; = 47m1/L;

_ 1 [S(a)/S(gp) -1
=0 \/ 4—S(a1)/S(q)° (73)

One can show that (72) also holds for this definitio€({f ) is given by the Ornstein-
Zernike correlation function, also when a constant cowagmg to the long-range order
is added folT < T¢ [since this affects onlg(0)].

Fig. 15 shows results fafa /L andé&,/L for the 2D Ising model. Note that a logarith-
mic scale is used in the case of the— 0 divergent, /L, while &,/L is convergent and
graphed on a linear scale. Both quantities exhibit sizegaddence (curves crossing
each other) at, but the values there are clearly different. This is bectius®©rnstein-
Zernike form of the correlation function applies asymptaliy only for T > T, and
there is no reason why the two definitiofysandéy, should agree exactly at (although
their values should be related). Their values are very amfdr large systems close to
Tc in the disordered phase. The crossing points (or peak ttafié,) can be used to
extractT; in systems where it is not known. The temperature axis cant@sscaled in
the same way as in Fig. 14 to extract the correlation-lengpioeent.

Note that for the small number ofpoints needed3(q) can be efficiently evaluated
using the Fourier transform (69) of the spin configuratioasegated in Monte Carlo
simulations. Since the structure factor is real-valued aesh

S(a) = (Re{0q}?) + (Im{0q}?). (74)

Computing the full correlation functio®(r ) and Fourier-transforming it post-simulation
is much more time-consuming.

Binder ratio and cumulant. Beside<t /L, there are also other dimensionless quanti-
ties that are size-independent at the critical point anduli$er extractingT. indepen-
dently of the values of the critical exponent. The perhapstrfrequently used one is
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FIGURE 16. The Binder cumulant (76) for x L Ising models. In (a) on can see the approach to the
limiting valuesU, — 0O (for T > T¢) andU,; — 1 (for T < T¢) for increasind-. In (b) the data close t&:
(vertical line) are graphed on a more detailed scale andfgefL to show the crossings of the curves.

theBinder ratio[121, 122]:
()
(m?)2”

At T, the power laws cancel out, and the ratid.isxdependent (and also universal), up
to subleading finite-size corrections. Normally, graptiwgersusT for different system
sizes produces curves that intersect each other cloke tocating the points wherig,
for pairs of system sizes (e.d.,and 2.) cross each other, one obtains a size dependent
critical point which typically converges faster than thie'/V shift in (63). One can think
of this as being a results of the leading corrections camgéfi a quantity involving two
system sizes, and one is then left with something which amvesT, according to a
faster, higher-order scaling correction. One can also defitios similar to (75) based
on other powers af, e.g.,R; = (m?)/(|m|). The curve-crossing method for locatifig
can also be applied in the same way w4tHh_.

The Binder ratio also has other interesting propertieshindase of a scalar order
parameter (e.g., for the Ising model), the Bindemulantis defined as

Up = g (1— %R2> . (76)

Ry =

(79)

In an ordered staté), — 1 for N — oo, because the magnetization distributi®fm)
then approaches two delta-functionstafm|), and, thereforelR; — 1. In contrast, in a
disordered phase, the fluctuationsfre Gaussian aroumd = 0 (following from the
central limit theorem, since fluctuations in regions sefgatdy distance> & in a large
system are uncorrelated). Based on Gaussian integals, 3 andU,; — 0.

Generalizing the Binder cumulant to arcomponent order parameter (where- 1
for the Ising magnetizatiom = 2 for the XY model, etc.), one should keep in mind that
m? = m-m andm® in (75) are insensitive to angular fluctuations of the ordeameter.
Integrating a Gaussian distribution |ofi over then-dimensional space to compute the
averages in (75) does, however, introduegependent factors. To reproduce the above
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FIGURE 17. (a) Best-fit scaling collapse of the susceptibility of the Bihg model; the same data
as in Fig. 14, but including larger lattices and adjusfigdn t = (T — T¢)/Tc as well as the exponents
v,y to minimize x? with respect to a scaling functiag(x) in the form of a polynomial (here of fourth
order, shown as the solid curve). The optimal values for dai& set areT./J = 2.26921+ 0.00002,

v =0.9985+0.0011, and/ = 1.750+0.002, where the error bars (one standard deviation) were atadp
by repeating the fit several times with Gaussian noise (ofnitade equal to the Monte Carlo error bars)
added to the data. (b) shows the data with the fitted scalingfiftng(x) subtracted, so that the error bars
become visible. The fit is statistically sound, wjtf ~ 0.9 (per degree of freedom).

properties ofJ, one therefore has to define it for a general order parameter as

U, = %2 (1— nR2> . 77)

Fig. 16 shows Monte Carlo results 1ds as a function off for several 2D lattices. The
evolution into a step-function &t with increasing system size can be seen clearly. In
this case all the curves cross each other very close to therkig reflecting very small
subleading corrections in this model. It is common in otheatams that the crossings
exhibit some drift, and a careful extrapolation of crosgioints have to be carried out
(e.g., based on data sets for sizemnd 2, or some other aspect ratio).

Finite-size scaling in practice. We briefly discuss how to carry out finite-size data-
collapse in practice. The number of parameters involved, {i; as well as one or two
exponents, and possibly also exponents of subleadingatimme to be discussed below)
is rather small, and normally one has some rough knowledgleenf values just from
looking at raw data and doing some initial experimentatég,, by just locating a non-
trivial power-law behavior as in Fig. 13 [and this may oftendnough to determine the
exponent ratia /v in Egs. (62) and (66)]. An analysis of the Binder cumulanf gt
may already have giver; to adequate precision, but it may still be useful to check the
sensitivity of other fits to its value. Thanks to the power afdarn computers, as an
alternative to using some complicated multi-dimensiormimization procedure, one
can write a simple brute-force computer program to seancthéobest set of parameters
on a suitable finite mesh. The goodness of the data collapstuped by a set of
parameters can be quantified as jfevalue obtained by fitting a single high-order
polynomial through all the scaled data poifits,y; ), defined in (67), simultaneously
for all L for which data are available. Normally there is a large nunafelata points,
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for different couplings and system sizes, and, since thingciunction should be well
behaved, a polynomial of reasonable order (3th-8th, asghrguideline) should work
well within the window where the data can be collapsed. The sf this window also
has to be adjusted until the data collapse well. As an exarfi¢he data in Fig. 14,

x in the rangg—0.5,0.5) should be appropriate, although the window also depends on
the system sizes included in the analysis and the the errsr(bich determine the
sensitivity to neglected subleading scaling corrections)

It is not always easy to determine reliable error bars foapeaters obtained in this
kind of fitting. Beyond the purely statistical errors (whican be determined, e.g., by
repeating they? minimization several times with Gaussian noise, of maghitaqual
to the error bars, added to the data), there are also systaimatrors due to scaling
corrections, which can be difficult to estimatey# is statistically reasonable (i.e., close
to 1 per degree of freedom), one would normally assume tleatélglected corrections
have not influenced the parameters beyond the statisticatainties.

Fig. 17 shows an example of data collapse. The critical ezptznandT; of the 2D
Ising model were determined using datalfor {64—512} in the window|t|LY/V < 0.5
(wheret contains the variabl@; adjusted in the procedure). The results, listed in the
figure caption, are in excellent agreement with the kndyweind the 2D Ising exponents,
and the fit is also statistically very good. Using the samm{jttvindow, a statistically
acceptable fit cannot be obtained if much smaller latticesraluded, e.g., including
L = 32 givesx? ~ 2 (per degree of freedom), which is marginally too large foe t
number of degrees of freedom of the fit. In this case- 2.26924+ 0.00002, about 3
error bars above the true value, while the exponent areadoevithin two error bars.

Corrections to scaling . As a check, it is often a good idea to include some correc-
tions to the leading scaling forms, and some times it is ewmessary to do so in order
to obtain good fits. The most commonly used method is to do dltee abllapse with

Vo= QULL™ M (1+al @)t x =M, (78)

wherew is a subleading exponent amads a constant. Here there is no correction to
the x_ scaling (the finite-size shift of the critical point), butcbua correction can in
principle be included as well [85]. Normally, good fits witbreections can be obtained
also when lattice sizes are included that have to be leftfaut icorrections are used.
A larger range of system sizes can partially compensatéhfoféct that the statistical
uncertainties of all parameters increase when more paeasegt included. If consistent
leading critical exponents are obtained in fits both withwaitlout corrections, then one
can be reasonably certain that the results are correct.

3.4. First-order transitions
The scaling properties we discussed in the preceding seafiply at continuous
phase transitions, where the correlation length divergesirst-order (discontinuous)

transitions, the correlation length remains finite at tlansition point and the order
parameter, as well as other quantities, exhibit discontisjumps. The discontinuities
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develop in the limit of infinite system size, normally acdogito power-laws which
can also be studied using finite-size scaling techniques.ekponents associated with
these powers-laws are typically trivially related to thendnsionality of the system
[123, 124, 125]. For instance, the specific heat divergeb thi¢é system size d< at

a first-order transition, instead bf/V, with a typically very small (or even negative)

at a continuous transition. The shift of the critical poirithathe system size scales as
L9, instead of the.~/V shift of a continuous critical point.

Although finite-size scaling with exponents equaldtin principle makes it easy to
recognize a first-order transition, studiesasfakfirst-order transitions are difficult, be-
cause they exhibit large corrections to the leading scddimgs. It may then be difficult,
with system sizes accessible in practice, to clearly disiish slowly developing discon-
tinuities from weaker singular behavior at a continuousgiton.

Strongly first-order transitions are also difficult to stuétyr a completely different
reason. A Monte Carlo simulation may get stuck in a metakstsfate, in which case
computed quantities do not correspond to correct thernabages (which, on the other
hand, is completely analogous to real systems, for whiclastalbility and hysteresis ef-
fects are hall-marks of first-order transitions). It mayrtleeen be difficult to accurately
locate the transition point. To alleviate such problemsiows multi-canonicalMonte
Carlo methods have been developed in which the configusatiom sampled in an ex-
tended ensemble where the temperature of the system is atsoafing (tempering or
parallel tempering [126, 127] methods), or with a distribatdifferent from the Boltz-
mann probability [128, 129, 130] (to which the measuremangsre-weighted), which
makes it easier for the system to explore the configuratianesp

3.4.1. Phase coexistence

One of the most important characteristics of a first-orda@ngition is phase coexis-
tence. In Monte Carlo simulations at the transition pointgiactice in a small window
which shrinks to a single temperature with increasing systize) this is manifested in
the generation of two types of configurations, correspanttirthe two distinct phases
existing just above and below the transition temperatuhés & provided that the full
configuration space can be ergodically sampled, which szsidsed above, is not always
possible in practice. In small systems, there will also befigorations that cannot be
clearly associated with one of the phases—they correspotitktfluctuations (domain
walls) required for the system to transition between the fvases. Fig. 18 illustrates
this schematically for an Ising order parameter. The ttarsivindow in which a three-
peak distribution can be observed narrows rapidly withéasing system size, and the
peaks develop into delta-functions. When the weight betwike peaks becomes very
small, it may in practice not be possible to ergodically skntipe configurations, as the
system gets trapped within the sub-space correspondingst@ne of the peaks (in a
way exactly analogous to the symmetry-breaking discuss&ac¢. 3.2).

Note that the type of order-parameter distribution in FBydbes not apply to the field-
driven first-order transition of the Ising model, with matination curves illustrated in
Fig. 10. In that case there would be just two peaks, with wieignsferring between
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FIGURE 18. Evolution (schematic) of the magnetization distributidmdinite Ising ferromagnet close

to a first-order transition. There is a rapid transfer of vaeigetween the central peak (corresponding to
the disordered phase) and the two peaks at non-zero maafiaiifthe two ferromagnetic states) as the
temperature is tuned through the transition region. Th&gpleacome delta-functionsin the limit of infinite
system size. The transition temperatligecan be defined as a point with some specific (but essentially
arbitrary) feature of the three peaks, e.g., equal weigktjoal height of the peaks.

them as the field is tuned through= 0. The phase coexistencehat 0 (andT < T¢)
corresponds to the two symmetric peaks in the distributinrigg. 12. The similarity
between this case and a paramagnetic-magnetic transitiing generah-component
order parametan) can be made clearer by considering the one-dimensiortabdison
of |m|. This distribution has two peaks, one|ai = 0 and one atm| > 0, when an
ordered and disordered phase coexist. Note again that tmaons transitions (Fig. 12)
the central peak continuously splits into two peaks belgwin contrast to the two
ordering peaks emerging at a non-zero valupfin the first-order case.

The Binder ratio, Eq. (77) in the case of a generidimensional order parameter
depends only on the distribution pfi|. It has a very interesting property at a first-order
transition. One can easily check, using, e.g., an ideatimeglxistence distribution of the
typeP(|m|) = (1— p)G(|m|) + pd(|m| — m*), whereG is a normalized “half-Gaussian”
(defined form| > 0) and O< m* < 1, thatU, exhibits a negative divergence when the
ordered-phase weighttis tuned from 0 to 1, and if the width of the Gaussian vanishes
(corresponding to infinite system size). While the faltlistribution of course contains
more information, locating a window of negative Binder cuami and checking for a
divergence of the peak value can be a practical way to analyizst-order transition.

3.4.2. Frustrated Ising model

Here we look at a particular example of a first-order traositin the frustrated 2D
square-lattice I1sing model with hamiltonian

Eo=-4 ) 0gj+% Y aoj, (79)
(1 (17,

where both couplingd;, J, > 0 (but note the different signs in front of the parameters).
The first term (wheréij ), denotes nearest-neighbor spins) is then the standardfésing
romagnet, whereas the second term (wHhgrg refers next-nearest-neighbor spins, i.e.,
across the diagonals on<22 plaquettes, as in Fig. 7) is antiferromagnetic and causes
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FIGURE 19. Order parameter distributions in tie, m,) plane (in the full spacémy| < 1,|m,| < 1)

of the 2D frustrated Ising model of size= 128 at coupling rati@g = 0.55. Brighter features correspond
to higher probability density. The temperatures (indidatethe panels in units af;) are in the first-order
transition region, with the phase coexistence (a centiat ps well as four peaks correspondingt@and
y-oriented stripes) seen most clearlygat 0.772.

frustration. For coupling ratiog = J»/J; < 1/2 the ground state of the system is fer-
romagnetic (fully polarized). In the limij — o the system reduces to two decoupled
antiferromagnets, with four striped (or collinear) grouwstdtes, such as the one illus-
trated in Fig. 7(c). These remain the ground states fay all1/2. At the pointg = 1/2
the ground state is massively degenerate. Note that theofake< O is equivalent to
J1 > 0, through the invariance &, under the transformatioo; — —a; on one of the
checker-board sublattices; thus in this case the ferrostagphase is replaced by an
antiferromagnetic one, whereas the striped phase is nagelda

The frustrated Ising model has been studied for a long timesbme features of its
phase diagram are still debates or were resolved only Hgdéat 96, 97]. Forg < 1/2,
the transition is of the standard Ising type, but is diffidaltstudy close t@ = 1/2,
due to large scaling corrections and long Monte Carlo autetation times. Here we
will consider onlyg > 1/2, for which there is a first-order transition between a high-
temperature paramagnet and a low-temperature stripeé plnaso a coupling* ~ 0.8
[97] after which the transition becomes continuous. We yaeatesults obtained with
the standard single-spin Metropolis algorithm (as clubtente Carlo methods do not
work in the presence of frustration). Temperatures will betgd in units of);.

Order-parameter distribution. The ordered phase can have its stripes oriented either
along thex or y-axis, with the corresponding order parameters

1N . 1N )
mx:Ni;Ui(_l)X'v myzﬁi;m(—l)y'» (80)

wherex andy; are the (integer) lattice coordinates of sitd et us first look at the
order-parameter distributio®(my, my). If the four possible ordered states are sampled
equally belowT, the distribution should be four-fold symmetric, with pedkcated

on the negative and positive andy-axis. In the paramagnetic phase there should be a
single central peak. Coexistence at a first-order tramssfimuld hence be reflected in the
presence of five peaks in this case (instead of the 3-peaibdisbdn for the scalar order
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FIGURE 20. Binder cumulant across the transition to the striped phéseeofrustrated Ising model
for coupling ratiosg = 0.55 (left) andg = 0.70 (right). The divergent negative peak developing with
increasingd_ is an unambiguous signal of a first-order transition.

parameter in Fig. 18). Fig. 19 shows results folLaa 128 system ag = 0.55, for three
temperatures in the transition window. A very distinct féold symmetry can be seen in
all cases. Four symmetric peaks clearly indicate an ordehiade aT = 0.771, but there
are strong fluctuations, reflected in weight extending tacéher of the distribution. At
T = 0.773, the distribution is peaked at the center, but weight eldends far into the
ordered regions. Between these temperaturs;-a.772, one can discern both the four
ordering peaks and a central peak. All these plots show therfzeks of coexistence;
even when there are not five peaks present, there is stilfisiggm probability for both
ordered and paramagnetic configurations. Away from theomatransition window, the
distribution rapidly turns into one with either distinctlydered or disordered features.

Binder cumulant. Let us analyze the Binder cumulant, using = m2 + m§ in
Eq. (77). The question now is what order-parameter dimeadity n to use in this
definition. At high temperatures, fluctuationsrof andm, in different parts of a large
system are uncorrelated. This implies a rotationally-syatmim (circular) distribution
P(my, my). Then-dependent factors are intended to malge— O for T — oo, and in this
case we should therefore use- 2. This is correct also at low temperatures (to guarantee
U, — 1), because in an ordered phase the Binder ratio, Eq. B6)> 1 when the
system size diverges, regardless of the order parametetwste. Fig. 20 shows results
as a function of temperature at two coupling ratigs: 0.55 and 070. Forg = 0.55,

a negative Binder cumulant can be seenlfor 8, with the negative peaks becoming
very narrow and apparently diverging as the system sizeceased. Atg = 0.70,
the transition is still first-order, but with weaker disciowities that start to manifest
themselves as co-existence and a negative Binder cumulntacound sizd. = 32.

In both cases, the Monte Carlo simulations were still ergoldut a large number of
updating sweepsy 10® for each case) had to be carried out to obtain smooth curves.

Discontinuities and finite-size scalingln first-order transitions that are not very
strong, as in the systems above, it may not be easy to aclyueatigact the size of
discontinuities in physical observables. An example iswshin Fig. 21, where the
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FIGURE 21. Left: Internal energy versus temperature for the frustrdseng model ag = 0.55. The
discontinuity developing with increasing lattice size responds to the latent heat. Right: Finite-size
scaling of the peak value of the specific heaj at0.51 and 055. The line shows the expected asymptotic
L2 scaling at a first-order transition.

temperature dependence of the internal energy is grapheédveral lattice sizes. While
a discontinuity (latent heat) clearly develops with ingiagL, it is not easy to determine
exactly between which two energies the jump will eventutgke place. This requires a
careful analysis using larger lattices.

Fig. 21 also shows the maximum value of the specific heat satsisystem size for
two different coupling ratios. Ag = 0.51, the transition is rather strongly first-order,
and a scaling consistent with the expec@ghy ~ L2 can be observed for the largest
lattices. In contrast, aj = 0.55 the behavior appears to follow a different power law
(with an exponent close ta2) up toL =~ 64. For larger lattices the results start to show
a somewhat more rapid divergence, however, and eventtailyery large lattices, one
would expect the exponent to be equalite- 2 also in this case.

3.5. Spin stiffness and the Kosterliz-Thouless transition

An important aspect of a system with long-range magnetierigithat it exhibits a
non-zerospin stiffnessFor a system with continuous vector spins (XY or Heisenberg
models), the spin stiffness is the analogue of an elasticutngaf a solid. It is also often
refereed to as thieelicity modulug131]. To study this concept, we here consider the XY
model, with the hamiltonian written as

H=-J% cog0-0), (81)
(1)
where®; € [0,2m] is the angle characterizing spinFor simplicity we assume only
nearest-neighbor interactions, but generalizationsltdrary interactions are straight-
forward. When deriving an expression for the spin stiffpess will consider the 2D

square lattice (and some times use a 1D chain for simpljciiy) later will study
also a 3D cubic system. In 2D XY systems, the spin stiffnessignportant quantity
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characterizing the unconventional (topological) KosteiThouless transition exhibited
by this system, which we also discuss briefly in this section.

3.5.1. Definition of the spin stiffness

Loosely speaking, the spin stiffnegscharacterizes the tendency of ordered spins to
adapt in response to perturbations imposing modulatiortkeoflirection of the order
parameter (in contrast to the susceptibility, which measuhe tendency of the order
parameter to change in response to a field applied in a fixedtdin). It is analogous to
the shear modulus in continuum mechanics, which charaetethe tendency to shape
deformation of an elastic object (while the compressipditrresonds to the tendency to
volume change with maintained shape). The definition of e stiffness is easiest to
understand af = 0, which we consider first, before generalizingto- 0.

The stiffness at = 0. We will first consider a system with open boundaries in the
x direction, while periodic boundaries in tlyedirection can be assumed (and later we
will generalize to periodic boundaries also in thelirection). Fig. 22 illustrates how
ferromagnetic XY spins & = 0 adapt in order to minimize the energy when an over-all
change in the spin angte between the left and right boundaries is imposed (e.g.,@ue t
strong magnetic fields applied at the boundary columns). ifinnize the energy, each
column is twisted with respect to the following column by angle ¢ = ®/(Lx— 1),
wherely is the length of the system in thedirection (the number of columns). At
T =0, we are interested in the energy in the presence of this, twigch for the 2D XY
model is simply given by

E(¢) = —JI(Lx—1)Lycod @) = E(0) + I(Lx— 1)Ly[1 - cog@)]. (82)

For smallg we getE(g) — E(0) = (J/2)(Lx — 1)Ly¢? to leading-order. Motivated by
this result, theél' = 0 spin stiffness is defined as

_ 10%E(9)
S — N d(pz 9

and we haveps = J for largeN [or for anyN if we normalize by the numbery(Ly — 1)
of interactingx bonds, over which the energy cost due to the twist is digieithju
Normally it is more convenient to consider a periodic systéonderive an expression
for the spin stiffness in this case, a phase twist is first isgloat the boundary. For
simplicity we work this out for a 1D chain, with spin angi®g, x=0,...,N—1, but the
calculation can be trivially generalized to higher dimensility. The interaction energy
for each bond i€, = —Jcog Oy 1 — Ox), except at the boundary, where a twibt
corresponds tey = —Jcog O — On_1+ P). The configurations minimizing the energy
have®y.1 — Oy = J, whered is independent af, which gives the total energy

E(®) = —(N—1)cogd) —cog®— [N—1]9), (84)

which is minimized byd = ¢ = ®/N, with E(¢) = E(0) + IN[1— coq ¢)], and the spin
stiffness defined according to (83) is agpin=J.

(83)
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FIGURE 22. A 2D classical XY model with a phase twist in tRedirection imposed by fixing the spins
in the boundary column at a relative angbe To minimize the energy the total twigt is distributed
evenly, so that the spins in neighboring columns are twistegd = ®/Ly relative to each other.

It is useful to consider also another way of twisting the spma periodic system,
by introducing awist field®, = x@ in the hamiltonian. For a 1D system the energy for
each bond in the presence of this fieldi§cogOx;1 — Ox + ®x1 — Px). To treat the
boundary correctlyby should be considered as a function of a continuous varigble
which jumps discontinuously fromd@ to 0 atx = N. The phase difference appearing in
the XY interaction should then be interpreted as

X+1 x+1
Dy — Py = Pudx= pdx= o, (85)
X X

which holds also at the boundary{ 1 = N). Apart from factors is analogous to a
flux threading the ring. The energy in the presence of thisttisiminimized fol9, = ©
independently ok, giving E(¢) = E(0) +JN[1—cog ¢)] as before in the case of the
twisted boundary condition. One can consider the twist felca way of transforming
away the twisted boundary condition (rotating to the refeesframe of the spins in the
presence of the boundary twist), which makes many calculatéasier in practice. We
will work with the twist field from now on.

The stiffness at T 0. Now we consider non-zero temperatures, in which case the
spin stiffness is defined as
1 9%F (o)
Ps=— )
N d¢?

whereF (@) is the free energy in the presence of a twist field (or, eqaivdy, a twisted
boundary condition), which in turn is related to the pastitfunction according to

(86)

F(g) = —%In[zw)}. (87)

ForT — 0, Eq. (86) clearly reduces to the ground-state energy tiefin(83).
Applying a twist field which only depends oq ®(x,y) = x¢@, in the 2D XY model,
we have the hamiltonian

H(p)=-J cop+0;—06;)—J co§0O; — &), (88)
&, OImANT g s

X ('-, y
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where we can assume periodic boundary conditions in bo#ctitns (although in
principle they boundary could be open). We can simplify the dependenaegtnusing
a standard trigonometric equality,

cog@+0; —06;) =cogO; — ;) coqp) —sin(©; —G;)sin(@), (89)
which we expand to second orderq’n
cog@+0j — ;) — cogO; — 6))(1— ¢?) —sin(©; — B+ O(¢>).  (90)
The hamiltonian in the presence of a squ% 0) twist can then be written as
H(p) — H(O)JF%QUZHX*(Plx, (91)
whereHy is thex-bond part of the hamiltonian gt= 0 andly is the total spin “current”

in thex lattice direction:
ly=J Z sin(@; — 6). (92)
(1,1)x

The partition function in the presence of a small twist canthe written as

/ d[e]e PH(® (93)
[ diele PO~ 1gPH,+ . JL+ Babt 3B+,

where the exponentials involvingy and Ix have been Taylor expanded to the orders
needed. We can now write this in a form with expectation w&loeer the distribution
for ¢ = 0. To second order ip:

Z(g) — Z(0)[1— 3B@*(H) + Bo(lx) + 3B%9%(13)]. (94)
By symmetry(lx) = 0 and the free energy (87) is given by
F(9) =F(0)+30%({Hx) — B{I)), (95)
and from this we can extract a simple expression for the gjjiness (86):
ps= < ({Ho —BUZ), (96)

which can be evaluated using Monte Carlo simulations. Téssilt is for a twist field in
thex lattice direction. For @-dimensional isotropic system, we can average over all the
equivalent directions and write the spin stiffness as

1 d
ot (m-o3a).

where the inde» corresponds to the current in lattice directimnFor an anisotropic
d-dimensional system, the stiffness in general is diffefengll lattice directions, i.e.,
there aral different stiffness constants, each of them given by a foke(96).

The twist-field definition of the stiffness can be easily gatized to systems with
longer-range interactions. The forms (96) and (97) remailidy with the currently
containing contributions from all interactions exactlyimshe hamiltonian.
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FIGURE 23. (a) Temperature dependence of the spin stiffness of the 3&del for different lattices
of sizeN = L3. (b) Finite-size scaling according to Eq. (99). Curvekpffor differentL cross each other
(asymptotically for large.) at the critical temperature. These results were obtaisédja Monte Carlo
cluster algorithm [119], and in all cases the error bars@oesimall to be visible.

Relation to superfluidity and superconductivityA very interesting aspect of the spin
stiffness of the XY model is that it can be directly relatedtte superfluid density of a
superconductor (or a superfluid such*aie) [131, 132]. Like the magnetization of the
XY model, the order parameter of a superconductor or a sujeeifiU (1) symmetric
(corresponding to the global phase of the wave functiord the twist field we discussed
above is directly analogous to a magnetic flux (in the casesopa&rconductor). A non-
zero stiffness corresponds to the Meissner effect exhillitea superconductor. Monte
Carlo simulations of the 2D XY model directly aimed at prdpes of thin superfluid
films are discussed in Refs. [133, 134].

Spin stiffness scaling.The critical scaling properties of the spin (or superfluid)
stiffness were first worked out in the context of superfluiti3l], 132]. In the infinite
d-dimensional system wittl > 2, it was shown that

ps~ (Te— T)(diz)va (98)

for T — T. from below. Herev is the standard correlation length exponent. According to
the general finite-size scaling relation (66), the size ddpace of the stiffness exactly
atT; is then given by

ps ~ L279. (99)
The stiffness is therefore, like the correlation length dne Binder ratio, a useful
quantity for locating the critical point without having taljast any unknown (or not
precisely known) exponents. This is illustrated with Mo@&rlo results for the 3D XY
model in Fig. 23, wheréps is size independent at the critical point.

3.5.2. Kosterliz-Thouless transition in two dimensions

In the 2D XY model there can be no transition into a phase witigirange magnetic
order atT > 0, according to the Mermin-Wagner theorem [38] (as disaligs&ec. 2).
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Remarkably, this system exhibits a different kind of phasedition, where no long-
range order develops but the spin correlations change feqpanentially decaying to
a power-law form [135, 136]. ThiKosterlitz-Thoules§KT) transition is topological in
nature, being a consequence of proliferation of unbountices (which are topological
defects) in the spin configurations at temperatures Tgy. For T < Tk, vortices
also exist (at a density which vanishesTat— 0) but they are all bound in vortex-
antivortex pairs, which have no net vorticity (and therefeanish upon course graining
of the spins). The power-law form of the spin correlatioB;) ~ r~1, applies for all
0< T < Tkt. The exponenyy is temperature dependent, with the vatue- 1/4 exactly
at Tkt andn — 0 asT — 0, so that true long-range order exist§at 0.

Although there is no long rage order for<0T < Tkr, the spin stiffness is actually
non-zero in the KT phase—power-law correlations with a sigfitly small exponent are
enough to support an energy cost of a boundary twist. There ower-law onset of the
stiffness, but instead an even more prominent signal ofrdmsition; a discontinuous
jump atTkr from ps = 0 to a non-zero value. Renormalization-group calculatfons
the continuum field theory corresponding to the 2D XY modekhgiven very detailed
information about the KT transition. One of the most impotteesults is a rigorous
relationship (due to Nelson and Kosterliz [139]) betweenttAnsition temperatufBr
and the spin stiffness exactly at this temperature (i.e.stke of the discontinuity);

2T,
K (100)

ps(Tkr) =
For finite lattices, the stiffness @kt approaches the infinite-size value with a logarith-
mic size correction [138]:

pu(Tir.L) = ps(Ter ) (14 g ) (101)

wherec is a system dependent parameter. Thus, one can say that@inite-size
scaling law (99) forps at a critical point holds, but with a logarithmic correctitinthe
leading-order size-independent form obtaining when 2.

Fig. 24(a) shows Monte Carlo results for the stiffness of 2BeXY model versus
temperature. The jump expected in the thermodynamic Israpiproached very slowly
as a function of size. This can be related to the fact thatdghrelation length foill > Tyt
does not diverge as a power-law, but according to the expiahéorm

&~ ea/(T*TKT)l/z7 (102)

wherea depends on details of the lattice and the interactions.éfbeg, using the same
arguments as we in the case of a standard critical point in322, the finite-size shift
of Tkt [defined using, e.g., the temperatdrgL) at whichps drops the most rapidly] is
given by the form,

T(L) =Tkt ~ —Inzl(L)’ (103)

which is much slower than the conventional power-law ShiftL) — To ~ LYV,
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FIGURE 24. (a) Monte Carlo results (obtained with a cluster algorithtid]) for the temperature
dependence of the spin stiffness of the 2D XY model for séVatiices of sizel. = 2". A discontinuity
develops afikt asL — o, as indicated with the vertical line at the known transitiemperatureTxt ~
0.8933 [137]). According to the Nelson-Kosterlitz relatiot0Q), the stiffness exactly air, for any
system exhibiting a KT transition, must fall on the line stmws = 2T /1. (b) Finite-size data collapse
according to the combine’, L) scaling hypothesis (105), using the knoilgt = 0.8933 and with the
two parametersa = 1.5 andc = 0.7, chosen to obtain good data collapse. The vertical linevshbe
asymptoticT — Tkt, L — o value expected according to the Nelson-Kosterlitz refatio

Using the standard finite-size scaling hypothesis (64) apdacingL? (the size
dependence of the singular quantity exactly at the cripcaht) by the logarithmic size
correction in (101), we can write a hypothesis for the siz#t @mperature dependence
of the spin stiffness at the KT transition as

ps(T,L) = <1+ 2In(|.1)+c> f(e/(T=Tk0)™? )1y, (104)

which, after taking the logarithm of the argument of the isgafunction f(x), can be
written in terms of another functiogfin(x)] as

ps(T,L) <1+;>1:g[ln(L)—a/(T—T 2. (105)
S 2In(L) +c KT

HereT — Tkt corresponds to the argument In(L) —a/(T — Tx1)Y2 — —co,

The KT transition temperature of the 2D XY model has beenaexéd in different
ways in many studies, e.g., in [133, 137]. Fig. 24(b) showssa of the scaling form
(105), usingTkt = 0.8933, as obtained in [137], and with the constarasdc adjusted
to obtain the (approximately) best data collapse onto a consnaling function for sys-
tem sized =8,16,...,128. The data are indeed well described by this form. Thid kin
of plot confirms three different aspects of tk@ transition (which were theoretically
deduced at different stages of the history of the KT traos)tiat the same time; the
exponentially divergent correlation length (102) [1356]1.3he logarithmic correction
(101) [138], and the Nelson-Kosterlitz relation (100) [1.39
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3.6. Quantum Phase Transitions

In the following sections of these notes, we will study salexamples of quantum
phase transitions, which take place in the ground state pétaem as a function of some
model parameter [1]. The scaling properties we have discliakove for classical con-
tinuous and first-order transitions still apply, with sonmgbrtant extensions and modi-
fications. The nature of a classical thermal phase transitim be traced to singularities
in the free energy. At a quantum phase transition, it is acstthe ground state energy
which exhibits singular behavior, which is manifested afsother quantities. This can
be understood as arising from the> O free energy of the quantum system, which when
T — 0 becomes the ground state energy. That is of course alsalassically, but the
ground states of classical models normally do not evolveicoausly as a function of
the parameters (as we saw in the example of the frustrated tsbdel in Sec. 3.4.2)
and are therefore strongly first-order. In contrast, asdleliscussed in Sec. 2.4, quan-
tum systems have non-trivial ground states, with zero{pfiictuations that evolve as
the parameters are varied. Continuous phase transitiowvendoy divergent quantum
fluctuations are common.

As we will see in connection with quantum Monte Carlo method$ec. 5, ad-
dimensional quantum system can formally be mapped, usitty iptegrals, onto an
equivalent classical statistical-mechanics problendin 1 dimensions (albeit some
times with a non-positive-definite distribution functiofhe size of the system in the
new “imaginary time” dimension is the inverse temperatuke= c/T, wherec is a ve-
locity. At T > 0, this dimension is finite, while the spatial dimensionsloainfinite. The
system is them-dimensional with a “thicknesst’;. The strict(d + 1)-dimensionality
applies when als@ — 0. In that case, a tunable parameter in the hamiltonian @n pl
a role very similar to the temperature in a classical systatarestingly, changing the
temperature in this case is analogous to finite-size scalihg [5], which can be used
to deduce finite-temperature scaling properties close amigun-critical points [84].

In some cases, thedimensional quantum system has the low-energy propatibe
same kind of classical systemd+ 1 dimensions. This is the case, e.qg., for the dimerized
Heisenberg models discussed in Sec. 2.4. The low-energsiqshef these models can
be mapped onto a 3D classical Heisenberg model, which isaltyrdone via continuum
field theories, such as the nonlinearmodel [5, 84] (and, it, should be noted, the
dimerization is only a means of tuning the strength of thentm fluctuations, which in
a course-grained uniform effective model is just represgbly the coupling constant of
a field theory, or the temperature in an effective 3D unifotassical model [140]). One
can then presume that the quantum phase transition drivéantyg the dimerization
strength should be in the universality class of the tempegadriven transition of the
3D classical Heisenberg model. In other cases, the lowggnaapping may give an
effective system that does not correspond to any familassital model, but one can
still say that the system correspondstime(d + 1)-dimensional effective model.

The dynamic critical exponent.In many cases, such as the dimerized Heisenberg
models mentioned above, the time dimension arising in theping tod + 1 dimensions

is equivalent (in an asymptotic sense) to the spatial dimessThe scaling properties
of such a system at a quantum phase transition are then edthinjust replacingl

185

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



by d + 1 in the critical correlation function (53), in hyperscairelations such as the
second Eq. (59), and in the scalin forms (98) and (99) of the stiffness. In other
cases, the correlations in the new dimension may be fundathedifferent from those

in the spatial dimensions. Th#ynamic exponent ®lates the power-laws associated
with spatial and temporal correlations, e.g., if the spatarelation lengthé diverges
when some parameteris tuned to its critical value ag — gc| /Y, then the temporal
correlation length diverges dg — gc|z/", and in classical scaling relations one should
replaced by d + zfor the quantum critical point.

The dynamic exponent derives its name from the fact thatsit gloverns the dis-
persionw(q) ~ g* of excitations of wave-numbey. An important aspect of this is
that the finite-size excitation gap is obtained by settirig 1/L, giving the gap scal-
ing A ~ 1/L% This result can be used directly in numerical calculatiamsl also has
indirect consequences for the scaling properties of gtiestihat depend on the ex-
citation spectrum (e.g., various susceptibilities). Bgting the dynamic exponent is an
important aspect of computational studies of quantum ptrassitions. Apart from this,
guantum phase transitions, both continuous and first-ades, can be analyzed with
the same finite-size scaling methods as the classical tiamstdiscussed above.

It should be noted that there is a dynamic exponent also ssidal systems, but
this does not come into play in equilibrium statistical megies (because if a system
has a kinetic-energy part of the hamiltonian, the assatiptease-space probability
distribution cancels out in expectation values). The atasslynamic exponent depends
on how dynamics is introduced into the system [141]. The bfmitis Monte Carlo
algorithm for the Ising model is an example of classical dyits (called Glauber
dynamics), and the long-time decay of the autocorrelataineriticality is governed
by an associated dynamic exponent. This dynamics does owtver, determine the
equilibrium properties. In quantum mechanics, the dynarannot be separated out,
but is an integral part of the equilibrium properties, besgathe full hamiltonian always
enters and contains in it the static as well as dynamic ptigsdi42].

4. EXACT DIAGONALIZATION METHODS

By exactly diagonalizing its hamiltonian, complete knoslde of a quantum spin system
can be obtained—with the eigenstates available, any statignamic quantity can be
computed. In principle, all eigenstates can be computedtlgxtor a finite quantum
system, by constructing the hamiltonian matrix and diagjping it numerically. In
practice, however, such exact diagonalization studieBrared to rather small lattices,
a few tens of spins, because of the exponential increase tfsis size with the number
of spins (2 states in the case 8= 1/2). Great care therefore has to be taken in drawing
conclusions about the thermodynamic limit, which may natrebe possible (if the
available lattices are too small to accommodate the infiize physics). Insights gained
from exact diagonalization studies are nevertheless \&ful) in their own right and as
a complement to other calculations. Exact results for siattites are also indispensable
for testing the correctness of, e.g., quantum Monte Caibgrams. In addition, exact
diagonalization methods provide a concrete path for legrnmiany important aspects of
guantum mechanics, in particular the symmetry properfiesamy-body states.
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FIGURE 25. Schematic illustration of block diagonalization. In thégamal basis, the hamiltonian has
no apparent structure (left). By constructing states kdbély a conserved quantum number, the matrix
breaks up into blocks (with all matrix elements zero outsideshaded squares) that can be diagonalized
independently of each other (middle). Applying another syetry (conservation law), the blocks can be
further broken up into smaller blocks (right) labeled by tifferent quantum numbers, etc.

Block diagonalization. Given a hamiltoniarH, the first step of an exact diagonal-
ization calculation is to choose a basis in which it and otiygrators of interest will
be expressed. The working basis for a spji2-8ystem normally consists of the single-
spin stategj and |, i = 1,...,N (with the quantization direction normally taken8s
However, because of thé'Zyrowth of the Hilbert space with the number of spins in the
system, symmetries should be used whenever possible todfitgte the hamiltonian
to a block-diagonal form, as illustrated in Fig. 25. In sucscheme, the spin states are
combined and ordered with the aid of applicable symmetryaifms. The blocks corre-
spond to states with different conserved quantum numbktedethe symmetries, e.g.,
crystal momentum conservation following from lattice skational symmetry or the
conserved-component of the total spin (the magnetization). The dazdn be diago-
nalized independently of each other, at a much reduced ctatiquoal cost. In addition
to the reduced computational effort, immediate accessa@tiantum numbers is very
useful for classifying excitations.

Some symmetries are relatively easy to take advantagegof itee conservation of the
magnetization) whereas others require some more work audttemore complicated
basis states (e.g., momentum states). Some symmetriesothidtbe used in principle
are normally not implemented, because the practical caapdins of the calculation
may outweigh the benefits. Total spin conservation is an plaof this.

The use of symmetries in exact diagonalization can be dégclssing the language of
group theory [143]. This formalism is not necessary (androftonfusing), however, and
here a more practical approach is taken, with no referengeotap theory terminology.
Group theory is actually very useful when dealing with coexghttices, but the power
of its formalism can perhaps be better appreciated afteotigh understanding of
symmetry operations and block-diagonalization has beémedahrough less formal
methods for simple lattices. Here we consider 1D chains &nsliple square lattices.

Outline of this Section. Our discussion will first be framed around tse= 1/2
Heisenberg chain as a concrete example in Sec. 4.1. We Brstgdi its symmetries and
introduce a computer representation of the basis stateg bits of integersin 4.1.1. In
4.1.2 we use this representation in pseudocodes to contteuitill hamiltonian without
any symmetries, and then block-diagonalize using magatétiz conservation. Momen-
tum states are discussed in 4.1.3, the use of parity (reftesffmmetry) in 4.1.4, and

187

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



spin-inversion symmetry in 4.1.5. Complete diagonal@atb obtain finite-temperature
thermodynamic properties is illustrated with some resul#.1.6. To compute a small
number of eigenstates for larger chains, the Lanczos mathdeveloped in 4.2. The
utility of this technique for several 1D systems is illusté@hin Sec 4.3. The ground state
and low-energy excitations of the Heisenberg chain areudsed in 4.3.1. The dimer-
ization transition taking place in the presence of a frustgasecond-nearest-neighbor
interaction is investigated in 4.3.2, and in 4.3.3 an ex¢gnohodel with long-range in-
teractions is considered. Diagonalization of 2D systenisiefly described in 4.4. Mo-
mentum states and other square-lattice symmetries areeoed. Results pertaining to
the Néel ground state of this system are discussed.

4.1. Diagonalization of the Heisenberg chain

We will study theS= 1/2 antiferromagnetic Heisenberg chain with hamiltonian

N-1 N-1
H=33SSu=33 S 1+ 2(8 S0+ 5 S50l (106)

where, for reasons that will become apparent below, it vatehbe practical to label the
spinsi =0,...,N—1. Periodic boundarie§y = Sg, will be assumed when we consider
momentum states, but before that the boundary conditiomitary.

4.1.1. Representations of states and symmetries

Lattice transformations. We use the standard notatit®, ..., ;) for the basis
states, with§ from left to right always corresponding to the spin statesatiice sites
numbered 01,2, ..., irrespective of the ordering of the subscript3hus, if we write a
state|S[, §), this is different from' S}, ) unlessS = S[. The former could refer to the
state obtained from the latter when the two spins are switblyea permutation operator
P, which can be operationally defined so as to affect the siieés;P|S, ) = |S], ).
e.g.,P| 11) =|1). Generalizing this td-spin lattice transformations, reflections, trans-
lations, and rotations (in two and three dimensions) areddfin terms of permutations
of the spin indices. As an example, for a periodic chain wenddfie translation operator
as moving the spins one step cyclically to the “right”;

TSR0 =K 1S K2 (107)

This corresponds to decreasing the spin index by one (medbkisystem sizBl) at
each locatiori in the ket:§ — § ;. When writing specific states with up and down
spins denoted by and|, e.g.,| T/7] ...), indices are normally not needed (and, for, the
sake of compactness of the notation, the arrows are alscersgfiarated by commas).
The Heisenberg hamiltonian (106) with periodic boundamditions is invariant with
respect to translations, i.e., it commutes withiH, T| = 0. We can therefore construct
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momentum statel$P(k)), which by definition are eigenstates of the translation ajgey
T|W(k)) = €<W(K)). (108)

Here the allowed momenta are- 2nmt/N, withn=0,...,N— 1, following from the fact
that TN = 1. States with differenk form their own individually diagonalizable blocks
of the hamiltonian. How the momentum states are construntpthctice and used in a
computer program will be discussed in Sec. 4.1.3.

The Heisenberg hamiltonian also commutes with the reflec{marity) operator,
which we will define in a way generalizing the two-spin peratigns already consid-
ered, in terms of the spin index transformatieh N —1—1i;

PRS0 =K S ) (109)

For an eigenstate &, T|W(p)) = p|W¥(p)), wherep = +1 sinceP? = 1. We will use
T andP for block-diagonalization, although, as we will discusggtail in Sec. 4.1.4,
they cannot always be used simultaneously becgu$® = 0 only in a sub-space of the
Hilbert space. For a system with open boundarTess, not defined, buP can be used.

Spin quantum numbers.Since the hamiltonian is spin-rotationally invariant, its
eigenstates also have to be eigenstates of the s§aafethe total spin, where

S= Ni:s (110)

For an eigenstate we ha@|@(S)) = S- J@(S)) = S+ 1)|¢(S)). Here there is
potential for confusion, as the same symBadk used for both the spin magnitude of
the individual spins (i.e.§ = S and the total spin of a many-body state. The context
should always make the meaning clear (and we anyway onlyident = 1/2 here).

With the total spin conserved, we know that the states can fidocks labeled by the
quantum numbergS m;), wherem, € {—S —S+1,...,S} is the total magnetization in
the direction of the quantization axis,

N-1
my, = ; g (111)

If we use momentum states, eakiblock of course also splits into smaller blocks,
(k,S,my), becausgT, S = 0. It is easy to block diagonalize using, but implementing
the conservation of tot&is normally cumbersome (except for a very small number of
spins) and therefore rarely used (altho@sh 0 states in the valence-bond basis are some
times used [144]). We will usey, conservation in combination with lattice symmetries.
Note thatm, conservation is more general than conservation of the Stadven if we
introduce some anisotropy in the hamiltonian by giving &dént prefactor to, e.g., the
Ising (diagonal) term in the hamiltonian (108); is still conserved although tot&lis

not. All the techniques discussed in this section can tbeedfe applied directly also to
such anisotropic models.
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For the special (and most important) casg = 0 (for evenN), we can block-
diagonalize using a discrete subset of all the possibléiooin spin-space; the spin-
inversion symmetry, i.e., invariance with respect to fligpall the spins. This is defined
formally by an operator we cad;

ST S S - (112)

For this operator we again haZé = 1 and the eigenvalues= +1. SinceZ commutes
with both P and T, it can be used together with these operators to furtherkbloc
diagonalizeH, which we will do in Sec. 4.1.5.

The total-spin operatd®® can be written in a form resembling the Heisenberg model
with equal interactions among all the spins;

N—-1N-1 3

= Za _Z)s.sjzzzs~sj+ZN. (113)
i=0 J=

i<]

Constructing the matrix form of this operator, which we neadomputing the quantum
number S, is therefore very similar to constructing the hi@mian matrix.

Bit representation of spin states. =S1/2 models are special becausand? spins
can be represented directly in the computer by the bit vaduesd 1 of an integer. We
will take advantage of this here. The bits are conventigriabieled starting from 0, and
that is why we also number the spins in that way. To refer tobitei = 0,...,31 of
an integes (ori =0,...,63 for a “long” integer), we will use the notaticfi]. A basis
state|S, ..., S_;) for N spins is thus represented in the computer by an integéth
gi]=+1/2fori=0,...,N—1andsfi]=0fori >N—1.

Most computer languages have functions for examining ancipuating bits. The
off-diagonal terms of the Heisenberg hamiltonian (106) iy spins. In pseudocodes
we will accomplish this operation using a bit functifip (s,i, j), which flips (0 1)
bitsi and j of the integeis representing the state. How this is implemented in practice
depends on the language used. One possibility is to use esbiéxclusive-or operation
with a mask, as illustrated in Fig. 26. In Fortran 90, thisragien can be implemented
asieor(s,2t1). Later, we will also need functions that accomplish theaasisymmetry
transformations of the states; translation, reflectiod, gmin-inversion.

With standard 4-byte integers, the bit representation iingle integer works up to
N = 32. Using long integers, one can extend the scheme Np=t®4. The latter is well
beyond the maximum size for which exact diagonalizatiomnépes can be used in
practice, except for magnetization sectors witfy 2= n; —n| large enough for the block
sizeN!/(n;!n;!) to be manageable. Magnetization = 0 and other lowm, sectors are
typically of primary interest, however.

Discussing algorithms for constructing the basis set amdhamiltonian matrix,
we will start from the simplest method, in which no symmetré all are employed,
and then implement the magnetization conservation. In.Sk&s3-4.1.5 we include
more symmetries. The actual diagonalization of the hami#io matrix and the use its
eigenstates to calculate physical observables will berdféo Sec. 4.1.6.
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ij J i
[11iititl>  TJoltfol1JoJo]1]1] s=83

. [oJoJo]1]1]o]oJo] f=2"=24
[t1itlit> TJoliJoJol1]ol1][1] XORs.H
01234567 76543210

FIGURE 26. The top line shows aN = 8 spin statds) and its representation as the eight first bits of
an integess. Note that we label spins=0,...,N — 1 from left to right, while the bits are conventionally
labeled from right to left, as a binary number. To flip two sginj, a bitwise exclusive-or (XOR) operation
with a maskf (middle line) can be used. Bitand]j of f are setto 1, and all other bits are 0 (ife= 2')).
The bottom line shows the outcome of the XOR operatieor{s, f) in Fortran 90].

4.1.2. Computer generation of the hamiltonian

If we do not make use of any conservation laws, the hamiltoo@nsists of a single
2N x 2N matrix. We then simply use the numbers- 0,1,...,2N — 1 to label the basis
states. The bit-values of these integers correspond Witeche spin states. Determining
the diagonal contribution&|S'S] , ,|a) = +1/4 to the hamiltonian matrix just involves
examining the corresponding bit paiadi], afi + 1] (same or different), whereas an
off-diagonal operatofS'S,, + § S ;)/2 acting on a statéa) with ali] # ali + 1]
generates the stafie) where the two bits have been flipped. The matrix element is the
(b|H|a) = 1/2. For a state witla[i] = a[i + 1] there is of course no off-diagonal matrix
element. The following piece of pseudocode generates thiedmiltonian matrixH:

doa=0,2N-1
doi=0,N-1
j=mod(i +1,N) {2}
if (afi] = a[j]) then
H(a,a) =H(a,a) +
else
H(a,a)=H(a,a) —
b=flip(a,i,j); H(ab) =3
endif
enddo
enddo

B N

Herej = mod(i+1,N) is the “right” nearest neighbor @fwith themod function taking
care of the periodic boundary. In Fortran 90, the testfdr= a[j] can be implemented
with the boolean functiomtest(a,i) to examine bit of a. Each bond operator in the
hamiltonian corresponds to a single off-diagonal matrerent, while the diagonal
elements havé\ different contributions. Matrices corresponding to otbperators of
interest can of course be constructed in an analogous wagixdayining and flipping
bits according to whatever combinations$fandS™ operators that are involved.

Using fixed-magnetization blocksMoving up in sophistication, we next implement
magnetization conservation. We want to construct the blakiltonian acting on all
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states with giverm; = (n; —n|)/2. There areM = N!/(n;!n|!) such states, and we
need a list of them. The order within this list will be used atabel of the states
of the block, i.e., we writda) for the a:th state in the list. We then also need a list
of integers{sy}, the bits of which represent the spin configuration of #th state.
Later, we will have to search the lis{ to find the position labeh of a particular given
state-integes, and it is therefore practical to make the list order®dk s;.1. We will
some times use the notatios,) instead of|a) when referring explicitly to the spins,
[sa) = [sal0] —1/2,...,5[N — 1] — 1/2). The context will make it clear if a label inside
|) refers to the position in the list &fl states or to the integer containing the spins.

To construct the state list, we loop over the integees 0,...,2N — 1 and check
whether the number of set bits (the numberof spinsT in the state) corresponds to
the target secton; = m,+N/2. After initializing a state countex = 0, we can use the
following pseudocode to generate all the states with givagmatization:

dos=0,2V -1
if (3;sli] =) thena=a+1; s, = sendif @3
enddog M =a

We now have a basis of siM stored as the integesg,a=1,...,M.

To construct the hamiltonian, we loop over the lakeels 1,...,M and use bit op-
erations as before to act on the corresponding state-irstsgaé/Vhen an off-diagonal
operation orjsy) leads to another stats") = |s,), and have to find the positidnof the
integers” in the state list. Since this list is ordered, we can do thia bisectional search
in ~log,(M) steps on average. Such a search proceeds through a seriaslatings,
where in each step we can halve the possible randebgf examining the state at the
mid-point of a rangébmin, bmay/, With the bracket®mn = 1 andbmax= M initially. The
following subroutine finds the positidnof a state-integes;

subroutine findstate(s", b)
Bmin = 1; Bnax=M {4}
do
b = Bmin + (bmax— Pmin) /2
if (S* < s)then
elseif(s* > g) then
bmin =b+1
else
exit
endif
enddo

Division of an integer by 2 should here be regarded in thedstahway, i.e.j/2 for odd

i equalg(i —1)/2. Theexit from the loop occurs when the basis stgtequals the target

states’. One can also use more efficient search procedures, usicalled-hash-tables

[145]. The bisection is much simpler, however, and suffidjeiast in most cases.
Using subrouting 4}, the part of the hamiltonian originating from operation span

pair (i, j) in the statéa) can be constructed with the following modification of cd@g;
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H(a,a) =H(a,a)+1 {5}
%

H(a,a)=H(aa) —

s* = flip (sa,i, ]); call findstate(s*,b); H(a,b) =3
endif

If one is just interested in obtaining quick results for soveey small lattice, or if the
system is not periodic (an open chain or a system with randamlings, in which case
the momentum is not conserved), it may be sufficient to cansthe hamiltonian in
this form and proceed to diagonalize it (successively fbtha m,-blocks desired). For
serious work on translationally invariant (periodic) ®yss, it is worth implementing
additional symmetries to further block-diagonalize thedir, blocks.

4.1.3. Momentum states

We now construct eigenstates of the translation opefaefined Eq. (107). Trans-
lating N steps brings the spins back to their original state. Thifs= 1, which implies
eigenvalues', where the set dfl non-equivalent momenta can be chosen as,

2
k:mW, m=—-N/2+1,...,N/2 (114)
with the lattice constant equal to 1. A momentum state candestoucted using a
reference stat¢a) (a single state in thecomponent basis) and all its translations;

1 N-1
= N 2

It can easily be verified (by a shift of the summation indexwatd due to the peri-
odic boundaries) that operating with the translation ojperél07) on this state gives
Tla(k)) = €¥|a(k)), which is the definition of a momentum state.

To construct the momentum basis for givefand normally also given¥) we have
to find a set of representatives resulting in a complete sebaohalizable orthogonal
states. Clearly, for two statda(k)) and |b(k)) to be orthogonal, the corresponding
representatives must ob@y|a) = |b) for all r. Therefore, among all the states of the
set of translated statea(r)) =T'|a), r = 0,...,N— 1, only one should be used as a
representative. With the labels referring to the bit repnéation, it will be practical to
always choose the representative as the one for which thgdra(r) is the smallest (as
determined by carrying out all translations).

la(k))

e KT |a). (115)

Normalization and excluded representativedf. all the translated state§' |a) are
distinct, the normalization constant in (115) is ji&t= N. Some reference states have
periodicities less thaN, however, and this affects the normalization. The peribdaf
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a state is defined as the smallest intégefor which
TRja) =a), Rac{1,...,N}. (116)

If R < N, then there are multiple copies of the same state in the syfiil®), and the
normalization constant must be modified accordingly. Welddlien also restrict the
summationin (115)to =0, ..., T,— 1, but it is more practical in formal manipulations
of the states to keep dll terms regardless &t,.

An important aspect of the momentum basis is that the paitydif the representa-
tive has to be compatible with the momentum in order for (X@%)e a viable state. The
compatibility is related to normalizability. The sum of @leefactors associated with the
representative stata) in the sum in (115) is

F(k, Ra) =

N/Ra-1 . . .
z oiknRe _ { N/Ra, if kRyis a multiple of 2, (117)

0, otherwise.
n=0

The normalization constant is then
Na = (a(k)|a(k)) = Ra|F (k,Ra)|?, (118)

and, therefore, i (k,Ra) = 0, no state with momenturk can be defined using the
reference stat@). Thus, for giver|a) the allowed momenta are those for whidR, is

a multiple of 21, or

k:%[m, m=0,1,...,Ra— 1. (119)

For the allowed momenta, the normalization constant inisl5

Na R (120)
When the reference state is not equal to any non-triviabtedion of itself, therR; = N
andN; = N. Note again that a given reference state can only appeariimgke $asis
state. It is then clear that the momentum states are orthmipfb(k')|a(k)) = dapk -
Also note again that reference states that are not comeatith a given momentum will
not appear in that block of states. An important aspect osttanting the momentum
basis is to check the compatibility of a potential represtwve: state with the momentum.

The hamiltonian matrix. Next, we construct the hamiltonian matrix in the momen-
tum basis. The periodic Heisenberg hamiltonian under denation here is translation-
ally invariant and consists & bond operators - S, 1. It is convenient to lump all the
diagonal terms together and consider the off-diagonaldesaparately. To simplify the
formalism to follow, we define operators accordingly;

N
Ho = Z SJZSJZ_HJ (121)

=318 +5S) =N 022
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so thatH = JE'I-LOHJ-. We now set] = 1. We need to find the state resulting when
acts on the momentum state (115). SiftdeT| = 0 we can write

1 N-1 1 N N-1
NG %e"krTrH|a> = Z) Zoe—'karH,-|a>, (123)
A r= aj: r=

and we need to operate with the hamiltonian operatfyrenly on the reference state.
For each operation we get a different state, or, in the diaggn= 0) case, the same
state. In either case we can wrig|a) = h; (a)|b’j>, wherehj(a) is the matrix element
coming from (121) or (122), and we do not, for simplicity okthotation, include any
explicit indicator that|bj) also depends ofa). The prime in|bj) is there to indicate
that this new state is not necessarily one of the referemmtesstised to define the basis
and, therefore, a momentum state should not be writtenttlireased on it. Provided
that|b}) is compatible with the momentum, there must be a refererate|bf) which is
related to it by some number of translations;

Hla(k)) =

[bj) = T'i[b}), (124)
and using this relation we have
Hjla) = hj(@T"[b)), 1;€{0,1,...,N—1}. (125)

Here the notation is again simplified by not making explicéitt ; depends on the actual
state|bj) (and therefore offe)). We can now write (123) as

H|a(k)> _ ihj(a) sz_e—ikr-l—(r—lj)bj>’ (126)
j: \/N_a r=

and by shifting indices in the summation, and also noting [tya may have a different
normalization factor (periodicity) thaa), we obtain

N . Np.
Hla(k)) = 3 hy(a)e™ iy [ [bj (k). (127)
% =
We can now simply extract the matrix elements of the hamidiomperatorsi;;

. Nh.
(bj()|H;[a(k)) = hj (a)e X! N—b (128)

Strictly speaking, for the off-diagonal bond operatgrs-(0), this is not the only matrix
element, because individually these are not translatiprimariant operators. They
therefore have matrix elements also between states witttrelit momenta. Here we
have in mind summing over aj| after which only the elements diagonalkisurvive.
There can be several terms kh that contribute to the same matrix element (128),
because it is possible (in fact very likely) thef|a) O T~"i|b;) andH;la) O T~'i|bj)
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with |bj) = |bj) (butl; # ;). Note also that the matrix elemehj(a) in (125) is zero
for an off-diagonal operator acting on two parallel spinshould also be kept in mind
that |bj(k)) may not exist even ihj(a) > 0 in in (125), if |b;) is incompatible with
the momentum. The momentum-state matrix element (128) dlees not exist. With
these caveats, which we will deal with in the implementatibelow, (128) specifies
all the non-zero matrix elements of the hamiltonian. Forgpecific Heisenberg model
considered here, we can substithi¢a) by the actual values of the diagonal and off-
diagonal matrix elements and obtain

(a(k)[Hola(k) Z (129)

(by (K)|Hj-ofalk) = e MiZ T2 by 0T Ukyla).  (130)
2\ Ry,

Matrix elements of other translationally invariant operat(which is what should
be used in the momentum basis) can be obtained in exactlyatne svay if the mo-
mentum transfered by the operator is 0 (i.e., a sum of idaintacal operatorgD;,

i =0,...,N—1). For an operatoAq which transfers momentum # 0 (such aﬁﬁ,
the Fourier transform of) the procedures differ only in that the basis states obdaine
when operatingf\g|a(k)), have momenturk+q (and in that case the basis sets for both
momenta involved have to be stored).

Constructing the momentum-state basis in a progralve will now again use a label
ato refer to the position of the state in the basis, and starectinresponding spins in
the form of the bits of integers,, a=1,...,M. A momentum state is defined in terms
of its representativés,), from which the full state is generated using the transtatio
operatorT according to (115). In this case we do not know the basisizepriori,
because the number of compatible representatives departds momentum. If all the
translations of all states were unique, and there were nesstacompatible with the
momentum, then the number of states would ediaJ(n;!n;!)]/N. However, since
many states have periodicities less thidrand some are incompatible with(unless
k = 0), this is only an approximate basis size. The 0 momentum block is always
the largest, because there are no states incompatible kigthrtomentum. For large
systems the fractions of disallowed states and periodgitiN are small, and the above
approximation to the basis size is then quite good.

To implement the momentum basis in a computer program, werfirsd to decide
how the representatives are chosen—in principle the reptatve of a stat¢s) could
be any one of the members of the group of states related todtgh translations;
[s(r)y=T"|s),r =0,...,N—1. Fig. 27 shows an example of all the unique translations of
an 8-spin state in the bit representation. We have to cartstrist of the representatives
and should be able to easily identify the representativeesponding to an arbitrary spin
state. As already mentioned, when using the bit repregentiais natural to pick as the
representative the translated state)) for which the integes(r) is the smallest.

To generate the basis, we loop over the integer®, ..., 2N — 1, and, as in codé3},
process only those corresponding to a chosen magnetizatienoperations needed to
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r | s T'|s)

153 [L]OTOTIT1]OTO]T]
51 [oTo[1T1TOTOT1T1]
1 1

1
102 | [O[1]1]ofo[1[1]0]
204 | [1[1fofoT1]1]0]0]
153 | [A[ofo[1[1]0[0]1]
FIGURE 27. Bit representation of the 8-spin std& = | 1| |11/|7) (top row) along with its transla-

tions,T'|s), withr =1,... R, whereR= 4 is the periodicity. The integesér) correspond t@ successive
cyclic permutations (to the left) of the bits. The represéme iss(1) = 51; the lowest integer in the set.

A WP = O

determine whether a state is a valid new representativeaaried out by bit operations.
When translatings), if somes(r > 0) < s= 5(0), then the representative ¢d) is
already in the basis and should not be used again [as in Figv@&re the original
integers = s(0) = 153 but the translatios(1) = 51 < s(0)]. If all s(r) > s(0), then the
representative gf) is not yet in the list. Howevets) may still not be allowed, due to
its periodicity potentially being incompatible with the mentum, according to (119).
In the pseudocode segments below, the momentum will be sepied just by the
integere {—N/2+1,...,N/2} multiplying 2r7/N in (114), which we here cak. We
will define a subroutine which checks whether or not a stategers is a new valid
representative and, for a valid representative, delitengériodicityR. To carry out the
translations of the stats), we use cyclic permutations of its bits. We assume that this
is accomplished with a functiogyclebits(i, n), which performs a cyclic permutations
to the “left” (as exemplified in Fig. 27) of the first bits of the integei. In Fortran
90, exactly this operation is available with the intrinsimétionishftc(s,d,n), which
cyclically right-shifts the firsh bits of s by d steps. The definition of according to
(107) corresponds td = —1. Our state checking subroutine can be implemented as:

subroutine checkstatés, R)
R=-1;t=s {6}
doi=1N
t = cyclebits(t,N)
if (t <s)then
return
elseif(t = s) then
if (mod(k,N/i) # 0) return
R=i; return
endif
enddo

Here the integeR is first initialized to—1, and this value will be returned (and later
used as an indicator of a disallowed representative) utlhesgput state-integes is
the smallest among all the translated integers and thedieitypis compatible with
the momentum (and theR will equal the periodicity upon return). We can now easily
construct the list oM basis states;
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dos=0,2N-1

call checkstatés, R) {7}
if R>0thena=a+1; s3=5 Ry=Rendif

enddo

M=a

The listR, of periodicities will be needed when constructing the h&mikn.

Constructing the hamiltonian matrix.To generate the hamiltonian, we loop over the
representativels,), a=1,...,M. For each of them, we check the bits corresponding to
all nearest-neighbor pai(s, j). The diagonal matrix element can be handled exactly as
in code{5}. For the off-diagonal part, we need a few minor modificatiokier two
spins have been flipped, the resulting siateis typically not a representative, and we
need to find it using Eq. (124). The matrix element (130) a¢spiires the numbey of
translations used to bring') to its representativées,). We implement these tasks as a
subroutine, the contents of which are rather similar to th@eutinecheckstate code
{6}, that we used when constructing the basis. Given the st&tgdrs, we translate
its bits in all possible ways and store the correspondindlestantegen (the potential
representative) found so far, along with the correspondimgber of translations;

subroutine representatives,r,|)
r=g;t=g;1=0 {8}
doi=1,N—1
t = cyclebits(t,N)
if (t<r)thenr=t; | =i endif
enddo

Having found the representativewe need to locate its positidnin the list{sz}. This

is done in the same way as before, with the subrouiimistate, in code{4}. Note,
however, that because of the periodicity constraint imgdsethe momentum, it is now
possible that the potential representativie actually not present in the list. Therefore
findstate is slightly modified, so thalh = —1 is returned if there is no elementn the
list, using the following piece of code after tife.endif statements in codf4};

b= —1;return {9}
endif

For each spin flip, we can now add the contribution to the Hami&n with the following
code replacing the next-to-last statement in c{lg

¢ =flip (Sa.i, })

call representative(s,r,|) {10}
call findstate(r, b)

if (b>0) H(a,b) = H(a,b) + (Ra/Ro)*/2exp(i27ikl /N)

The hamiltonian is complex, except whier- 0 or N/2 (actual momentum 0 o).
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4.1.4. Reflection symmetry and semi-momentum states

We will next consider in addition to the translated statés) those that are generated
by the reflection (parity) operatd® defined in (109). The operatofs and P do not
commute, and so it would at first sight appear that we cannus$toact states that are
eigenstates of both operators simultaneously. These tope@o, however, commute in
thek = 0, mmomentum blocks, as we will show explicitly below. In addiitj we will
constructsemi-momenturstates that are also parity eigenstates forlayn advantage
of such states is that they (and the hamiltonian) are rdakdain contrast to the standard
complex momentum states.

States with parity. Consider the following extension of the momentum state 115

lak, p)) = zo e MT(1+ pP)|a), (131)

\/_ar

wherep = £1. Clearly, this is a state with momentuaii.e., it satisfies Eq. (108)], but
is it also an eigenstate &f with parity p? We can check this by explicit operation with
P, usingP? = 1, p? = 1, and the relationshipT = T~1P;

Pla(k, e KT (P+p)la
la(k, p)) \/m ;) p)la)
=p é"fo 1+ pP)|a). (132)
\/N_a r; ( )1a)
This is not exactly of the form (131), unleks= 0 or 71, for which &' = e k" (j.e.,

the momentunk is equivalent to-k, and there is no directionality associated with the
state). Thus, in these two special cases, parity and ttarsdinvariance can be used
simultaneously for block-diagonalization ajagk, p)) is indeed a momentum state with
parity p (or, in other words|T,P] = 0 in the sub-spaces with momeikta- 0 andr).

Semi-momentum states and paritfxcept for the special casés= 0, 11, parity
cannot be used to further block diagonalize a momentum ldbek We can, however,
use parity in combination with the momentum in a differenyway mixing momentum
states witht-k. We consider the sum and difference of these states;

1 N-1
a%k)y=—=Y CJ(rT'a), 133
whereo = +£1 and we have, for convenience, introduced a funa@if(r);
g cogkr), o=+1
G(r) = { sin(kr), o=-1. (134)

We we will here refer tok in (133) as thesemi-momentumNote thato is not a
conserved quantum number, just an indicator for how the nmtume states have been

199

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



combined into semi-momentum states. Strictly speakirgyspgecial valuek = 0, rare

still conventional (crystal) momenta (and tie= —1 states do not exist for thekpand
only k in the range G k < 1t should be referred to as a semi-momenta. We will here
consider all 0< k < 1ron the same footing (where it should be noted that only half of
the first Brillouin zone is used, as the other half corresgaiodthe same states). The
normalization constant is different for the special cases;

N Re o Nzgk
N= (&) 3 070 = e (135)

where we have introduced the factor

1, O<k<m,
gk{

2, k=07 (136)

In practice,gx will not matter here, because we are only considering malgrments
of H, which are diagonal irk. The g-factors therefore cancel out in the ratios of
normalization constants appearing in the matrix elements.

Checking overlaps, states with the sakimut differento are orthogonal,

(@ 9(k)|a’(k)) = Ni Esin(kr) cogkr) =0, (137)

and other requirements for orthonormalitg’ (k')|a%(k)) = dgrk, Of the semi-
momentum basis can also easily be verified. The advantagengfraomentum states
is that they are real-valued for &} in contrast to the complex momentum states.

The following equalities—standard trigonometric ideett—are useful when manip-
ulating semi-momentum states;

CE(-r) = £C&(n), (138)
Ce(r+d) = GHNGH(d) TG (r)C, (d), (139)

where+ stands foro = +1. Using (139) it is easy to see that the Hamiltonian acting on
a semi-momentum state mixgs= +1 states. WittH;|a) = h;(a)T~i|b;) we get

e zoh f( 0)IBE(9) FC ()] (K) ), (140)

from which the hamiltonian matrix elements can be extraatadiwritten as

Np.
(b"(K)|Hj|a% (k) = hj<a>r<“>/2\/ijc€T<lj>. (141)

Incorporating parity. Since the hamiltonian (141) is not diagonabint, the number
of states in a semi-momentum block is twice that in a coneaalimomentum block,
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and thus it would appear that there is not much to be gainedamraplex momentum
states by making hamiltonian real in this way (by making tia¢es real). However, we
can also incorporate parity in a semi-momentum state, byidefi

N-1

k) = 3 G+ PPTa) (142)

a r=

This is also a semi-momentum state, because the reflectegoremt Pja®(k)) =
o|Pa’(k)) is the semi-momentum state obtained by using the reflecfm@sentative
stateP|a) instead of|a). It can also easily be verified that (142) is an eigenstathef t
parity operator for any semi-momentuRija’ (k, p)) = pla’ (k, p)) with p= +1. This is
simply due to the fact that in (142) the operatir+ pP) appears before the translation
operatorsT", in contrast to the momentum state (131) wheke- pP) is written after
T'. The hamiltonian is thus diagonal jy and the number of states in eadhp) block
is roughly half of that in the original semi-momentblocks. We are then back to the
same block size as with the conventional momentum statésyithustates with purely
real coefficients.

Orthogonality and normalization of semi-momentum stat&amining the orthog-
onality of the states (142), we have an apparent problem:WH®|a) = |a) for some
m, the statega™ (k, p)) and|a~(k, p)) are not orthogonal. We can then use Egs. (138) and
(139) to write the parity-conserving semi-momentum sta#] as a linear combination
of non-parity semi-momentum states (133);

e ) = [yt (196 () | 00) PG (iaK)). (143

It is then clear thata 9 (k, p)|a?(k, p)) can be non-zero. To look at this more closely,
we first determine the normalization constat in (142). Note that we have attached
o as a superscript to indicate that the normalization conhsththe parity-conserving
semi-momentum states can, unlike the normalization (1B&)eplain semi-momentum
states, depend an(in addition to the implicit dependence &yp). In the casd "P|a) #

|a) for all m, the calculation oN{ is trivial. WhenT™P|a) = |a) for somemwe can use
(143) and the orthonormality of the pure semi-momentunestaf (k)), resulting in

_ NG [, TMPla) # |a) vm,
TRy 1+ opcogkm), TMPla) = |a).

In the same way, we can calculate the overlap betweea the-1 states whefl ™P|a) =
|a) for somemand find

(at(k,p)lat(k,p)) = —p, (TMP|a) = |a) for somem). (145)

This is of course under the assumption that bothahe +1 states exist (i.eNJ # 0).
Thus, theog = +1 states in the cas€™P|a) = |a) differ at most by a sign, and we
should include only one of them in the block of states. Fomiteiness, we can choose
lat(k,p)) if NJ- # 0 and|a”(k, p)) else. We still have to pay attention to the non-zero
overlap (145) in some formal manipulations with the semimeatum states, as we shall
see shortly.

NG (144)
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The semi-momentum hamiltonianTo calculate the hamiltonian matrix elements,
we first note that, instead of (124) for a plain momentum statev when we act
with a hamiltonian operatdrij on |a) we get a stat¢b;) which is related to another
representative statb;) by a number of translations and possibly a reflection:

bj) =ThPYbY), 1j€{0,....N~1}, qj€{0,1}. (146)

The result ofH acting on a semi-momentum state (ck & O, T momentum state with
parity) can therefore be written in in the form

H[a% (k, p)) = % @OV S o 41, (14 pP) T [oy). (147)
PI=2 T Ng i
j=0 ZO
where the representativVig)) is related taH;|a)
Hjla) = hj(@PT b)), 1j€{0,...,N—1}, g;€{0,1}. (148)

Using the relation (139) we can write (147) as

H|a% (k, p)) %h

(costk) b7 (k. p)) — 0

(149)

The ratio of theo = 1 normalization constants is 1 T™P|b;) # |b;) for all m, and
otherwise it can be written as

Nb, 1— opcogkm) | sin(km)| (150)
N" 1+ opcogkm) 1+apcos(km)

Using the overlap (145) we can extract the matrix elemerits.dnes diagonal ia are,

NI
(b (k, p)[Hjla’(k, p)) = hj(a)(ap)® \/N:; X

CO;((HQ - Plbj) # T™[bj), (151)
co opco
J1+apcos(km) » Plbj) =TT by),
whereas the off-diagonal ones are
Ngj
(b7 (k; p)[Hj[a% (k, p)) = hj (@) (op)¥ | 5 >
a
—osin(klj), Plbj) # T™bj),
—asin(kl| )+psm K[l;—m))| . (152)
{ 1-opcogkm) ’ P|bJ> Tm|bJ>'
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T" T'P

-

198 [1]1]oJoJoT1]1]0] 54 [0JOTIT1ToT1T1]0]
141 [1JoJoJoJ1]1]0]1] 108 [0]1]1]J0]1]1]0]0]

0 27 [OJoJoTITiJo[1[1] 216 [I[1[OTi[1]0]0]0]
1 54 [OJOTITT]OT1T1]0] 177 (AJoJ1T1]ofoJol1]
2 108 [O[1[1T0T1T1]0]0] 99 [oJ1T1ToJoJ0T1]1]
3 216 [IT1Jo[1T1]oJ0of0] 198 [I]1]oJofof1T1]0]
4 177 [1Jo1T1]oJofo]1] 141 [1JoJoJo[1T1]0]1]
5 99 [O[1[1]0JOJO[1]T] 27 [OJOJOTI[I[OT1[1]
6

7

FIGURE 28. Astate|s)=|17/1T/ll) (upper left) along with all its transformations by the triatien,

T, and reflectionP, operator in the bit representation. The corresponding-ifisintegers and its
transformations are also shown-the smallest integer27, corresponds to the representative state. For
this particular stateT5P\s> =s), i.e.,m=5 in the normalization constant (144).

Degeneracies. In the conventional momentum basis, states withare degenerate,
but are orthogonal states (except wikeA 0, 11). In the semi-momentum basisk states
are really the same state, differing at most (in the aase —1) by a sign (and that is
why the semi-momentum Hilbert space only includes R < m1). The degeneracy has
here been moved to the parity sector, with fhe 1 states being degenerate (but still
orthogonal) fokk £ 0, 1. This can be seen by lettirig, o, 7) — —(p, g, T) in the matrix
elements (152), which leaves unchanged the set of matrixezits forr,o = +1. Thus,
in calculations we need to consider only, e +1 fork #£ 0, T (while fork =0, mwe
only haveo = 1 =1 and thep = +1 sectors are not degenerate).

Constructing the basis of semi-momentum stat€eneralizing the convention we
used for momentum states, we now choose as the represeraftistatgs) the state
[s(r,q)) = T"PY|s) for which the corresponding integsfr,q) is the smallest (where
re{0,...,N—1}, g€ {0,1}). States can now be disallowed in a given block not only
due to incompatibility with the momentum, but also becausestrictions imposed by
the reflection quantum numbgrand the non-conserved state lalelWe thus have
to determine which one, or both, of tlie= +1 semi-momentum states (142) should
be included, according to the conditions discussed aboge.28 illustrates all the
combination of translations and reflections in the bit repreation of a state which
is related to its own reflection according|g = T™P|s), in which case only the = —1
or o = +1 variant of the state should be included in the basis (anst#te is compatible
with all momenta, because its periodicRyx= N).

When botho = +1 states are required, we will store two consecutive coplig¢se
same representative, so that we can continue to use theolodatthe lists, as the
label of each state within the block. We then also need tedtwe o labels for each
representative, as well as the number of translatioby which the reflection of a state
is brought back onto itself, which is needed in the normélireand the hamiltonian.

As before, we will use a subroutireheckstateto determine whether or not a state
is a new representative to be added to the list. In additidghé@eriodicityR of a new
representative, this subroutine now also delivers theatidie-translation numbem,
when applicable. We can use= —1 as a flag indicating that there is nofor which
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TMP|s) = |s) (and otherwisen > 0). The operations on the reflected state are carried out
after the instructions if6} have been performed, by first reflecting the spin bits in the
state integes and storing it as, t[ij = sSIN—1—i] fori =0,...,N — 1. This reflection is
accomplished by a functiorflectbits(s,N). Then the resulting integer is translated as
before. We thus modify codgs} according to:

subroutine checkstatés, R m)
{11}
t = reflectbits(s,N); m= -1
doi=0,R-1
if (t <s)then
R=—1; return
elseif(t = s) then

m=i; return
endif
t = cyclebits(t,N)
enddo

Here... represents all operations in cofie}. Note that the loop in the code above starts
ati = 0, and the translations are carried out after compariwgh s, since a state can
be its own reflection (in which caga = 0). Also, since we have already determined
the periodicityR of the state, we need to go only up ite=- R— 1 in this loop. The
functionreflectbits has to be implemented by hand; a corresponding internatiobmis
normally not available. In Fortran 90 one can use the funstiest(i, b), setbit(i, b),
andclrbit (i, b), to examine, set, and clear individual Hitsf an integet.

A state which has passed the above checks is still not netdgssaalid representative
for both o = 41, and the state must therefore be further examined to detenvhich
(one or both) of ther = +1 copies of the representative should be added to the basis.
The following code segment stores the state informatiowfer+1 states that are to be
included in the block based on the criteria discussed above;

call checkstatds, R, m)
doo=+1 (doonlyog=+1ifk=00rk=N/2) {12}
if (m=£ —1) then
if (1+opcogikm2m/N)=0) R= -1
if (0 =—-1and1—ogpcogikm2m/N)+#0) R=—-1
endif
if R>0thena=a+1; ss=5 Ry=0R, my=mendif
enddo

Recall that heren= —1 means that there is mo such thaff™P|s) = |s), whence both
o = + states should be included. On the other hand, if there is anch, then only
one of the states is included—we pick= 1 if the normalization constant (144) for
it is non-zero. This is accomplished above by the two corsexif statements (where
R= —1is set for an invalid representative). We have to stgrand since the periodicity
Ris positive and non-zero, we can store it anpbintly asoRin a listR,;. A more dense
packing ofR, g, minto a single integer is of course also possible.
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Constructing the semi-momentum hamiltoniafor general semi-momentum, the
same representative can appear once or twice in th listhereas for the special cases
k = O, T there is always only a singleg(= 1) copy of each representative. We here
construct code that can treat both cases, but simpler caubeavritten for the two
special momenta. When building the hamiltonian by loopimgrahe state indices,
with the corresponding representatiwgswe first check the previous and next items in
the list. If the previous itens,_1 = S5, then we skip over this representative, because it
will already have been taken care of in the previous pasatitrahe loop. If the next
representativesy ;1 equalssy, then we store as= 2 the number of same representatives,
and else sat = 1. This part of the hamiltonian building is accomplished by;

doa=1M
if (@>1ands;=s,1)then {13}
skip to nexta
elseif(a < M and s3 = Sa11) then

n=2
else
n=1
endif
enddo

Here theskip command skips to the next iteration of the loop andtands for the bulk
of the loop, the main features of which we discuss next.

Considering first the diagonal matrix elemeHit&, a), for a givena we now first sum
up all the diagonal contributions from the bit configuraidns, and store the result as
E;. Taking into account the possibility of one or two entriestef representativen= 1
or 2), we can use the following loop to assign the diagonafimnalements accordingly;

doi=aa+n-1
H(a,a)=H(a,a)+E;, {14}
enddo

Turning next to the off-diagonal operations, looping ovite pairs (i, j), if the bits
sali] # sa[j], then the spins are flipped, resulting in a state-integeregmas in code
{10}. We again have to identify the corresponding represemtatiate|r) = T'P|s)
by carrying out all the symmetry operations to determinetthasformation indices
and q appearing in the hamiltonian matrix elements (151) and X15Be subroutine
accomplishing this is a simple modification of cof®y;

subroutine representatives’,r,|,q)
{15}
t = reflectbits(s,N); q=0
doi=1,N—1

t = cyclebits(t,N)

if (t<r)thenr=t; | =i; q=1endif
enddo
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Here... stands for the code after the headef&}. After having called this subroutine,
we can search for the representativie the list{s,}. This is done in the same way as
we did before, with the subroutirfimdstate(r, b).

Since the hamiltonian is more complicated than in the stahei@mentum basis, we
also define a functiohelementa, b, !, q), which returns the matrix element according to
(151) or (152). The function takes as input the lalzedsdb (locations in the matrix) of
the two representatives and the transformation indiggsdelivered byrepresentative
The matrix element also of course depends on the momekiamd the parity quantum
numberp = +1, which we do not indicate explicitly here. The function tsagyht-
forward to implement based on (151) and (152), and we do sioatiy code here.

As with the state-integes, in code segmen{13}, we also here need to take into
account that the representatisgecan appear once or twice (indicated below witk= 1
or 2) in the list of representatives. In case there are twéespmve do not know whether
the subroutindindstate has returned its first or second location. Thus, we again need
to examine positions in the list of representatives adjateithe one delivered. The
following code segment does all that and then assigns thexnedéments:

s =flip(sa;i, J)
call representative(s’,r,1,q) {16}
call findstate(r, b)
if (b >0) then
if (b>1ands, =%_1) then

m=2;b=b-1

elseif(b < M and s, = 5p11) then
m=2

else
m=1

endif

doj=bb+m-1
doi=aa+n-1
H(i, ) = H(i, j) + helementi, j,I,q)
enddo
enddo
endif

This piece of codes replaces the much simpler four-line sedenent 10} for the pure
momentum basis. The advantage is that the métrix now real-valued.

4.1.5. Spin-inversion symmetry

Spin-inversion symmetry, with the operadefined in (112), can be used to reduce
the hamiltonian block size in the magnetization seatbe= 0. The fact that the magne-
tization is conserved implies, however, that there is mgho be gained by using this
symmetry in thémy| > 0 sectors (since such a basis would consist of mipd,| states,
and the blocks of symmetric and anti-symmetric combinatisould be of the same size
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as the original blocks). In models that do not consenyee.g., the transverse-field Ising
model, spin inversion can be exploited for all states. Weotiehyz the eigenvalue of.
SinceZ? = 1, we again have = +1.

Unlike the parity operation considered in the previousisactthe spin-inversion
operatorZ in (112) commutes with the translation operaf{dr,Z] = 0. The associated
quantum numbez is therefore conserved together wikhn all momentum sectors. In
the magnetization sectam, = 0, we can therefore always split a momentum block into
two smaller ones by using states of the form

la(k,2)) = szr§% e KT (1+22)a), (153)
where the normalization constant is easily obtained as
2 m
Na= % x {i’—l— zcogkm), L’éi:i i I:i. o (154)
For a hamiltonian operation dor) resulting in
Hjla) = hj(@z9 T Yi|b)), 1j€{0,...,N—1}, gje{0,1}, (155)
we obtain the matrix element
ik 2 Hilalk 2) = i (@)e M [0 (156)

which is valid for anyk. As always, forj = 0 this reduces to justy(a).

Spin-inversion symmetry with semi-momentum staté¢e can also consider semi-
momentum states incorporating spin-inversion symmetry;

1 N-1
VA=
These states are eigenstateZ afs well asP.
When calculating the normalization and constructing thmilianian we now have

to consider five different types of reference states, deipgrmh which combinations of
symmetry operations transform the reference state irgtf;its

|a%(k, p,2)) = CI(r)(1+pP)(1+22)T"|a), (157)

) TUPlay#la), T"Zla)#la)  TUPZJa) #|a),

) TPl =la), T"Zla)#la)  TUPZa) #a),

3 TUPla)#la), T"Zla)=|a)  T"PZa) #la), (158)
) TUPla) #la), TTZJa) £l TTPZla) = Ja),

5 T"™Play=|a), T"Zla)=|a) = T™"PZla)=a).

Here the inequalities should hold for afland the equalities for somma, n. The calcu-
lations follow the procedures of the previous section, aedjwst list the results. The
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normalization constants are:

1, 1)
IN2 1+ opcogkm), 2)
= — x < 1+zcogkm), 3) (159)
Radk | 1+ opzcogkm), 4)
[1+ opcogkm)|[1+zcogkn)]. 5)

For cases 2),4), and 5), only one state out of a pair with +1 should be included in
the basis as the two states within such a pair differ merely tagtor. To be definite, we
can again piclo = 1 if that makes\J > 0 ando = —1 else. Acting with a hamiltonian
operator on a representative now leads to a new represaitali according to

Hjla) = hj(a)PHZ9 T i|b;). (160)

The o-diagonal matrix elements &f are

NI
(bf (k, p)[Hjla’ (k, p)) = hj(a)(ap)H 2 \/,\I:I;),J x

cogklj), 1),3)
cogklj)+oapcogk[lj—m|
? lercrapios(in[])l D’ 2),5), (161)
cogklj)+apzcogKk[l; —m]) 4)
140 pzcogkm) ) )
whereas the ones off-diagonaldnare,
N
(b7 (k p)[Hj[a® (k, p)) = hj(@)(ap) W2 [ (5 *
a
—osin(k)), 1),3),
—osin(klj)+psin(k[lj—m))
1—jopcos(km) : ) 2)’ 5)’ (162)
—asin(klj)+pzsin(K[lj—m]) 4
1-opzcogkm) ’ ) ’

These expressions may seem rather complicated, but itasheuhoted that they are
completely general for 1D systems, not just for the Heisembbain considered here.
Once they have been implemented and tested for some modelptte can easily be
reused for other systems.

Program implementation; combining all symmetriesncorporating spin-inversion
symmetry in the semi-momentum basis with= 0, with stateda? (k, p, z)) defined in
(157), we have to augment the subroutaieckstatein code segmen§11}. It should
return the translation numbers corresponding not onlyfteatonP of a representative,
T™P|s) = |s), but also translation numbers in symmetry relationshigslinng Z and
PZ, T™Z|s) = |s) and T™PZ|s) = |s). To accomplish the spin inversion in the bit
representation, we define a functiamvertbits (s,N) which flips all the bitss[i] —
1—4[i], i = 0,N — 1. This can be easily accomplished without individual bitell
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TABLE 1. Size of thek = 0 state blocks for magne-
tizationm, = 0 and different parity and spin-inversion
quantum number&p, z).

N (+1,+1) (+1,-1) (-1,+1) (-1,-1)

8 7 1 0 2
12 35 15 9 21
16 257 183 158 212
20 2518 2234 2136 2364

24 28968 27854 27482 28416
28 361270 356876 355458 359256
32 4707969 4690551 4685150 4700500

operations as = 2V~1 — s (for N less than the number of bits in the integers used:;
otherwise a different formula has to be used). Cdddsand{11} can be easily modified
to also check the inverted and reflected-inverted statesterminem, andmyp,

If the modifiedcheckstatereturns a potential representati®# —1, then again the
state has to be examined further to determine whether fiestithe further criteria for a
representative for one or two states- +1. An allowed representative now falls into one
of five different classes depending on its symmetry propgiis summarized in (158).
The classc € {1,...,5} can be determined from the translation integ@gsm,, m;p
delivered bycheckstate After c has been determined, the three translation integers can
be reduced to two; the andn in the normalization constants (159). The clagsan be
packed along witlm, n into a single integer, e.g., @s+ n(N + 1) + ¢(N 4 1)2, which is
stored along with the periodicity aralindex packed agR as before.

For the construction of the hamiltonian, the subroutepresentative the main parts
of which are described in code segmef83 and {15}, has to be amended further in
order to also return an indexcorresponding to the number, 0 or 1, of spin-inversions
needed, along with reflections and translations, to transform the stasegenerated by
a spin flip into the corresponding representatiivé;= T'iP9 29 |s) The construction
of the hamiltonian then proceeds exactly as before, with dification only of the
function helementto include alsog as an argument in code segment (5.15). This is
straight-forward, and there is no need to list any code here.

Examples of state block sizesThis is as far as we will go with applying symme-
tries for 1D systems. For the Heisenberg model, the total spalso conserved, but
incorporating that symmetry in the basis is much more carapdid. In principle it can
be done for total spin singlets, using the valence-bondsljadi], but it is rarely done
in practice because the resulting hamiltonian is very demskke the sparse matrices
obtaining with the symmetries implemented here (the nurebaion-zero elements is
proportional toM x N for anM x M matrix, andN < N). The sparseness will be very
useful in the Lanczos calculations discussed in Sec. 4.2.

Table 1 shows the size of the Hilbert space blocks for sewff@rent chain sizes
N when all the symmetries are used. Here the momerku0 and the number of
states is shown for all combinations of the parity and spireision quantum numbers
(p=£1,z= 41). The largest block is always the fully symmetric one. As thgtem
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size grows, the relative variations in the block size distinand for largé\ all sizes are
rather well approximated bM!/[4(%!)2N]. Fork = m, the blocks are approximately of
the same size as in the table for 0, and for other momenta, where bath= 1 and—1
states are allowed, the blocks are roughly twice as large.

4.1.6. Expectation values and thermodynamics

We are now ready to diagonalize the hamiltonian and caleylhysical observables.
Here we will first consider complete diagonalization, megrthat we compute all the
eigenvalues and eigenstatestbf In principle, the eigenvaluek,, n=1,...,M, of a
non-singulaM x M matrixH can be obtained by solving the secular equation,

defH — Al] =0, (163)

where deff denotes the determinant ahds the unit matrix. The eigenvectovg can
subsequently be obtained by solving the linear system citens

HVn = EnVn. (164)

However, since the secular equation is very complicated farge matrix, this method
is not used in practice. Most numerical matrix diagonailiatnethods are based on an
iterative search for a unitary transformatidrsuch that

U~ lHU =E, (165)

whereE is the diagonal eigenvalue matrix wik, = E, and, for a complex hermitian
matrix H, the inversel —1 of the unitary matrixU is the transpose of its complex
conjugate matrixt) ~* =U*T. If the matrix is real and symmetric, we hael =UT.

The columns of the diagonalizing mattikcontain the eigenvectors Bif. This can be
seen by multiplying (165) witk) from the left, givingHU = UH. SinceE is diagonal,
thenth column ofU on the right side of this equality is multiplied by thth eigenvalue
(i.e., the matrix elemeri,, = Ap). In the multiplication byH on the left side, thath
column ofU gives thenth column(HU), of HU, i.e., HU, = EnpUp, and thus the
eigenvectors, of H are identified asp, = Up,.

The expectation value of some observable (operd@tan)an eigenstate dfl is given
by the diagonal element of the corresponding matrix transéa to the energy basis;

(n|AIn) = U~ *AU]nn. (166)
One would typically be interested in the ground state; 1 (assuming the eigenvalues
to be ordered from the lowest to the highest), of the blockurstion (especially the

actual ground state, in the block with the lowest energy Bf Bbr a thermal average,
all eigenvalues and/or eigenstates of all symmetry bloocksiaeded;

M. M|
1M [
W =33 3 ePEUAYm Z=5 5 ePhn. (167)
T n=1 J n=1
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TABLE 2. The eightlowest energies for a 16-site chain with momerken®
in the blocks with parity and spin-inversion quantum nursifpe= +1,z= +1).

n E(+1+1) S E+1,-1) S E-1,+1) S E-1,-1) S

1 -7.1422964 0 -4.9014133 1 -4.1926153 2 -5.7475957 1
2 -6.1223153 2 -4.1067293 1 -3.6537528 0 -4.9014133 1
3 55912905 0 -3.9398439 1 -3.6085498 2 -4.6986358 1
4 -50981578 2 -3.7756347 1 -3.2192241 2 -4.1067293 1
5 -4.8142442 0 -3.6808576 1 -3.2129324 0 -4.0007340 1
6 -4.5657878 0 -3.5785191 3 -3.1695648 2 -3.9398439 1
7 -4.3243602 2 -3.3678831 1 -3.1652647 0 -3.7756347 1
8 -4.1926153 2 -3.3605397 3 -3.1169772 2 -3.6808576 1

Here B = T~ is the inverse temperature (in units whége= 1), and the index
collectively denotes the different quantum numbetsk, p, z, of the blocks of sizé/;.

Matrix diagonalization is a standard linear algebra openatand sophisticated sub-
routines are available in many software libraries. We waiéirefore not discuss the inner
workings of matrix diagonalization procedures here. Altrad&ays, a diagonalization
routine delivers the eigenvalues in ascending order in tovealong with the matrixJ
with the corresponding eigenvectors.

The number of operations needed to diagonalizélan M matrix generally scales
as M3, and the memory required for storage~sM? (even for a sparse matrix, as
intermediate steps normally do not maintain sparsity)sEbiverely limits the size of the
matrices that can be fully diagonalized in practice. CuiyeM ~ 10* can be handled
without too much effort on a workstation, and a few times éargn a supercomputer.
Looking at Table 1, it is then clear that one cannot reahdiffccarry out complete
diagonalizations for Heisenberg chains larger thasy 20. Calculations aiming at just
the ground state, and possibly some number of excited statede carried out in other
ways for larger systems, using, e.g., the Lanczos methadsied in Sec. 4.2.

Total spin. Itis useful to know the total spiBof the energy eigenstates. Since we do
not use the conservation 8when block-diagonalizing the hamiltonian, we have to cal-
culateS? using the states. As we have already noted, this operatomisafly equivalent
to a Heisenberg hamiltonian with long-range interacti@assyritten explicitly in (113).
We can use a slightly modified version of the procedures weldped for constructing
the hamiltonian to obtain the matrix f&. We then transform it witkJ, after which we
haveS(S+ 1) in the form of the diagonal matrix elements as in (166).

Let us look at some results obtained for a 16-site chain ik ta® momentum sector.
The eight lowest energies are listed for each of the symnsetcjors(p,z) in table 2,
along with the calculated spin of the states. The lowestegnstate is a singlet with
(p=1,z=1). The first excited state of the system is actually not inkke0 sector; it
is ak = mrtriplet with (p= —1,z= —1), at energyE = —6.87210668.

One interesting feature to note in the table is that, in eggmmetry sector, all the
states have either even or odd spin. This is due to the sparsion symmetry. Am, =0
state withN sites and total spis can be written as a linear combination of states made

up of N/2— Ssinglets(| TiL;) — | 1i1}))/v'2, andStriplets, (| 1iL;} + | li1}))/v2 [48]
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Since the singlet is odd under spin inversion but the triglewen, it follows that a spin
Sstate of arN-site system has spin-inversion quantum nunmer+1 if N/2 andSare
both even or both odd, and has- —1 else. Thus, even if we do not calcul&we have
some limited knowledge of it also from The low-energy states typically also have low
spin,S= 0 or 1, and these can then be distinguished Alpne. Note, however, that the
lowest state in a givefip,z) sector does not necessarily have the lowest (even or odd)
spin, as exemplified in Table 2 by the lowépt= —1,z= 1) level, which hass= 2, not
S=0. However, this is not a low-energy state, as there are 1dssidth lower energy in
thek = 0 sector (and numerous additional ones in other momentutarsgcThek = 0
state with second-lowest energy also Bas 2, but there are fous = 1 states below it
in other momentum sectors.

Magnetic susceptibility and specific heatAs an example of thermodynamics, let us
calculate two important properties of the Heisenberg chaim specific heat and the
magnetic susceptibility? These can be evaluated according to the formulas,

c = M- 22— mp). (168)
x = 22 (e~ (my?). (169)

which can both be easily derived using (167). In the definitad x, h is an external
magnetic field in thez-direction, which couples through a tersrhm, added to the
hamiltonian. We will here consider the zero-field case ceatyl thus(m,) = 0.

BothC andy are special quantities in the sense that they do not depetite@tates,
just the energy spectrum. For the Heisenberg model one danlai@ these quantities
by just considering then, = 0 sector, because of the conservation of the total Spi
spin S state is(2S+ 1)-fold degenerate with magnetization = —S,...S. In the case
of C, we therefore just have to sum 168 over the= 0 levels and weight them by
this degeneracy factor to obtain the full average ovemallin the case oj;, we can
proceed in the same way, using also the fact that, in a Spindltiplet, the average
(mg) = (S?)/3=S(S+1)/3in (169).

The situation is slightly complicated by the fact that theam be “accidental” de-
generacies not related to any apparent symmetry of the toamaih. If such degenerate
states have differer® then the diagonalization procedure will give some randdes (
pending on exactly how the diagonalization is done) mixddssfor the states. One
should then in principle diagonaliZ# in the degenerate subspace to obtain the spin
eigenvalues. However, in practice these accidental degeies are very rare. For small
Heisenberg chains they occur only in tke- 71,p = 1,z= 1 sector. FolN = 10, there
are two such states with = 0.5, for N = 12 and 14 there are no accidental mixgd-
degeneracies, and fbr= 16 there are four mixed levels at energly WVith such a small
number of degeneracies, and at such high energies, we d¢agrjose them.

Fig. 29 illustrates how the results f@rand x converge to the thermodynamic limit
with increasing system size. Going upNo= 16, the results are well converged down
to T/J = 0.25. It is natural that the convergence is more rapid at highp&ratures,
because in the limiT — o the spins are statistically decoupled and the system behave
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FIGURE 29. Temperature dependence of the specific heat and the magustieptibility for chains of
lengthN = 4,8,12, and 16. The thin curves show the leading high-temper&tums.

as a set of independent spins. Thus the susceptibility pefepT — o has the single-
spin Curie form;y — 1/4T. ForC, an analytic high-temperature form can be obtained
by calculating the energy exactly for the 2-site systemr{glsispin has constant energy,
thus givingC = 0), taking the derivative, and keeping only the leading terfran
expansion inT 1. This givesC — 3/13T? whenT — oo. The highT limits are also
shown in Fig. 29. In the case @, this form describes the behavior well down to
T/J =~ 1.5, whereas in the case gfthe agreement is good only at higher temperatures.

WhenT — 0, bothC and x approach zero exponentially for a finite system, as a
consequence of the finite gap between the ground state aitdcegtates (due to which
only the ground state contributes to thermal averagds-ad) and, in the case of, the
fact that the ground state of the Heisenberg chain for év&nalways a singlet (while
for odd N the ground state is aB= 1/2 doublet andy thus diverges ag —1). In the
infinite systemC — 0 but y approaches a constant non-zero value.

Note that here, as well as in many cases we will encounter ¢aetewhen we talk
aboutT = 0 properties it is important to consider the order in whicé limits T — 0
andN — oo are taken. The susceptibility of a chain with finite (evBimlways vanishes
asT — 0. The temperature at which the exponential drop to zero cemess depends
on the finite-size spin gap, which in the case of the Heisenivedel is0 N~ (which
we will also discuss further and illustrate with data in S&8.1). Thus, for giveiN, one
can expect essentially thermodynamic-limit results doaisameT /J 0 N~1 (which
can also be roughly seen in Fig. 29), and if one takes the Nmit o beforeT — 0,
then the susceptibility remains non-zerdrat 0.

It is not possible to use exact diagonalization results toapolate reliably the prop-
erties of the Heisenberg chain to the thermodynamic limibwattemperatures. For the
susceptibility, an extrapolation of exact diagonalizatiesults [146], using a particular
functional form [147], was already attempted decades afp@+ésult is known as the
Bonner-Fisher susceptibility. This extrapolation usesbahe known exact value gf at
T — 0 (N = o), which was available from the exact Bethe ansatz solutieéheoground
state. The Bonner-Fisher curve has been commonly used liyzargexperimental re-
sults for quasi-one-dimensional antiferromagnets (weaklupled chains). The most
important feature here is the location and shape of the maximt T /J ~ 0.6, which
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is already well converged for small systems, as seen in Hglthas for some time
now been possible to use other computational methods ty stribus properties of
the Heisenberg model on very long chains (as we will discus3eic. 5.3.1), and thus
the low-temperature limit can be accessed more reliablgrd bre also essentially exact
results from field-theoretical studies combined with théhBeansatz [7]. These cal-
culations show an anomalous feature; the approach td theO limit is logarithmic,
and therefore very difficult to reproduce with finité-calculations. The lowF form
of the Bonner-Fisher curve is therefore incorrect. Experitally the most important
feature is the broad maximum. Often effects beyond the IHbexg chain appears at
lower temperatures (e.g., due to inter-chain couplingi apisotropies, or disorder).
The spin susceptibilities of some quasi-one-dimensioraénals actually followg of
the Heisenberg chain down to temperatures as low dg50, where the logarithmic
behavior is prominent [8].

4.2. The Lanczos method

As we have seen in the preceding section, a complete diagatiah of the hamilto-
nian (or individual blocks) becomes prohibitively time eoming forS= 1/2 systems
with more tharn 20 spins. For highe$, the situation is of course even worse. If we re-
strict ourselves just to the ground state, and possibly deumf low-lying excitations,
we can reach systems roughly twice as large, by usikgylbbv-space techniqyesuch
as the Lanczos method.

4.2.1. The Krylov space

The Krylov space is a sub-space of the full Hilbert spacestanted in such a way
that the low-lying states of a hamiltoniah of interest should be well approximated
within it. Consider an arbitrary stat&), e.g., a one with randomly generated vector
elementd¥(i),i =1,...,M, in theM-dimensional Hilbert space in whidh is defined,
and the expansion of this state in terms the hamiltonianneigées ) (in order of
increasing eigenvalues, which we here labet 0,1,...,M — 1). We operate with a
power of the hamiltonian on this chosen state;

H“|W>=M 1cEA|L/J>—c Efax | |Wmax) + i( En )A|w> (170)
n; n n maxX~max ma n%axcmax Emax n .

If the powerA is large, the state corresponding to the eigenvélisgy| with largest
magnitude (i.e., max 0 or max= M — 1) will dominate the sum, provided that the
expansion coefficientnax 7 0. Hence, acting many times with the hamiltonian on the
state willproject outthe eigenvector with the eigenvaltg,ax. If we want to make sure
that the ground statlep)\ is obtalned (exactly foA — oo or approximatively for finite
N), we can instead afli* use(H A wherec is a positive number large enough to
ensure thatEg — c| > |Em-1— c| Here we will in the following assume that such a
constant, if required, has already been absorbedHnto
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While Eq. (170) is guaranteed to produce the ground statawhesufficiently large,
a more efficient way to construct a state which approachegrthnd state ad — o
is to consider not onlyH”\|W), but the whole subspace of the Hilbert space spanned
by the set of statell™|W), m=0,...,A. These states can be constructed one-by-one
by successive operations with on the initial statdW¥). In this subspace, an optimal
linear combination of vectors approximating the groundes{aninimizing the energy
expectation value) exists, and the way to find it is to diagjga#l in the generated sub-
space oA+ 1 vectors. In addition to projecting out the ground stateéatively small
N (often many orders of magnitude smaller than the 8izef the full Hilbert space),
this approach can also accurately reproduce a number ofjiog-excited states.

The subspace of the Hilbert space obtained by acting meltipies withH on an
initial state is called the Krylov space. We are here disogssamiltonians in quantum
mechanics, but Krylov space methods of course apply to edea problems more
generally as well, and are very widely used in many areasiefise and engineering.

4.2.2. The Lanczos basis and hamiltonian

In the Lanczos method [148], an orthogonal basis is constiucsing linear combina-
tions of the Krylov space states such that the hamiltoniattemrin this basis is tridiago-
nal. In a standard approach, which will be described beldvasis{|fm)}, m=0,... A,
is first constructed that is orthogonal but not normalizdteSe states will subsequently
be normalized to yield an orthonormal géf,) }, in which the hamiltonian takes a par-
ticularly simple tridiagonal form. We will also discuss égéitly different approach of
directly generating the normalized ba$jgm) }.

Generation of the Lanczos basisThe construction of the bas{gfy)} starts from
an arbitrary normalized statdy), of which it is required only that it is not orthogonal
to the ground state dfl (if the goal is to find the ground state). This should be thecas
for a randomly generatedp), but one can also start from some vector which is known
to have a substantial overlap with the ground state. Thestaté is given by

| f1) = H|fo) — ag| o), (171)

where the constargy should be determined such thd) is orthogonal td fp). To this
end, we examine the overlap between the two states;

(f1|fo) = (fo|H|fo) —ao(fo| fo) = Hoo— @oNo, (172)

where we have introduced notation for the normalizatiorstamts and diagonal matrix
elements of the hamiltonian that will also be used for subsetjstates;

Nm= (fm|fm),  Hmm= (fm|H|fm). (173)

For the overlap (172) to vanish we must choage- Hpo/Np. The following,m= 2 state
is written in terms of the two preceding ones as

‘fz) = H|f1> —al\f1> —bo‘f0>, (174)

215

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



wherea; andbg can be chosen such thidb) is orthogonal to bothfy) and|f;). The
overlaps are, using | fo) andH|f;) obtained from Egs. (171) and (174);

(faf1) = Hi1 — a1y, (f2] fo) = N1 — boNo. (175)

The appropriate coefficients are thais= H11/Ni andbg = N1/No. For all subsequent
iterations, Eq. (174) generalizes to

| fm+1) = H[fm) — am|fm) — bm-1/fm-1), (176)

and the coefficients rendering this state orthogongi#pand| f,,_1) are generalizations
of the expressions we already found &gta;, andby;

am = Hmm/Nm, Bm—1 = Nm/Nm_1. a77)

This can easily be checked by direct computation of the apstlit remains to be shown
that with these coefficients the stafg,, 1) is orthogonal also to all previous statég)
with k < m—1. In an inductive proof, we can use the fact that all previpgenerated
states are orthogonal to each other, and obtain,

(fnet Tmek) = (fm|H| fk) — @m{ fm| fn—k) — Bm—1{fm—1| fm—k) (178)
= (fm|fm-kt1) +am—k(fml| fm-k) + Bm-k—1(fm| fm-k-1) =0,

where we also useld | f,_k) in the form given by Eq. (176).

This iterative procedure (176) is continued umil= A, whereA can be determined
automatically, on the fly, according to some convergengeroaon for computed quanti-
ties, as we will discuss below. First we need the hamiltomaitrix elements.

The hamiltonian in the Lanczos basig-Having constructed a set éf+ 1 Lanczos
vectors| fy), m=0,..., A, the hamiltonian in this basis can be constructed. We can use
the expression for acting on one of the basis states, obtained from Eq. (176);

H|fm) = [fmr1) +am|fm) +bm-1|fm-1), (179)
and thus the non-zero matrix elements are
<fm—1|H | fm> = bm—le—l = Nm7
(fm[H ] fm) amNm, (180)
<fm+1| H | fm> = Nmu1.

The normalized basis states are

1
= VNm
andbm = Nmt1/Nm according to (177). The non-zero matrix elements are thezef

<(n'n*1|H |‘R‘ﬂ> = V bm717
(¢mlH| @) am,
<(pm+1|H |‘R’ﬂ> =V brm.

| @) | fm), (181)

(182)
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This is a tridiagonal matrix, which can be diagonalized gspecial methods that are
faster than generic diagonalization algorithms (avaflablmany linear algebra subrou-
tine libraries). The main advantage is not, however, thattlatrix can be diagonalized
more easily—it is anyway typically not very large and evea generic diagonalization
routine is used the time spent on that part of the calculdatiaregligible. The advan-
tage is that this matrix can be constructed relatively dyjaspecially when the matrix
H is sparse and only its non-zero elements have to be condi@&i®ed or generated
on the fly when acting wititH on a state). Some times, when pushing the method to
very large matrices, it is also useful that only three of #mgé state vectordy,) have
to be stored in the process. The tridiagonality is also verwenient when calculating
spectral functions (dynamic correlations), as discussegd, in Refs. [43, 143].

Note that with the basis states labehad- 0, ..., A, the size of the tridiagonal matrix
(the actual basis size) 5, notA + 1, because fom+ 1= A in (179) the last diagonal
matrix element generated for use in (183pjs 1. The statd f5) does not have to be
constructed; only the terid | fo_1) is needed to calculate the last coefficiant ;.

Since the cost of diagonalizing the Lanczos hamiltoniarriméat very low, one can
do that after each new basis state has been generated, bovd tiid evolution of the
eigenvalues. One can stop he procedure based on some esaibabkrgence criterion,
e.g., the desired eigenvalues changing by less than soerarcks between iterations.
The basis size required for convergence of course depentseamystem studied, but
typically, for quantum spin system4,in the range tens to hundreds should sulffice.

Alternative formulation with normalized vectorsThe generation of the Lanczos
basis is normally discussed in terms of the un-normalizatesify,), as we have done
above. However, a direct computer implementation of thicedure occasionally leads
to numerical problems, because the normalization corstégntan become exceedingly
large (if the eigenvalues ¢ are large). It may then be better to work directly with the
normalized statelg,) (as an alternative to multiplyinig by a suitable factor). In fact, in
practice this formulation is even simpler, and the add@l@omputational cost is merely
the normalizations at each step (which is normally smallgared to other costs).

We start with a normalized statey) and generate the second state according to

|<m>:Nil(H|<m>—ao|%>>. (183)

HereN; is a normalization constant, which is determined by direchputation of the
scalar product of the constructed stétem) — ag|@) with itself. Orthogonality with
|¢) again requiresy = Hoo. For each following state one can easily show that

1 _ _ _ [Ymia)

is orthogonal to all previous states. Here the definitionapand Ny, differ from the
previous ones in Eq. (177);

an = (@nlH|@),
Nm = (V|¥m), (185)
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where |ym) is the generated state before normalization as in Eq. (1Bdyea The
hamiltonian matrix elements are

(@n-1lHl@gm) = VNm,
(@nlH|@m) = am, (186)
(@nra/Hl@n) = +/Nmi1.

In this formulation all the stored numbers are well behaved.

Degenerate states.It should be noted that the Lanczos method cannot produce mor
than one member of a multiplet; out of a degenerate set @fsstanly a particular linear
combination of them will be obtained (which depends on thigainstate | fp)). To see
the reason for this, we again look at the expansion (170) tdtald”\|W), in which we
assume that there are two degenerate stgigsnd|y;), Ei = E;j. In the expansion we
can isolate these states from the rest of the terms;

HAW) = EM(alga) +cjlw;) + ;cmEﬁlwm» (187)
ML

For any/, the expansion contains the same linear combination oftdtes$y;) and
|;). Hence, in the subspace spanned by the set of $#dtg8), m=0,...,A—1, there

is no freedom for obtaining different linear combinatiorigh® two degenerate states.
This of course generalizes also to degenerate multiplébsmare than two states.

Loss and restoration of orthogonalityWhen the basis sizA becomes large, the
Lanczos procedure typically suffers from numerical ingitéds. Round-off errors ac-
cumulated in the course of constructing the basis set wéhaally introduce some
non-orthogonality among the states. Such numerical ecammsscalate and lead to suc-
cessive sudden appearances (within some narrow ranggobseveral identical eigen-
values (recall that the Lanczos scheme should never prathgenerate states). We will
see an example of this further below.

Loss of orthogonality and the appearance of multiple copi¢lse same states is nor-
mally not a problem when the aim is to obtain only the grouradestit can complicate
calculations of excited states, however. To remedy thie, @an add to the basis con-
struction a step where each new Lanczos vector construetsglicitly orthogonalized
with respect to all previous basis vectors. In the simplagiémentation of such a stabi-
lization procedure, all the Lanczos vectors are storedrfmary memory or secondary
storage). This can become problematic when dealing with keege basis sets, but the
scheme is very simple. Working with the normalized statashégy;1) constructed
according to (184) is orthogonalized with respect to alljes states, according to

|@hr1) —al@)

17q2 , 0= <(H|(Pm+1>7 (188)

| i) —

successively for = 0,...,m. This makes it possible to study a much larger number of
excited states (in principle only limited by computer mew)or
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Instead of converging several excited states in the samemnatan also target excited
states one-hy-one, starting each time from a vector whichntiggonal to all previous
ones. Re-orthogonalization should then also be done wéiheet to those.

Eigenstates and expectation value®iagonalizing the tridiagonal Lanczos hamil-
tonian results in eigenvaluds, and eigenvectors,, n=0,...,A — 1. We want these
eigenvectors expressed in the original bdss }, in which we are able to evaluate the
matrix elementgb|O|a) of operatorgO of interest. First, the Lanczos basis states are

= %qqn(a)|a>, m=0,...,A-1, (189)
a=1

and we denote the desired eigenvectors of the hamiltonian as

M
|lpn>: an(a)|a>7 nZO,...,/\—l. (190)
a=1

The first few eigenvectorg, of the tridiagonal matrix accurately represent eigenstate
of the hamiltonian (essentially exactly for sufficientlygaA) in the Lanczos basis;

A-1 M

N-1
|n) = ZOVn( Z Z Va(m )|a), (191)

m=0a=1

and thus the wave function coefficients we want to constngcgaven by
a)= Z vh(mgn(a), a=1,...,M. (192)

If all the Lanczos vectors have been stored during the basistaiction, this transfor-
mation can be carried out in a straight-forward manner. éf¢his enough computer
memory available, one should store all Lanczos vectorspfbem calculations are push-
ing the limits of computer capacity, and then only the bameimum of information can
be stored, at the cost of longer calculation times. If we ditistore the full set of Lanc-
Zos vectors during the basis construction, we need to geniram again, in the same
iterative fashion as before, except that we already havedéfficientsa, andN, avail-
able (andy, if the scheme with un-normalized Lanczcos vectdig is used) and do not
need to recompute them. We can transform the states acgdaad{f©92) on the run with
the eigenvectorgy, building up one or several of the eigenstates of the hamito

Having generated one or several eigenstates, now assurhedtored in the form of
the coefficientgim(a) in (190), an expectation value of some oper@aan be obtained
by first acting on the state, giving an un-normalized staaéwre call| o),

Olyn) =YDy = Y un(a)0Ola)

Z
M
- Z Z a)|b)(b|OJa). (193)
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We then evaluate the scalar product of this state with tregral state g);

(4n/Olthn) = (Yn|4®) = zwn (194)

This somewhat cumbersome way of writing the expectationevabrresponds to a typ-
ical computational procedure of first computing the statgorap and then computing
its scalar product withy,.

It is interesting to note that, in Lanczos calculations, \e @ften dealing with four
different bases: First, we have the original “computatidbasis of single states of
and] spins. From these we generate a basis incorporating syiesyetrg., momentum
states (which normally would be the states denotethasbove). We then construct
the Lanczos vectors, which are particular linear combameatiof those states. Finally,
diagonalizing the tridiagonal matrix (which is an effeetivamiltonian in the low-energy
sector), we obtain the desired energy eigenstates. To dalatbns with those states,
we effectively do the basis transformations in reverse. mhtrix elements in (193) and
(194) are in the end carried out in the computational basjsanfd | spins (i.e., with the
representative states used, e.g., to build the momentuesksté/e next discuss all these
procedures in practical program implementations.

4.2.3. Programming the Lanczos method

While the Lanczos method can be applied to any symmetric éamtiian) matrix,
in the case of a spin hamiltonian there is an added advantapat the hamiltonian is
a sparse matrix. Although the size of the hamiltonian (arviddal symmetry-block)
can be very large, the number of non-zero matrix elementsichramaller. For a model
with short-range interactions on a latticeMfites, a hamiltonian block dfl states has
on the order oNM non-zero elements, which for larg&is much smaller than the total
number of element®?. Since the most time consuming part of the construction @f th
Lanczos basis is the repeated operations with the hanahamiatrix on a state vector,
to generate the next basis state according to Eq. (176) d8),(tt& sparseness allows for
enormous time savings. There are similarly significant mgmnsavings advantages as
well. The non-zero elements of the hamiltonian should thestbred in a compact form,
or generated on the fly as needed (which, when many symmaneessed, typically
takes longer than even reading the elements from disk sthrédde here implement the
Lanczos method with the hamiltonian stored in a compact farprimary memory.

We will generate the Lanczos basis of stafag) } that are normalized at each step,
using Egs. (184) and (183). In a computer program, thesesssaie stored in the form
of their vector componentgn(a), in terms of which the Lanczos states are given by
Eq. (189). Herea = 1,...,M labels the states of our working basis, which in the case
of maximal use of symmetries would be momentum or semi-maoumerstates, e.g.,
|ay = |k, p,z m;= 0,a), but for simplicity we do not write out all the quantum number
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The nature of the basis states only come into play when autfithgthe hamiltonian (or
some operator to be measured) on the basis states, andsfaethieed exactly the matrix
elements that have already been discussed for the varioussyy implementations in
Secs. 4.1.3, 4.1.4, and 4.1.5. We will write pseudocodesnaisg real-valued wave-
function coefficients; the changes needed for complexstatself-evident.

Lanczos basis construction and eigenstatéo discuss the general structure of
a Lanczos program, we begin by assuming that we have impkeihen subroutine
hoperation(g, y) which acts with the hamiltonian on a state vectey;= H|@). Later,
we will describe the implementation of this subroutine, ethis the only part of the
Lanczos procedure that requires a specification of the naakthe symmetries imple-
mented. We also use a subroutim@malize(g, n), which first computes = (@|¢) and
then rescale® so that{¢|@) = 1 upon return.

To start the basis generation, we first load the initial stat¢ with a randomly
generated normzalized state. We denote the elemgg(itsi = 1,...,M and{(@|@) =
Si @(i)? = 1. The next Lanczos state is generated according to (183);

call hoperation(g, ¢1)

a0 = (@l|®); L= P —a|er) {17}
call normalize(g,n;)

If we are not storing all the Lanczos vectors, we can cyclevbeh three vectors,
M, @1, @, that contain the information we need at each step when mmading the
iterative basis generation according to (184);

dom=1A-1
call hoperation(@r, @) {18}
am=(@/@); %= @ —amPr— Nm@
call normalize(@, Nm1)
=0, =@
enddo
If possible, we should store all the states, to avoid havingegenerate them at the
later stage when computing expectation values (which dsutble computation time).
We have to store all the states if we want to carry out addilioe-orthogonalization,
to ensure that numerical truncation errors do not eventaagrade the Lanczos basis.
In that case we insert an additional loop to orthogonalizé waspect to all previously
generated states, according to Eq. (188);

dom=1A-1
call hoperation(@m, @n+1) {19}

am= (¢n|@ni1); @il = @l — am@n— Nmn-1
call normalize(@nt1, Mm+1)

doi=0m
q=(Gn1l@); @ni1=(@An1—a@)/(1—?)
enddo
enddo
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After completing either code segmefit8} or {19}, we have the contents of the tridi-
agonal matrix in Eqg. (187) and can proceed to feed this inédion into a diagonal-
ization routine which delivers the eigenvalugsand eigenvectors with elemenig(i),
n=0,....,A—1,i=1,...,M. It should be noted again that, with the conventions we
have been using, the Lanczos basis size (the size of thexjriatf; the last state gener-
ated in{18} and{19}, with m+1 = A, is actually not needed (only the coefficient_1
generated in the last iteration is needed).

The computational effort of the diagonalization is very $rmampared to the time
spent on the basis construction. We may therefore as wejbdalize after each new
Lanczos vector has been generated. We can then monitor leogntrgies evolve with
the basis size. One can then stop when some convergencmaritesatisfied. One can,
e.g., demand that the change in the ground state energyddrighest excitation of
interest) changes between steps- 1 andm by less than some small numberThe
Lanczos method is normally capable of converging energi¢lse numerical precision
of the computer (and double precision should always be ugedyve will see below,
other properties converge slower than the energies.

Expectation values. First, let us consider calculations of operator expeatatadues
(besides the energy) in a program where we have not stordggkdlanczos basis vectors.
Then, in order to be able to transform the ground state fraenLtinczos basis to the
original basis, where we can carry out “measurements” orstde, we have to repeat
the Lanczos basis constructistarting from the same initial state as in the first ruh
we had initialized with a randong, as in code{17}, and did not save this state, we
can re-generate it by initializing the random number getoersith the same seeds as in
the first construction. In any case, wigh at hand, we can proceed as in code segment
{18}, with the minor simplification that we now do not have to cédte the coefficients
am, Nm, because we already have them. We camygfer normalizing, instead of calling
the subroutinenormalize in {18}. During the basis re-construction, we transform the
states with the ground state vectgr(or v, for an excited stat@ that resulted from the
diagonalization of the tridiagonal matrix, building up tpeund state in a vectap;

call hoperation(@, @1); @1 = (@1 —aog@)/\/M
Y =vo(0)@+Vo(1)@ {20}
dom=2A-1

call hoperation(@r, @)

®=(®—am-1¢— "m-1¢b)//Mm

Y= @+vo(me
=0, =@
enddo

The elements of the vectgr now contain the ground-state wave-function coefficients in
whatever basis is used and implemented thrduggeration. If we have stored all the
Lanczos vectors, we of course do not need this step and azatlgitransform the states
generated in cod€19}.

It is particularly easy to calculate expectation values pérators that depend only
on thez-components of the spins and is invariant under all the sytmymoperations
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used in the basis. We then just have to weight the quantitguksted using the rep-
resentative states with the corresponding wave-functimfficient squared (the state’s
probability). As an example, the spin-spin correlationdiion ('S, ,) for all distances
r=0,...,N/2 can be obtained as:

doa=1M
dor=0,N/2 {21}
doi=0,N—1
j=mod(i+r,N)

if (sali] = sa[j]) then
C(r) =C(r) + ¢?(a)
else
C(r) =C(r) -~ ¢*(a)
endif
enddo
enddo
enddo
C=C/4N

Here?(a) is the probability of the stat@), which when symmetries are incorporated is
represented by a numbgr As before, bit tests can be used to determine the relative sp
orientation, now of spins separatedrdgttice spacings. Note that although the final spin
correlation(S'S;) only depends on = |i — j|, we still have to average over alabove,
because we are only using the representative states (whicbtdy themselves, without
acting with the symmetry operators, obey any lattice symigmt In principle we should
also average over both reflections and spin-inversions efrépresentative, but after
the translational averaging has been done the spin coomefamnction is also invariant
with respect to the other two symmetries (which is not the dasall operators). Note
that since the Heisenberg hamiltonian is spin-rotatioaiiiant, the correlation function
(§',,) calculated here equalS§ - S () /3.

Calculating expectation values poff-diagonal operators that cannot be simply re-
lated toz diagonal ones require explicit operations on the states tlaereafter eval-
uation of a scalar product, according to Egs. (193) and (19Bjs is in principle
easy—essentially proceeding as in the construction of #miltonian in the preced-
ing sections—but more time consuming than diagonal operato

Compact storage of the hamiltonianWe now discuss the inner workings of the
subroutineéhoperation(g, y) that we employed in the Lanczos procedures. It implements
the operation

H|g) = Z er (b|H[a)|b). (195)
This is of course where all the details of the symmetries eggal will enter. The main
difference with respect to the construction of the hamittarin complete diagonaliza-

tion is that we do not want to stok¢ as a fullM x M matrix, because we have in mind
calculations were the number of basis stdtegan be up to many millions (e.g., for
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N = 32 in Table 1). We therefore have to devise a convenient waynbyf storing its
non-zero elements, of which there are of the ofdbftin (195).

We define the following data structures for the compact hamiéin storage: For each
a=1...,M in (195) we store the numbex of non-zero matrix element&|H|a).
We store the locations of these non-zero elements as consecutive integers in arvect
with elementsB(i). In a program, it is convenient to use the elementsl,... e
for a=1, followed byi =e; +1,...,e; + e for a= 2, etc. The required size of the
vectorB (the number of non-zero elements) is initially not knowngatdepending on
the programming language used, may have to be allocated asiestimated size. We
can store the corresponding non-zero matrix elements irceovevith floating-point
valuesH (i). We can also take advantage of the fact that the hamiltosiarsymmetric
matrix and only store one of its “triangles”.

With the above notation, carrying out the operation (19%)0& as simple as:

subroutine hoperation(g, y)

y=0;i=0 {22}
doa=1M
doj=1e
i=i+1

The counteri keeps track of the position of the elements in the data stresH and
B. Diagonal matrix element®(i) = a, are double counted in this procedure since the
contributions from the upper and lower triangle of the h&onilan matrix are added. It
is therefore assumed that their stored values have beatediby 2.

The matrix elementsl (i) and their location$(i) are generated in a way similar to
what we did when constructing the complete hamiltonian,, @g in code segments
{13}—{16} in the semi-momentum basis with parity. We also discussedithple ex-
tensions involving spin-inversion symmetry. Now we disctiee modifications needed
when we wish to load only the non-zero elements into our catngtarage.

In the case of the semi-momentum basis, which we will coms$ides, the procedures
are again somewhat complicated by the fact that the samessqtative can appear once
or twice (0 = +1) in the state list, and we want to take care of these at the $iane
in order to avoid repeating tasks unnecessarily. We thesefarry out the loop over the
basis statea and determine the number of same representatiaesin code{13}. We
cannot put the matrix elements directly into the storageordd, because our scheme
in code{22} requires consecutive storage of all matrix elements foh eatumn. With
the way the individual bond operators in the hamiltonianteeated one-by-one in code
{16}, whenn = 2 the two columns would be mixed up if we store each matrix elem
as it is generated. We therefore use temporary storagedanrté or two columns being
currently processed, and then later copy their contentstive appropriate positions of
the final storage. Referring to the firsf) @nd potential secon@§ 1) columnax =1
andc = 2, we store the data temporarily Bg(k) andH¢(k), k=1,...,n;, wherenc is
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the number of elements for the column in question. The diabelements (divided by
2, as discussed above) are entered first into these temstoaage lists;

n=0;n=0
doc=1,n {23}
enddo

For the off-diagonal matrix elements we proceed as in cogmeat{16}. Note, how-
ever, that several bond operations may lead to the samdlstatben acting on a given
basis statéa), but in the compact storage we do not want to store individoatribu-
tions to the same matrix element separately. Everythirgkisrt care of by replacing the
loops oveli andj in code{16} by this extended version;

doi=aa+n
do j = max(b,i),b+m {24}
c=i—a+1
E = helemen(i, j,1,0q)
dok=1nc
if Be(k) = | exit
enddo
if (k> nc) thenn; =k; Bc(k) = j endif
if (j =1) thenH¢(k) = He(K) + E/2 elseH¢(k) = Hc(k) + E endif
enddo
enddo

Heremax(i, b) on the second line ensures that only the elements in mathgliej > i

are constructed. The innermost loop okechecks weather there is already a stored
contribution to the matrix elemerj|H|[i}. It has been assumed that when the loop over
k has been completed (without exiting beftare n;), thenk takes the valua:+ 1 (which

is the case in many computer languages). Tkenn; + 1 if there is no prior location

j in the list, which means that it should be added to the list (due size of the list is
thenk). We have also assumed that (k) are initially set to zero, so that each new
contributionE can be added in the appropriate locatiotgf Note that although we are
carrying out off-diagonal operations here, in the basis mgauging, such operations can
also lead to diagonal matrix elements, in which case we tadevide E by 2.

After having generated all the matrix elements originafiogn the current represen-
tative (i.e., completed the loop over all nearest-neigispar pairs), we copy the contents
of the temporary storage vectors into the permanent fulbgie

doc=12
doi=1,nc {25}
nH=nhy+1; B(I’]H) = Bc(i); H(nH) = Hc(i)
enddo
enddo

Hereny is a counter for the total number of non-zero matrix elemewided so far.
After this, the loop over state labedsis closed, as in cod€13}. This completes the
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FIGURE 30. Example of the convergence as a function of the Lanczos basf the energy (left)
and the total spin (right) of the four lowest levels of thestte Heisenberg chain in the symmetry sector
k=0,p=1,z= 1. The spirSis extracted using the assumption thgt) = S(S+ 1).

construction of the hamiltonian.

For other operators, it is not worth storing the matrix elatagbecause normally we
do not reuse operators for observables many times. The toguiaih is used repeatedly,
however, up to a few hundred times, and so using code segf@&hinstead of having
to carry out all the operations associated with extractiacheindividual hamiltonian
matrix element from scratch every times can amount to a ugnifecant speed-up.

Itis possible to further compactify the hamiltonian by nimirgng the matrix elements
as double-precision numbers, but instead use a mapping tctbhal numbers based on
a table of integers. The number of unique values is often sl (tens or hundreds of
values, so that one can even use “short” integers as potottrs actual values), and this
can save some memory, at the cost of a somewhat more timeraongsoonstruction of
the hamiltonian. The locatior(i) have to be stored as four-byte integers, however.

When pushing the limits of the largest treatable systenssa®e may have to store the
hamiltonian on disk (and reading successive portions ohiénvexecuting cod€22}),
or generate it on the fly without storing it. The latter esigiytamounts to executing
code based ofi24} every time when acting with the hamiltonian.

4.2.4. Convergence of Lanczos calculations

The Lanczos method is essentially exact if a sufficientlgdanumber of Lanczos
vectorsA is used, and typically this number does not even have to belagge; on
the order of a few tens to hundreds. The convergence shoubthdxeked by carrying
out calculations for severa\, until no changes can be detected in the energies and
expectation values of interest. The ground state convettyedastest, and energies
converge faster than expectation values. As an example 3Bighows results for an
N = 24 chain. The energy and the total spin of the four lowestl$eivethe symmetry
sector of the ground state are shown verAu3he spin quantum number is calculated
by acting with the squared total spin opera®3ron the states, according to Egs. (193)
and (194), and extracting assumingS* = S(S+ 1) (which is valid only when the
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FIGURE 31. (a) The four lowest energies as a function of the Lanczoslsase for a 16-site Heisen-
berg chain with quantum numbers-£ 0, p = 1,z = 1). Multiple copies of the same state appear suc-
cessively due to loss of orthogonality. (b) The five lowestest of the same system obtained with re-
orthogonalization of the basis set.

states have converged to eigenstates of the operator).iEngies are seen to converge
monotonically, whereas this is not necessarily the caseofloer quantities, as seen
clearly for theS= 2 states in this case. The details of the convergence of eal@zend

on the initial state from which the Lanczos basis is consedi¢which in this case was
arandom state). In this case all the four levels shdivag well asS) were converged to
better than 10 decimal places/at= 60, with the ground state having converged at that
level already at\ = 30. Going to larger system sizes, the convergence beconitle a |
slower, but for this particular model there are no diffiastin converging several levels
up to the largest system sizes that can feasibly be studied.

One can accelerate the convergence of a Lanczos calculayistarting from a
state which is already close to the ground state. Such stedgsbe constructed in a
number of ways, e.g., based on some approximate analytethiad. But if there are no
convergence problems this may not be worth the additiofiaiteHowever, if a series
of calculations are carried out as a function of some paraniethe hamiltonian, then
subsequent calculations can be started from the grourelddttite preceding parameter
value, which is likely to have a significant overlap with trexhground state. However,
it should be noted that if the initial state is a good appration to the ground state,
it will have very small overlaps with the first few excited t&ts, and hence only the
ground state is likely to converge rapidly in such a caldoratlf excited states are also
needed, this problem can be circumvented by starting thiscadoulations using a linear
combination of eigenstates from prior calculations.

Loss and recovery of orthogonalityThe Lanczos basis vectors should all be com-
pletely orthogonal to each other, but numerical truncatimars build up and eventually
lead to escalating loss of orthogonality for soferhis manifests itself as artificial de-
generacies, with excited states “falling down” onto lowetas. An example of this is
shown in Fig. 31(a), where the four lowest energies of a ies$iain in the ground-state
symmetry sector are graphed verdud he higher energies are seen to successively col-
lapse onto the immediately lower energies, with only a fenations taken for the levels

227

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



to become completely degenerate after signs first appebleadfriminent collapse. The
basis then includes multiple copies of the same states.

The loss of orthogonality may at first sight seem like a serfmoblem, but in practice
this is no necessarily the case. Calculations for the grataie are not much affected
by there being more than one copy of it, as long as one makestisat it is properly
normalized before using it to calculate expectation valaed the first excited states are
normally (but not always) well converged before they falwioonto lower states.

Loss of orthogonality often occurs sooner for small systéms large ones. This is
related to the fact that there are less low-energy statesnfadl systems, whence the
lowest states in the Lanczos basis can become “overcorhtetieis subspace (if the
Lanczos basis is larger than the total number of statesgdtrigl is truly overcomplete
and the calculation will not work).

One can easily supplement the Lanczos method by an exm@icitthogonalization
step, as in Eq. (188) and implemented in c¢d8}. The drawback is that this requires
storage of all the Lanczos basis vectors, which may not bsilplesfor large systems.
The procedure may also become time consuming if the numbstatds is large. As
shown in Fig. 31(b), re-orthogonalization enables corsecg of many more eigenstates
(limited only by memory and time constraints).

4.3. 1D states and quantum phase transitions

In this section we discuss several related 1D calculatieisguthe Lanczos method
and finite-size scaling methods for upNb= 32 spins. First we investigate the critical
ground state of the standard Heisenberg chain, and alsgzanabme properties of
excited states. Then we introduce frustration, studyiegdiilmerization transition in the
Ji-& chain. Finally, we add long-range interactions in additierfrustration, in which
case the continuous dimerization transition evolves irficseorder transition between
a Néel state (which is possible even in a 1D system if theast@ns are sufficiently
long-ranged) and a dimerized VBS state.

4.3.1. Ground state and excitations of the Heisenberg chain

Although the Heisenberg chain has an exact Bethe ansattioso[51], the wave
function is very complicated and in many cases numericautations for finite-size
systems have to be used to extract information on physicggsties from it [53, 54].
The energy of the ground state [52] and the low-lying exitet [149] can be calcu-
lated exactly both for finite chains and in the thermodyndimiit, however. Some other
guantities can also be extracted for very large chains [1B6@|ddition to using the exact
solution, many properties of this class of system (i.e.hwitvider range of interactions
maintaining the symmetries of the system) are known baseth@symptotically exact
low-energy field-theory description; the Weiss-Zuminotiéfi non-lineac model with
topological coupling (or central charge)= 1 [56]. Equivalently, the Heisenberg chain
also represents a special case (because of its spin-rahitiwariance) of the Luttinger-
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FIGURE 32. Dispersion of the lowest excitations, relative to the gmbstate, in the sectors with spin-
inversion quantum numbee= 1 (giving low-energy states with sp8= 0 or 2) andz= —1 (which always
givesS= 1 for the lowest state) for aN = 32 chain. The solid curve below the data points is the exact
infinite-size dispersion derived by des Cloizeaux and Ref$49] using the Bethe ansatz.

liquid state, which describes a broad range of interactidgsfiin, fermion, and boson
systems [151, 152]. Numerical studies based on exact déigation and other unbi-
ased finite-lattice techniques (such as QMC and DMRG) hasgepl an important role
in guiding and confirming these theories (see, e.g., [158]d}). Computational studies
are also required for extracting non-universal (shortadise, higher-energy) properties
that are not captured by universal continuum field theoitesuding quantities directly
accessible to experiments, as discussed in, e.g, Refs. I55§). Numerical results for
the Heisenberg chain are also very important for enabligoraus bench-mark tests of
extrapolation techniques when studying other spin moétaisyhich less is known from
analytical calculations.

Ground state and low-energy excitationg-or a Heisenberg chain of si2¢ = 4n,
the ground state has momentlrs: O, parity p = 1, and spin-inversion number= 1; it
is a fully symmetric singlet state. Fbr = 4n+ 2 the lowest-energy state is in instead in
the completely antisymmetric sectér= m,p=—-1,z=—-1,S=0.

Let us look at the most important excitations of the Heisemlobain. Foik not equal
to the ground-state momentum, the lowest-energy state ofita 8ystem is a triplet;
hencez = —1 and+1 for chains of sizéN = 4n and A+ 2, respectively. Fig. 32 shows
the momentum dependence of the excitation enemigg = Es(k) — Eg for both the
lowestz= +1 andz= —1 states of a 32-site chain. The lowest +1 state always
hasS= 1, while the lowesz = —1 state has eithe8= 0 or S= 2. The triplet energies
are quite close to the exabl = o triplet dispersion obtained from the Bethe ansatz
[149], ws(k) = 1 sin(k)|/2, especially close tk= 0. Close tk = T the deviations are
larger. TheS= 0, 2 excitations are mostly slightly higher in energy, excépt theS= 2
state close t&/ 1= 0.85 is actually marginally lower than the triplet (likely a ahaN
anomaly), and &t/ = 2/N it is much higher.

For largeN — o, one would expect the singlet and triplet excitations tcolbee de-
generate with dispersiomy 1(k) = mjsin(k)| /2. This can be understood as originating

229

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



[ 8F
2.0- 7t
L Ze6f
l.5j 5 N
b [ 4F
10 ° ]
0.5} e singlet -
r o-o triplet
N O S IO RO RSN RI
0'00 0.05 0.1 0.15 0.2 0.2E

1/N

FIGURE 33. Singlet and triplet gaps of the Heisenberg chain versusiearse system size. The inset
shows the gaps multiplied BY, illustrating the presence of multiplicative logarithnaiarrections to the
dominant~ 1/N scaling (dynamic exponent 1).

from excitations of pairs of spin/2 soliton-like degrees of freedom callsginons
These spinons are very weakly interacting and in the infeti@in behave as indepen-
dent particles, hence forming four degenerate levels (fndrich S= 0 and 1 states can
be formed). The dispersion graphed in Fig. 32 is only the &iwdge of a continuum of
spinon excitations, which can be calculated in detail usiiegBethe ansatz [53] and has
also been observed experimentally in quasi-1D antifergomats [156].

The very lowest excitation forld = 4n chain is a triplet ak = 7T, with p=—-1,z=—1,
whereas for A+ 2 the lowest triplet hak = 0,p = 1,z= 1 (i.e., the difference in
momentum with respect to the ground state is alwayendp, zare minus their ground-
state values). Fig. 33 shows the finite-size scaling of thesest triplet and singlet
excitation energies (the singlet and triplet finite-sizpgaversus the inverse system size.
They are both seen to scale to zero gl Acorresponding to a dynamic exponent 1.
There is a weak correction to this form originating from Igtfanic corrections, which
can be seen clearly when plotting the gaps multiplied\bgin the inset of Fig. 33).
This gap scaling has been predicted in detail based on theotitéuum field theory
approaches [57, 153]. The prefactor of the gap scaling ectlir related to the velocity
of the spinon excitations, but it is not easy to extract iiatdly based on the finite-size
data because of the log corrections. The velocity can alsextsacted from the linear
parts of the dispersion relation closekte- 0 andrt, ws(k)/k or ws(k) /(11— k), with the
k = 0 behavior being the easier to analyze, as seen clearly ir8Zig

Spin correlation function. The spin correlation function is one of the key character-

istics of of any quantum spin system. The correlations irgtieeind state are of primary
interest. For a spin-isotropic and translationally insatichain we can write it as

C(r)=(S-S4)= 3<Szi32i+r>v (196)

for any reference site As we discussed in Sec. 2, the Mermin-Wagner theorem rules
out antiferromagnetic long-range order in the Heisenbbajrc Instead, in the ground
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FIGURE 34. Absolute value of the spin correlation function, multipliby the separation, in the
ground state of the Heisenberg chain. Results are shown asctidn of distance for different system
sizes, and also at= N/2 versus the chain lengti.

stateC(r) decays ag—1)"/r for larger, up to a multiplicative logarithmic correction
(originating from a marginally operator in the field-thetical description [57, 58, 59]).

Fig. 34 shows ground-state results @) as a function of for system sizeN =
16,24, and 32. The results have been multiplied bgo that anr-independent behavior
should obtain for large if the asymptotic form is- 1/r. It is also useful to multiply by
(—1)", in order to cancel out the oscillations of the staggered phases. Note that there
are remaining even-odd oscillations@{r)(—1)". Such oscillations are quite common
for various correlation functions of 1D systems. They diistinwith increasing system
size but are still strong for the small system studied hene.férm of the oscillations is
also predicted by the Luttinger liquid theory; they decay A% [152].

In Fig. 34, clear deviations from the/d form of C(r) can be seen which are
mainly due to the periodic boundary conditions, which erdeatine correlations close
tor = N/2. Open boundaries cause even more severe finite-sizeseffectddition to
not allowing the use of translational symmetry for blockgtinalization). The logarith-
mic corrections should play some role as well. As the chamgtle is increased, the
correlation function at fixed converges to the infinit& limiting form. However, as can
be seen in the figure, the maximunfor which the results are approximately converged
is a rather small fraction dfl. ForN = 32, one could safely say th@{r) is converged
for N only up tor = 4, which is not enough to say much about the long-distancaweh
ior. An alternative, also shown in the figure, is to investigine correlation function at
fixedr/N as a function oN, with r /N = 1/2 the most natural choice for checking the
long-distance behavior. Even though periodic boundamésuece the correlations sig-
nificantly at this point, the functional form @f(r = N/2) is proportional to the infinite-
sizeC(r) [although the overall prefactor of functi@{r = N/2) versusN will clearly be
different from that in the actudll — c convergedC(r)]. The leading ¥r form appears
quite plausible based on the data in Fig. 34, and the rentagrihancement is consistent
with the predicted logarithmic corrections. In Sec. 5.3d will further investigate the
long-distance correlations based on quantum Monte Caltoilledions for much longer
chains.
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4.3.2. Frustration-driven quantum phase transition

A very interesting aspect of th®@= 1/2 Heisenberg chain is that it exhibits several
ground-state phase transitions (quantum phase trarsjitidren a next-nearest-neighbor
interaction is added to the hamiltonian;

N N
H= Jl'ZlS '3+1+32_lei “Siy2. (197)

This model goes under the name of thel, chain, or the Majumdar-Ghosh model (after
the authors of the first comprehensive study of the syster}).[B@re we will discuss
the most important (and most well understood) transitiolmictv occurs when botty
andJ, are antiferromagnetic (positive). For convenience we ddfie ratiog = J»/J;.

For g < gc, gc =~ 0.2411 [157], the system is in the same phase as the Heisenberg
chain withJ, = 0 discussed in the previous section. The ground state isatritith
antiferromagnetic correlations decaying &s &nd the finite-size gaps scale gd8\1(up
to log corrections in both cases). Only the prefactors (thg.velocity of the excitations)
and the strength of the log corrections change as a funcfign o

Forg > gc the system is in a completely different kind of state, witb@xentially de-
caying spin correlations and a triplet excitation gap whimimains finite in the thermo-
dynamic limit. The ground state has long-range dimer orasirtipler, 1D version of the
2D VBS states discussed in Sec. 2.2). The nearest-neigbbdrdtrengths (thé energy
contribution)(B;) = (S - §;1), are of the alternating (period two) forB =B+ d(—1)'
in the symmetry-broken infinite-size state (of which theeetao degenerate ones, with
oscillations out-of-phase relative to each other). Untikegnetic order, this kind of or-
der is allowed at zero temperature in one dimension bechedaroken symmetry (the
lattice translational symmetry) is discrete. The modolaéi becomes non-zero g= g¢
and thereafter increases wigh The spin correlations are initially staggered (peaked at
momentunk = rTin reciprocal space), but gt~ 0.52 the change tk= 17/2 [158], and
for g > 1 the peak-value may change continuously wgifa spiral state) [159].

The model with ferromagnetic (negativé) is also interesting. There are several
transitions between states with different periodiciti@8(]). Here we will consider
exclusively the antiferromagnetic case, in the reggrel. We will use Lanczos results
to investigate the phase transition into the VBS state, &suldiscuss the properties of
this ordered state.

The Majumdar-Ghosh point. Before we discuss the Lanczos results, it is wort noting
that the existence of VBS order can be shown exactly at theiagmintg = 1/2 (the
Majumdar-Ghosh point), where the ground state is very srfG)]. On a ring with even
N, the ground state is a two-fold degenerate singlet prodsdliustrated in Fig. 35. One
can demonstrate this rather easily by just acting on thesstaith the hamiltonian, to
show that they are eigenstates (while the proof of them bisiedowest states is more
involved [161, 162, 163]). Out of these degenerate st&és, and|¥g), which break
the translational symmetry, one can form symmetric and@mtimetric states, which
have momenturk = 0 andr, respectively:

W(0)) = (|Wa) + W) /V2, |W(m) = (|Wa)—|¥s))/V2. (198)
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FIGURE 35. lllustration of the degenerate ground states at the Majur@deosh point. The thick arcs
illustrate singlets; the product of these singlets on akttng bonds is an exact ground statg at 1/2.

These are the states obtaining in Lanczos calculationsoeiteerved momentum. Thus,
the order parametéB;) = E; is featureless when calculated on finite periodic systems.
As always in exact finite-lattice calculations, the symmétreaking has to be observed
by calculating correlation functions (unless we add soméupeation that breaks the
symmetry between the two possible ordering patterns, wihéshits own complications
as the limit of vanishing perturbation has to be taken). Ttoeigd state away from the
point g = 1/2 is more complicated than than the simple singlet-prodinctsig. 35,
with fluctuations in the singlet pairings, but with remaigi@iternating higher and lower
density of singlets on the nearest-neighbor bonds. Thelatanally invariantk = 0
andrt states on finite rings correspond approximately to symmatrd anti-symmetric
combinations as in Eq. (198). It is, however, onlygat 1/2 that these two states are
exactly degenerate for finifd. In other cases, the states become degenerate only in the
limit N — oo,

Dimer order parameter. We already discussed VBS ground states in Sec. 2.2 and
an example of how to characterize this kind of order by dinoerbiond) correlations
in Sec. 2.4.3. We now investigate the dimer correlation fiendntroduced in Eq. (25),
written explicitly for a 1D system as

D(r) = (BiBisr) = ((S-S+1)(S+r - St14r))- (199)

This function should alternative between “weak” and “sgfowalues for large if there
is VBS order (even if the symmetry is not broken). The calibafaof this correlation
function with the Lanczos method can be simplified by takidgeantage of the rotational
symmetry and comput§(S; - S:1)S,,§',1.,), Which is /3 of D(r). In principle, we
could make it even simpler by defining the order parametegl\gah terms of thez
components,§, ;5,5 1,,), Which is not just a constant times (199) but still a valid
order parameter for a dimerized state. Here we consideuthB(r).

Fig. 36(a) shows results for a 32-site system at three difterouplings. Ag = 0, the
standard Heisenberg model, the correlations decay rapidiyr and are very small at
r = N/2. At the transition pointg; =~ 0.2411 (which we will determine more precisely
below), the correlations are clearly stronger. The Luttingquid theory applied to spin
chains predicts dimer correlations decaying Asftr g < gc (with stronger logarithmic
corrections wherg < g¢) [152]. Going to larger coupling ratios, Fig. 36(a) shows
correlations clearly indicative of long-range ordemgat 0.4. To confirm the presence
of long-range order, a finite-size scaling analysis has todvged out. As we did with
the spin correlation functions of the Heisenberg chain m pheceding section, it is
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FIGURE 36. (a)Bond correlations fox = 32 chains at three different coupling ratipgb) Bond cor-
relations versug for three different system sizes. The solid and dashedcafines indicate, respectively,
the critical couplinggc and the exactly solvable poigt=1/2.

then typically best to look at the correlations at the longéstancer = N/2, versus the
system size. In the case of the dimer correlations, wherdtre” correlation function is
non-zero even in the disordered phase, one has to subtf#toe gbnstant corresponding
to this background. One possibility is to subtrégi)2, which is the value to whicB(r)
should converge for large Another option, which we will choose here, is to instead
use the differenc®(N/2) — D(N/2 — 1). This quantity will be non-zero foN — oo
only if D(r) oscillates, i.e., if there is long-range dimer order. Ressiglr three different
system sizes are shown versus the coupling ratio in Fig.)36@re the order parameter
appears to be well converged in the rangé9 g < 0.6 confirming that there is indeed
long-range order.

Finite-size extrapolations of spin and dimer correlationgo extract the infinite-
size dimer order parameter quantitatively, it is in mostesasecessary to perform an
extrapolation, unless the system size is sufficiently ldogehere to be no remaining
size-dependence of significance [which based on Fig. 36thgicase close tp=1/2].
Fig. 37 shows results for both dimer and spin correlatiomsugethe inverse system size
for representativg values both inside and outside the VBS phase.

The dimer correlations, shown in the right panel of Fig. 3@, af the ¥r form for
g < gc. There are logarithmic corrections, which are small eyaatlg.. For g > g,
inside the VBS phase, the correlations extrapolate to azeonvalue. The asymptotic
N — oo convergence should be exponential in this case (as can bengérated explicitly
atg = 1/2) but close to the transition it is in practice not possiblegach system sizes
sufficiently large to observe this behavior. Instead, altsg. the behavior appears to be
essentially linear in AN, as seen in the figure gt= 0.4. However, agy = 0.45 one can
see that the behavior is actually non-monotonic, with thige#&l behavior consistent
with an approach to the infiniti-value from below, as a = 1/2. As seen in the right
panel of Fig. 36, fog > 0.6 the dimer order parameter decreases githarger systems
are required for proper extrapolations in this case, andrattethods have to be used. It
is believed that the system remains dimerized fogal gc [158, 159].

The spin correlations should change frorr 10 exponentially decaying as the VBS
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FIGURE 37. Spin (left panel) and bond (right panel) correlations atltregest distance in periodic
chains versus the inverse system size. The couplings fatite five curves arg= 0, g, 0.40,0.45,0.50,

in the order top to bottom (the left panel) and bottom to taghfrpanel), i.e., the three sets shown with
black circles correspond to the VBS phase.

phase is entered. To detect this change, the correlati@tidunC(r = N/2) is multiplied
by N/2 in the left panel of Fig. 37. As we saw before, fpe 0 there is a log-correction
which enhances the long-distance spin correlationg.-At. these corrections are much
smaller—itis known that the leading log corrections vaisthe dimerization transition
[164]—although the behavior is still not purelyrl(which can be expected only in the
limit N — o). Forg inside the VBS phaseC(r) decays to zero, as expected. Close to
dc one of course has to go to large system sizes—Ilarger thapihearrelation length
(which diverges at)c)—in order to observe a pure exponential fall-off.

For theg-values used in Fig. 37, the spin correlations are staggée=gpeaked at
k = min reciprocal space. F@r~ 0.52 the peak position changes rapidlyrtg2 [158],
and forg > 1 the spin structure most likely evolves into a spiral witmimouously
varying pitch [159] (as is the case for the classical versidhe model). The correlations
always decay exponentially, however (unlike the classaaj-range spiral).

Determining the dimerization transition point.The dimerization transition is known
to be similar to the Kosterliz-Thouless transition of thasdical 2D XY model. Unlike
a conventional phase transition, the order parameter doefolow a power law at
Jc, but is exponentially small close t. It is therefore not possible to extract the
infinite-N order parameter close tp based on the small systems accessible to Lanczos
calculations—due to the cross-over behavior it is evenadliffirelatively deep inside
the VBS phase. It would then appear to be very difficult to ueibee the location of
the dimerization transition. There is, however, a very ahdgvay to extract the critical
coupling in an indirect way, based on excited-state engfdi&7].

As we saw in Sec. 4.3.1, the lowest excited state of the puigeHkerg chaing = 0)
is a triplet. On the other hand, we also know that in the VB&st#e ground-state should
be two-fold degenerate, and both these ground states musihdglets. At the exactly
solvable pointg = 1/2, the degeneracy is exact for aNy but away from this special
point the two states become degenerate only in the infiitienits. The approach to
degeneracy should be exponentiaNifas will be illustrated with data below), whereas
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FIGURE 38. (a) The three lowest energies for a 16-site chain as a funofithe coupling rati@. The
crossing poingcrossOf thek = rrsinglet and triplet levels can be used as a size-dependimitide for the
critical (dimerization) couplingc. The vertical line indicates the exactly solvable Majum@iiosh point,
at which the singlet states are degenerate. (b) The cropsingversus IN2. The curve is a polynomial
fitin 1/N (without ad 1/N term, as the leading correction(is1/N?).

in the case of the triplet excitation of the Heisenberg chizérgap closes agl, and the
lowest singlet also approaches the ground statg'lqds shown in Fig. 33). This being
the case, for fixedN there must be some coupling ratigosdN) at which the singlet
and triplet excitations cross each other. This point canaliert as a size-dependent
definition of the transition point, and & — o it should approach the actual critical
coupling;gcrosd N — ) = ge.

Fig. 38(a) shows the three energy levels of interest for ait6chain, with the
corresponding quantum numbers indicated as well (thesetgmanumbers apply to
all system sizedl = 4n). Note how the two singlets become degeneraig-asl/2. As
expected, the singlet and triplet excited levels crossthir system size aj ~ 0.242.
The crossing points converge very rapidly as a functidd,ats shown in Fig. 38(b)—the
leading corrections are known to be proportional &4 [164]. Based on these results
it is possible to determing; very precisely. Fitting a high-order polynomial to crogsin
points for 8< N < 32 givesg. = 0.24116742), where(2) indicates the uncertainty in
the last digit based on fluctuations in the extrapolatedevathen different ranges of
system sizes are included in the fits and the order of the patyai is varied.

Finite-size gaps in the VBS phaseAs already mentioned, to accommodate symme-
try breaking in the thermodynamic limit, one would expe& #inglet-singlet finite-size
gap to close exponentially fast with increasing system isigigle the VBS phase (with
the exception of the Majumdar-Ghosh point, where the dagegés exact for any size).
The exponential gap scaling is demonstrated in the leftlpefriigg. 39 for some repre-
sentative values daf. At g the behavior is instead 1/N, which is not clearly seen in
this lin-log plot, but more clearly in the log-log plot in thight panel. In the right panel
triplet gaps are also shown versyd\L Here extrapolations to non-zero values inside the
VBS phase are apparent. The finite gap essentially corresgornhe energy required to
promote a singlet bond into a triplet. Note that only the gibstate is exactly solvable
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FIGURE 39. Singlet (left panel) and triplet (right panel) gaps as a fiorcof system size for different
coupling ratios. Her@lcrossis the size-dependent coupling at which the lowest singidtteplet excita-
tions are degenerate (and ths= A;). The gap abcrossdecays as AN (as seen more clearly in the right
panel). In the left panel a log scale fg versusN is used to show the exponentially rapid closing of the
gap between the two singlet states that become degeneraiefoc in the ordered VBS phase. To the
right, the triplet gap is plotted versugN to show its convergence to a non-zero value in the VBS phase.

at the Majumdar-Ghosh point, and the triplet gap is size dégst also here. Ad. the
gaps scale as/N—in the figure the behavior at the size-dependent crossimigm®yoss
is shown and also scales a&\L

4.3.3. Chains with long-range interactions

While long-range spin ordering is not possible in Heiseglotrains with finite-range
interactions, long-range interactions make magneticrqrdssible af’ = 0. A transition
between a Néel state and a quasi-long-range-ordered (QR® (the Heisenberg
critical state with spin correlations decaying &s,ldiscussed in the preceding sections)
takes place in a system with distance-dependent couplirtge éormJ; 0 (—1)""1/r®
[72]. The signs here favor antiferromagnetic order, andethig no frustration. When
the exponentr < a¢ = 2, the ground state has true long-range Néel order, while for
o > ac the system is in the QLRO phase. The critical value of thed@rgye interaction
parameten. depends on details of the couplings, e.g., on the nearégthee coupling
J1 when all othet; are fixed, and the critical exponents at the transition anéitcoously
varying (in contrast to the constant exponents throughwQLRO phase).

Another interesting example of a system with long-rangeratttions is the Haldane-
Shastry chain [165, 166], with frustrated interactidns- 1/r2. It has a critical ground
state similar to that of the standard Heisenberg chain,ibdigld-theory language, the
marginal operator causing the leading log-correctiondsbess [167]. The system is,
thus, right at a dimerization transition such as the oneudised above for the<J,
chain. It can be noted thdp/J; = 1/4 in the Haldane-Shastry model, which is quite
close to the critical ratig; = 0.2411 of the ¢-J chain. Thus, the interactions beyond
distancer = 2 in the Haldane-Shastry chain only play a minor role (bupontantly,
actually make the system exactly solvable [165]).
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FIGURE 40. Ground state phases of the chain with frustration parangeted exponent in the long-
range interaction, reproduced from Ref. [73]. The dashedesuindicate continuous phase transitions,
whereas the thick solid curve represents a first-orderitransThe thin solid curve fog < 0 corresponds
to the system with unfrustrated interaction studied in [A2]a ! = 0 (the 3-J, chain) the dominant spin
correlations in the VBS state change from= mmto 71/2 atg ~ 0.52 [158]. The curve where this change
occurs fora—! > 0 connects to the multi-critical point where all the phaseriaries come together.

In the presence of long-range interactions one can alsizeealdirect 1D quantum
phase transition between a Néel state and a VBS. Here wesditiweisystem introduced
in Ref. [73], which combines unfrustrated long-range iat¢ions and short-range frus-
tration (at separation= 2) according to the hamiltonian

N/2 N
H=%J> S S (200)
rgl i;
where the distance dependence of the couplings is given by
B B 1 (_1)rfl B N/2 4
Jl_E’ =g, Jr>2_£T’ Jz_l—l—r;r_"' (201)

Here, with the normalization b¥s of all couplings butl,, the sum of all non-frustrated
interactiongJy| equals 1, and the limir — oo therefore corresponds exactly to the J
J, chain withg = J,/J;. This will be useful when comparing the two models and also
guarantees a finite energy per spin fbr— o, even fora < 1. Instead of summing;

up tor = N/2, one could also includs/2 < r < N. This should not affect the phase
boundaries and critical exponents for> 1, however.

We will study the evolution if the dimerization transitiomaurring as a function of
the frustration strength as the inverse& ! of the long-distance interaction exponent
is increased from 0. As shown in the semi-quantitative pléesgram in Fig. 40 (con-
structed on the basis of Lanczos results, as will be disdusstow) this continuous
transition persists untik ~ 2, while for smallerx it evolves into a first-order transition
between the Néel state and a state with coexisting VBS omicatical (or possibly
long-ranged) spin correlations at wave-numbet 17/2. This state is denoted in the
phase diagram as VBS+QLR®/2).

Evolution of the dimerization transition.We have discussed how to study the dimer-
ization transition based on crossings of excited-stateggefor the g-J, chain, with
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FIGURE 41. Low-energy levels of a 16-spin system at two values of thglmnge exponenty = 4

(left) anda = 1 (right). The spirSand the momenturk of the states are indicated in the left panel (and
note that two levels are shown wii= 0,k = 0). The inset in the right panel shows the avoided level
crossing of the twd = 0 singlets in greater detail. There is a very small gap betwleese singlets where
they come together, but this is much smaller than what caedmved in this figure.

an illustration in Fig. 38(a). The same physics applies égtesence of the long-range
interaction as well, ifx is sufficiently large. This is shown for a 16-spin chairoat 4

in the left panel of Fig. 41. The lowekt= 0 andk = 1T singlets should become degen-
erate in the VBS phase fdf — o (so that a symmetry-broken dimerized states can be
formed). A region of very near degeneracy fpr- 1/2 can be seen in the figure. The
region of approximate degeneracy, which is not easy to destwiprecisely, expands
very slowly toward smalleg with increasingN. As shown in Fig. 42, the singlet-triplet
crossing point converges with the system size [althougivesidhan the IN? conver-
gence shown foridJ, the chain in Fig. 38(b)] and can reliably give the QLRE)-VBS
phase boundary.(a) for a > 2.

Another interesting feature of the energy levels is thabrugecreasing below=: 2,
the broad maximum in the ground state energy vegdascomes increasingly sharp. As
seen in the right panel of Fig. 41, at= 1 it has developed into a sharp tip due to an
avoided level crossing with the second singlek at 0. The real singlet-triplet crossing
has moved to the same region. An avoided level crossing leettveo states with the
same quantum numbers, leading to a discontinuity in theval@re of the ground state
energy with respect tg for N — o, is the hall-mark of a first-order transition. It should
be noted that it is not just the two lowest singlets that eixhiitis kind of avoided level
crossing. Other low-energy states as well come togethehaémeighborhood of the
transition, in a complicated cascade of level crossings$-efathese should converge
to a single point at the first-order transition whidn— c. The nature of the phases at
this transition will be discussed below. First, let us irtigeste in more detail how the
dimerization transition evolves from continuous to firster.

Fig. 42 shows the size dependence of the level crosgiagsand the locatiompeak
of the maximum in the ground state energy. In the standardiiddar-Ghosh frustrated
chain the size correction to the crossing poinifli4/N? [as seen in Fig. 38(b)], which
also can be seen for large For smallera, the corrections instead seem toBd /N,
but a cross-over to /N? for large N seems likely as long as the transition remains
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FIGURE 42. Dependence on the inverse chain length of the singleetrgbssing poingcrossand the
locationgpeak Of the ground state energy maximum for different long-rainggraction exponents. The
two lines show extrapolations of tlge= 2.0 data toN = co.

continuous. The peak location moves in the opposite dorcior somer andN — o,
Qeross @nd gpeak Should coincide. The results indicate that bgtbss and gpeax have
dominant ¥N corrections at this point. Line fits are shown in Fig. 42at 2, were
there is still a small gap between the two extrapolated wa{aed the extrapolations
may not be completely accurate, if the linear scaling hokisrgtotically only at the
speciala-value for whichgcross= Qpear- At a = 1.7, where the transition is first-order,
they should coincide (and then the asymptotic size cooeahould be exponential).

First-order Néel-VBS transition. To confirm an avoided level crossing with a dis-
continuous energy derivative for > 1.8 (approximately), the second derivative of the
ground state energy at its maximum is graphed on a lin-lolg sc&ig. 43. These results
were obtained based on calculations of the energy on a veisedgrid of points close
to the peak value, to which a polynomial could be reliabledttThe second derivative
extracted from this polynomial grows exponentially withfor a = 1.5, showing that
the slope of the energy curve indeed changes discontinpéarsan infinite chain. In
contrast, atr = 3 the second derivative decreases for la¥g&or o = 2 convergence to
a finite value also seems plausible, whereas 1.7 and 18 appear to be close to a sepa-
ratrix (where the form of the divergence is consistent wiloever law) between the two
different behaviors. This analysis suggests that the goatis dimerization transition
changes smoothly into a first-order transition(gh ~ 0.41, oy, =~ 1.8). The singlet-
triplet crossing moves toward the ground-state energy maxi and coincides with it at
the multi-critical point(gm, om), beyond which it develops into a first-order singularity.

To analyze the states involved in the first-order transjtiva next investigate the
standard spin correlation functi@{r) and the dimer correlation functidd(r) defined
in (199). We will also study the Fourier transforms of theserelation functions; the
static spin §) and dimer @) structure factors:

N/2—-1
S(q) =C(0)+C(N/2)+2 5 coar)C(r), (202)
r=1
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FIGURE 43. Size dependence of the second derivative of the groundestetgy with respect to the
frustration parameteg at the poingpeakWhere the ground state energy takes its maximum value.

N/2-1
Si(9) =D(0)+D(N/2)+2 % cos(qr)D(r). (203)
r=1

If there is long-range order at some wave-vecter Q, then the corresponding structure
factor is proportional tiN (for largeN), and order parameters can therefore be defined
as§4(Q)/N. HereQ = mrfor both the Néel state and the dimerized VBS state. Fig. 44
shows they-dependence &; () /N andSs(m) /N ata = 1.5. Discontinuities are seen to
develop ag ~ 0.42, in agreement with the first-order scenario (ang-atl, not shown
here, the discontinuities are much sharper). Both the N&EV8S order parameters are
well converged to non-zero values in their respective phased small in the other phase
(where they should vanish wheéxh — o, but it is not possible to observe this clearly
because of the small system sizes). The spin structure fatxe= 71/2 is also shown in
the figure. Interestingly, it also becomes large in the VB&gghwhile in the Néel phase

it should decay to zero with increasity(which is plausible based don this data, but,
again, not possible to see clearly for these small systddased on these results one
might conclude that the VBS state obtaining at the first-otdmsition has co-existing
long-range magnetic order kt= 11/2 (i.e., a spiral with period four). Considering the
small system sizes, this cannot be guaranteed, howeveb&havior could also reflect

a slow power-law decay of the spin correlations.

Fig. 45 shows the real-space spin and dimer correlatioos-afl for two g values, at
either side of the first-order transition. i< gc, in the Néel state, the spin correlations
are staggered and clearly long-ranged (with almost no deeay as a function af
for r > 1). At this coupling there is no structure(r), i.e., there is no VBS order. For
g > gcthereis clearly VBS order, witB(r) showing the characteristic staggered pattern.
Strong period-four spin correlations are also observetitlsi not clear whether these
are long-ranged or decay slowly to zero with increaginghe behavior is consistent
with an 1/r decay, but much longer chains would be needed to extractehavior
reliably. An interesting point to note here is that the diroerelations oscillate around
zero, even though no constant has been subtracted. Thisdsirast to the oscillations
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FIGURE 44. VBS and magnetic order parameters defined in terms of thensimealized dimer
structure factorSy(m) (left) and spin structure factorSs(mr) (middle) andSs(rr/2) (right) versus the
frustration strengtly in systems with long-range interaction exponent 1.5. Discontinuities develop
with increasing system size at the first-order transition.

around a positive value in the-J, chain, as seen in Fig. 36. Looking at the definition
of the dimer correlation function in Eq. (199), this behanvi® another manifestation
of period-four spin structure, i.e., at odd separation efltond operator§; + S 1, a
correlation between a ferromagnetic and an antiferromaghbend is measured. While
the nature of the magnetic structure in this VBS is not cotepleclear, the correlation
functions seem to indicate a tendency to bond-orderingefahm |ststst - -), wheres
andt represent nearest-neighbor bonds with high singlet aplétidensity, respectively.
In Fig. 40 the state has been denoted as magnetically quagirhnge ordered, a VBS—
QLRO(11/2) coexistence state, but it could in fact also be a state wieixisting VBS
and long-range magnetic order. It should also be notedhisphase could in principle
be very sensitive to boundary conditions on small lattieesl, it cannot be excluded that
the actual magnetic structure is spiral-like, with continsly varying pitch (as in the
Ji-J, chain withg > 1 [159]).

The VBS+QLRA1/2) state should have gapless spin excitations, regardlesgof t
spin correlations as long as they are not exponentiallyydegaThe lowest triplet is at
k= m/2. Itis, however, difficult to demonstrate the gaplessnesgt on data for small
systems, because the size dependence of the gaps (andwahétigs) for system sizes
N = 4n exhibit large even-odd oscillations (as well as other irregular size effects). In
the conventional VBS phase (in the low-right part of the ghdisgram in in Fig. 40)
the lowest triplet is ak = 11, even when the spin correlations (which are exponentially
decaying in this phase) are peakedat 11/2. The level crossing between the lowest
k = mandk = 11/2 triplets can therefore in principle be used to extract thendary
between the VBS and VBS+QLR@/2) phases. The size dependence of the crossing
point is not smooth, however, and cannot be extrapolateg rediably. The boundary
between dominank = r andk = 11/2 spin correlations has also not been extracted
accurately. This change in the spin correlations may becégea with a transition to a
state with periodicity four [158], although there are nansid the VBS order changing.

QLRO-Néel transition. Let us return to Fig. 41 for another interesting feature ef th
level spectrum: The lowest singlet excitation for snggllas momenturk = rrfora =4
butk = 0 for a = 1. The switching of the order of these levels as a functioa dér
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FIGURE 45. Spin (left) and dimer (right) correlations in a 32-spin ¢hat o = 1 for two values of
the frustration parameter. At= 0.25 and 045 the system is in the Néel and VBS-QLR®)2) phase,
respectively. The first-order transition in this case os@ig ~ 0.39.

g < gc is associated with the Néel-QLR®) transition. The level crossings can be used
to extract this phase boundary very accurately ug t00.25 (while for higherg the
N — oo extrapolations become difficult). While it is not complgtelear why thek = 0
andk = 1T excited singlets cross each other at this transition, itaggin be noted that
the QLRQm1) phase the low-energy excitations arise from two deconfipatbss. The
lowest (forN = 4n) is a triplet atk = 1. The lowest singlet is also &t= 11, with a small
finite-size gap to the triplet due to weak spinon-spinonratgons (and Fig. 33 shows
and example of how these levels become degenerdte-aso). In the Néel phase the
spinons are no longer deconfined, and the structure of thefmrgy spectrum changes.

As we will discuss below in Sec. 4.4.2, the 2D Néel state ortefitattices has
low-energy excitations analogous to quantum-rotor statdéch haveS=1,2,3,...
and become degenerate with the ground state as the systenngigases. They have
momentak = (0,0) andk = (11, 1) for even and odd, respectively. One might expect
this kind of quantum rotor “tower” in the 1D Néel state as walpparently, the lowest
k = mr singlet, which would not be part of such a rotor tower, is tpeshed up much
higher in energy, and the= 0 singlet takes over as the lowest singlet excitation.

It is useful to compare the level crossing approach with thdQQcalculation
in Ref. [72] for the unfrustrated model with; = 1 and J~1 = A(—1)""1/r%. A
reparametrization of this model fot = 1, to the convention used in (201), gives
the curve forg < 0 shown in Fig. 40. Finite-size scaling of QMC data for the Née
order parameter gavea. = 2.225+ 0.025, for N up to 4096 [72] . Extrapolating
the k = 0, 77 singlet crossing points (which here have size correctiaris/ NP, with
B ~ 1.50) for N < 32 gives a marginally higher (and probably more reliablduea
a; = 2.262+ 0.001. Analyzing the singlet and triplet gaps at the crossiagsuming
A ~ N7%, gives the dynamic exponent= 0.764+ 0.005, in very good agreement with
Ref. [72]. For the frustrated model (201) on the QLRD-Néel boundary, the gap scal-
ing in 1/N givez~ 0.75 for g up ~ 0.25, while for largem it is not possible to reliably
extracta. andz this way, because of large scaling corrections and the abssfrlevel
crossings for increasingly large systems as the multieatipoint(gm = 0.41, o, ~ 1.8)
is approached (for referencg = 2.220+ 0.005 forg = 0 and 2170+ 0.01 forg=0.2).
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At the multi-critical pointz can be extracted using gaps at the singlet-triplet crossing
point and the ground state energy maximum, which giaes0.8. It is, thus, possible
that the dynamic exponent is constarw; 3/4, on the whole QLRQf)—Néel boundary,
including the multi-critical point where all phase bournidarcome together.

Technical notes. The model we have studied here is rather challenging for a 1D
system, from a technical standpoint, because of the longeranteractions. The combi-
nation of long-range interactions and frustration make#fiicult to apply other com-
putational techniques. While efficient QMC techniques carapplied to systems with
unfrustrated long-range interactions [168, 72], this idormer possible in the presence
of the frustratingJ, term, due to the sign problem (discussed in Sec. 5). The DMRG
method [28, 29], on the other hand, can handle frustratiambuti easily long-range
interactions. It would still be interesting to try to app\MRG, or related techniques
based on matrix-product states [21], to this system, inqadar to study further the spin
structure in the putative VBS-QLR@{(2) state.

The Lanczos calculations presented above exploited akbyhenetries discussed in
Sec. 4.1. The hamiltonian was stored in compact form on digk, a separate file for
each interaction distancen (201). These files were read and used one-by-one in each
operation with the hamiltonian according to cofi2?}. For N = 32, the number of
Lanczos iterations needed was typically-680 (and less for smaller systems). All basis
states were saved in primary memory, and re-orthogonaliztd all previous states was
carried out after each iteration (as in code®}).

4.4. Two-dimensional systems

We now discuss exact diagonalization in two dimensionsigugie important case of
the Heisenberg model on the simple periodic square latscanaexample. As in one
dimension, we can use momentum conservation to block dagenthe hamiltonian
within the sectors of fixed magnetization. It is a little mooenplicated to take maximum
advantage of lattice symmetries to further split some of lileeks, because of the
larger number of symmetry operations commuting with theiltanian. On the positive
side, the reward for implementing all the lattice symmaetigethat, for high-symmetry
momenta, where lattice reflections and/or rotations canslee .the blocks are smaller
for given N than in one dimension. In practice, this may be of little helimce the
maximum linear sizé of anL x L lattice that can be diagonalized is still pitifully small
(L = 6). Exact diagonalization studies are still of great value.

In one dimension, we used the reflection (parity) opera@iand constructed momen-
tum eigenstates based on representat®eand their reflectiong1+ pP)|a) (and later
we added also spin-inversion). AlthouBldoes not commute with the translation opera-
tor, we found that for the two special momekta 0, 17, bothk andp are still good quan-
tum numbers. For genergl p is not a valid quantum number, but with semi-momentum
states, mixingtk states, we could ude to accomplish a real-valued representation. In
two dimensions one can in principle also construct a reklechhamiltonian for any
momentum, but this is much more complicated in practice thaane dimension, and
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FIGURE 46. Labeling of sites and bonds on a4 periodic square lattice. With the bit representation,
it is practical to start the site labels from 0, here accaydmi = x+ yL with x,y € {0,...,L — 1} with

L =4. A bond is here labeled according to the “left-down” refere sitei to which it is connected; the
horizontal and vertical bonds abg = i andby = L2 +i, respectively.

in the end it is not worth the effort (since it does not inceetiee system sizes that can
be studied)® Here we will therefore work with standard complex momenttiates.

Defining the lattice. As in one dimension, we use the state notatgn...,_,),
which is practical with the bit representation of the spiRgr a 1D system the spin
indices correspond directly to the chain geometry, but f@@Dalattice we have to
establish a labeling convention for the sites. We will cdasirectangular lattices with
N = Ly x Ly sites, at coordinate&,y) with x=0,...,Lx—1andy=0,...,Ly—1. A
natural choice is to number the siies O,...,N — 1 such that = x; +VY;Ly, as illustrated
for a 4x 4 system in Fig. 46. In a notation not explicitly dependentianlattice, we can
write the Heisenberg hamiltonian as

Np
H=1J Z Siv) - Sjb)» (204)
b=1

where[i(b), j(b)] are the two nearest-neighbor sites connected by or@pecifying
the lattice then just amounts to creating this list of sitega

4.4.1. Momentum states in two dimensions

We again define translations of the spin indices, now in buodlx indy directions, as
illustrated in Fig. 47, with corresponding operat®sandTy defined by

TX‘%? .. '7%71> = |Szrx(o)7 .. ”ix(Nfl)%
B K0 =180 Sy (205)

5 A real maximally blocked basis exists because the hamétoisi real and symmetric, which guarantees
real eigenvalues and eigenvectors. If the hamiltonianagatialized numerically as a single block, the
eigenvectors in degenerate multiplets will be mixed, aretthnslation operators will not be diagonal
(because their eigenvalues are complex). The degenemaf@eomomentum states have been mixed in
such a way as to make the linear combinations real. Such amsgigon can in principle be applied to
block-diagonalize the original hamiltonian matrix intaxdenomentum like real-valued blocks.
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Py

FIGURE 47. Symmetries used for the two-dimensional square latligandTy translate the spins by
one lattice spacing in the positixeandy directions, respectively. The lattice is periodic; the mpecles
represent sites of the opposite edg&sandR, are reflections with respect to thxe andy-axis, andPy
andP; reflect with respect to the two diagonal axes. For evéwhich normally should be used for an
antiferromagnet), th& andPR, axes pass between lattice sites. The reflectfynand P are about the
lines connecting the far corners, which go through the sitethe diagonals (and hence leave the spins on
those sites unchanged upon reflection).

where the translated spin indices are
Tx(i) = [% — L, +yilkx,
Ty(i) =%+ ([yi — Lo, )Lx, (206)

with [y — 1], denoting the modulus of — 1 with respect td.y, i.e.,[-1],, =L, — 1.
Using these translations, a momentum state based on aeafatree|a) is defined as

1 Ly—1Ly—1 .
alk)) =lakok)) = = 5 3 eI a) (207)
A x— y=
where the possible momenta are
2

The normalization constaht; depends on the translational properties of the representa-
tive, i.e., the number of different statBg obtained among the group bf x Ly transla-
tions of the representative) (e.g., for a state with the spins in a checker-board pattern
Da = 2). Arepresentative is incompatible with the momentuméfsiam of phasei; in
(207) over the translations bringirlg) onto itself vanishes. For a compatible state, the
normalization constari¥l; = D|F;|<. The easiest way to compute this in a program is
simply to carry out all the translations and sumipandF, in the process, instead of
using explicit formulas as we did for 1D systems (where omeafacourse also use the
more brute-force approach).

The construction of the hamiltonian matrix proceeds aseénlih case. We again split
the hamiltonian into a diagonal pieky and off-diagonal bond operatdr as in (121)
and (122), where now = 1,...N,. Acting with these operators on the representative
|a), we again may have to translate the resulting state in omlebtain the new
representativéb;) corresponding télj|a), i.e.,

Y X
Hjla) =hj(@)Ty 'Tx '|bj). (209)
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Acting on a momentum state, we thus get

Lx 1 I-y—

kxx+kyy y
a X=|
i@

_ = e—i(kxlf—o—kyl}/) Z) %e—i(k><x—¢—l<yy)-|-)}/-|-X><‘bj>7
Vv X=0 y=

and taking the overlap witkbj (kx, ky)| gives the matrix element

) (x %
Hjla(k, ky)) et

Ibj) (210)

>

No;

(b(ky, ky)|Hj|a(kX7 ky)> = hj (a)efi(kxlj&rky'},) e
a

(211)

The normalization constants (or some integer mapping to plossible numerical val-
ues) should be stored along with the representatives.

Incorporating other lattice symmetries We here consider a quadraticx L, system.
There are eight independent rotations and reflections dfstattice, which can be taken
as, e.g., the four 90rotations and a reflection about a horizontal or diagona.dkcan
be easily verified that additional reflections can be wriisrtombinations of rotations
and the first reflection. The easiest way to see this is to jussider all rotations and
reflections of a % 2 array;

(32)(a)(35)(z5)
GHEDEDE) e

Here the first row contains all the rotations of the first areand in the second row those
arrays have been reflected by exchanging the two columnsothey reflection will just
produce an array which is already in the above set of eighteQiermutations of the
elements do not correspond to a combination of rotationgefhettions (and hence do
not correspond to symmetries of hamiltonians we are noymakrested in). In practice,
we can use any convenient set of reflections, or rotationseftesttions, with which the
eight unique transformations can be generated.

Using translations as well as a set of other symmetry opesaichich we for now
collectively add together into a single opera@@mwith corresponding quantum numbers
{q}, a momentum state can be defined as

L-1L-1

\/N_aerOerO

As we have seen above, there are more symmetry operatiomsitiigue transforma-
tions. We can select the ones that are most convenient fengnomentum. Instead of
using the rotations of the square lattice, we will here useréfilections, andR, about

2% (k,{q})) = e XY T TIQa). (213)
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the x andy-axis, respectively. These correspond to symmetries oh#émailtonian for
any rectangularl x Ly) lattice (and note that the 18@otation is equivalent t&#R).
For generic momenta, the reflections do not commute withrdmestations, and there
can be no further blocking usirg andPR,, but there are high-symmetry momenta for
which P or R, or both, can be used. F&x = +ky we will instead use the reflections
Py andP; about the two perpendicular diagonal axes. All the reflectiare defined in
Fig. 47. For the most special momenkas= (0,0) and (1, ), andLy, Ly arbitrary, we
can also us@y (or Pe) in addition toP, R,.

To achieve maximal block-diagonalization for a given motnen(ky, ky), the opera-
tor Q in (213) can be chosen according to:

1 generak (a)
(1+ pxP), k=(0,ky), (11, ky) (b)
(1+ pyPy)a k= (an0>7 (kX» T[) (C)

Q=14 (1+ paPu), ke = +ky (Lx =Ly) (d) (214)
(14 pePe), ke = —ky (Lx =Ly) (e)
(1+pyR)(1+ pxRy), k=(0,0),(rm,m), px#py (f)

(14 paPy) (1 + pyR) (14 pxPx), k=(0,0), (1), px=py (9)

where again all the reflection quantum numbers take the saldeNote the restriction
px = py in case (Q), i.e., there are no such statesgo# py. In that case, we can of
course also use option (f), but using (g) splits the blockghér into two.

To prove that the symmetry operat@siefined above indeed do have the correspond-
ing conserved quantum numbers within the different momargactors, the following
relationships between the lattice transformations aréulise

PTx = T 1R RTy=T,"'R
PeTX == TyilPe PeTy - Txilpe (2 15)
PePX e Pype PePy - Pxpe.

The remaining pairs are commuting operatdfi; Ty] = 0, [Tx,R] = 0, [Ty, R = 0,
[P, R] =0, [P, P4] = 0. Let us just check the most complicated case, (g) in (214¢. T
permutations commute with the translations for these sp@tomenta, for the same
reasons as discussed for 1D systems in Sec. 4.1.4. We thehad to investigate the
properties ofQ. It is clear that the state is an eigenstatdgfthat being the left-most
reflection operator. To check whether it is also an eigeasti, andR,, we use some of
the relationships in (215) to verify th&Q = pxQ andR,Q = pyQ. After a little algebra
we get

P(1+ paPa) (1+ pyR) (1 + pxP) =
Px(1+ pxPyPaPa) (1 + pyRy) (14 pxP), (216)

and an analogous result f&}. Thus, if px = py, the state is indeed, for the special
momenta0,0) and (7, 17), an eigenstate also &%, R, andPy.
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If we want to study all momentum sectors, using the reflecsigmmetries does not
buy us much, because in most of the blocks we have to use tlegigeptionQ = 1 in
(214)(a). These symmetries are useful when investigatiegtound state, which often
is in the maximally blockable sector (g). The most usefuleasjpf the reflections may
still be just the fact that they give insights into the symmpetspects of the states (e.qg.,
to classify excitations). Apart from the lattice symmedrispin-inversion symmetry can
be used in then, = 0 sector, exactly as in the 1D case.

We have considered combinations of reflection symmetri¢scbuld instead have
used a combination of rotations and reflections. This woild gs different quantum
numbers, but the same size of the blocks. In group theomg #iveirreducible represen-
tations with standardized names, corresponding to various ¢éatjanmetries. Instead
of working out the applicable symmetries for a new case, andaok up the irreducible
representations and their correspondihgracter tablesand employ these to construct
states with quantum numbers of a chosen irreducible reptasen. This is very use-
ful when studying more complicated lattices. Ref. [143] hadiscussion of this more
formal approach, with examples for chains and square ésttic

We have here used symmetries applicable onlyte Ly lattices with the edges along
thex- andy axis on the square lattice. Withy = Ly = L, which is the most interesting if
we are interested in approaching the infinite 2D latticesawmeehen limited td. = 4 and
L = 6 (since odd. introduces undesirable frustration effects for an antiferagnet). To
increase the set of accessible lattice sidesne can also consider “tilted” lattices, with
edges that are not parallel to the square-lattice axes.[143]

Implementation. To study a 6« 6 lattice we have to use long (8-byte) integers for the
bit representation. To save time, it is ten better not to loegr all the 2' possible state-
integers and single out the ones corresponding to a givemetiagtion (as is done,
e.g., in code{7}), but to use a scheme which from the outset only construatesst
with a givenm, (i.e., given numben; of T spins). This can of course also be done for
1D systems. Such a more sophisticated generation of spegifitates starts with the
integera= 2"*1 1, in which the firsn; bits are 1 and the rest are 0, and then execute:

do
call checkstatéa, pass {26}
if (pass)then M =M + 1, store representative informatiendif
c=0
dob=1N
if (alb—1] =1)then
if (a[b] = 1) then
c=c+1
else
al0],...,ac—1]=1; a[c],...,alb—1] =0; a[b] =1; exit
endif
endif
enddo
if (b= N) exit
enddo
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TABLE 3. SizesM(L) of thek = (0,0) state blocks folL x L lattices
(L = 4,6) with magnetizationm, = 0 and different reflection and spin-
inversion quantum numbers. Fpy = — py there is no quantum numbpg.
For px = —1, py = 1 the block structure is the same as figr= 1, py = — 1.

Px Py Pd z M(L = 4) M(L =6)
+1 +1 +1 +1 107 15,804,956
+1 +1 +1 -1 46 15,761,166
+1 +1 -1 +1 92 15,796,390
+1 +1 -1 -1 38 15,752,772
-1 -1 +1 +1 50 15,749,947
-1 -1 +1 -1 45 15,739,069
-1 -1 -1 +1 42 15,741,544
-1 -1 -1 -1 36 15,730,582
+1 -1 +1 75 31,481,894
+1 -1 -1 108 31,525,574

Here the inner loop is simply searching for the lowest bitifiams b — 1, for which a set
(2) bit of a can be moved one step to the left (i.e., to a positievhere the bit currently
is 0). After such a position has been found, all the previpsst bits below this position
(the number of which is kept track of with the counter ¢)yare moved to the lowest
positions (Q...,c— 1). This bit evolution corresponds exactly to how the digitsa
base-2 odometer advance from right to left. The contenthetkstatedepend on what
symmetries are used, but it would be very similar to the irmaletations we discussed
for the 1D case, apart from the fact that the translationfiridd in (205)] are more
complicated than just cyclic bit permutations and have toridemented by hand.

The normalization constant, needed when constructing &neiltonian matrix ele-
ments, should be delivered loheckstate(if a representative has passed the tests). The
simplest way to compute the normalization (instead of usimmal expressions as we
did in the 1D case) is again just to carry out all the symmejpgrations of the represen-
tative state and add up the sunof factors (the complex momentum phases as well as
the plus or minus signs from the reflection quantum number&13) for each symme-
try operation bringing the representative onto itself.ffhanber, along with the number
D4 of non-equivalent transformations @, gives the normalizatiohl, = Da|Fa|2 (and
againN, = 0 if the representative is incompatible with the quantum bers). We do
not discuss further details of how to implement the basisgaion and the construc-
tion of the hamiltonian matrix, as these tasks are stréightard generalizations of
the one-dimensional implementations discussed in Set8 dnd 4.1.4. Spin-inversion
symmetry in them, = 0 sector can be implemented as discussed in Sec. 4.1.5.

Example of block sizes.Table 3 lists block sizes for the square-lattice systems of
interest in Lanczos calculations, for one of the special matak = (0,0), where the
largest number of symmetries can be exploited. The grousig sif the Heisenberg
model is in this block (in the sub-block with all other quamtaumbers equal to 1). For
L = 6 even the smallest blocks have more than 15 million statebttee largest blocks
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(for generalk) are about eight times larger. Blocks of this size can sélhlandled in
Lanczos calculations (the smaller one rather easily onralata workstation).

To test the basis construction, it is useful to check the stithe sub-block sizes,
which should equal the total number of states in the blockLFe 4 there are 822 states
with k = (0,0), which equals the sum of all the reflection-block sizes inl@&b

4.4.2. The Néel state and its quantum rotor excitations

We now illustrate 2D Lanczos calculations with results far Heisenberg model. Al-
though the small lattices accessible with this method ateuificient for quantitatively
accurate extrapolations to the thermodynamic limit, tHewations do illustrate some
important aspects of systems with Néel order (beyond whalis@issed in the frame-
work of spin-wave theory in Sec. 2.1). We introduce tfuantum rotorapping of the
low-energy states of finite systems, and based on thesesdidoeimagnetic susceptibil-
ity. We also calculate the sublattice magnetization.

Two-spin model of quantum-rotor statedf there is antiferromagnetic order, the
spins on sublattice A are predominantly oriented in the sdimetion, and the ones on
sublattice B are predominantly in the direction opposit¢himse on A. If the number
of spinsN is finite and the symmetry is not broken, the over-all dittidefined,
e.g., by the sublattice A spins, is not fixed, however. Thigation can be captured
by considering the sum of the spins on the individual suickstA and B [169],

SA:igAS, SB:igBS, (217)

as two fixed-length spinSy = S = N/2 (more precisely we would write&Sy = Sg =
mgN for largeN, but the constant is irrelevant), as illustrated in Fig. Ai8e two large
spins are assumed to be antiferromagnetically coupled db ether in the simplest
possible rotationally invariant way, which is through afeefive Heisenberg interaction;

Hag = JasSa- Ss = 5(S°— S — SB), (218)

whereS= Sa+ Sg is the total spin. Her&Z andSj are just constants proportionalls,
which can be neglected when we discuss excitation eneldgmgever, these constants
imply hat the coupling constadig should bedJ 1/N, in order for the total ground state
energy to bél N. The ground state of (218) has total s@a- 0 and excitations with
S=1,2,... at energiesdagS(S+ 1)/2 above the ground state.
We define a new-independent couplind:s = NJag/2 and write the energies as
DAs= JeﬁﬂsTJrl). (219)
These excitations are referred to as the tower of quantuon states. The states with
S« /N become degenerate Bls— o, and combinations of them can then be formed
which are ground states with fixed direction of the Néel ve@toanalogy with the infi-
nite number of momentum states required to localize a paiticquantum mechanics),
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FIGURE 48. Effective description of the rotationally invariant Néedotorms in terms of two large
spins,Sa, Sg, corresponding to the sum of the spins on the two sublattidesre is an effective antiferro-
magnetic coupling between these spins, leading to a siggheind state and a “tower” of quantum rotor
excitations of total spis=1,2,... at energieds ~ S(S+ 1)/N above the ground state.

thus allowing for the symmetry breaking that is the starfinit for spin-wave theory. In
the thermodynamic limit, the direction of the ordering wds fixed (as the time scale
associated with its rotations diverges [169]), and the tprarrotor-states are then in
practice not accessed. They are neglected in standardvspim€alculations (discussed
in Sec. 2.1) from the outset because the order is by constniotked to the direction.
One can still access the rotor energies in spin-wave thégrgonsidering systems in
an external magnetic field, tuned to give a ground state witi thagnetizatiol® = S
[170, 171]. The rotor states are of great significance indiaitisters.

The effective couplingles; in (219) for a given system can be determined if we can
relate it to some physical quantity which depends on ther exoitations. An obvious
choice is the uniform magnetic susceptibiligy= d(my) /dh. Calculating it for the two-
spin model whermT — 0 gives) = 3/Jefr. For the real Heisenberg model on a finite
cluster in dimensiond > 2, x should be dominated by the quantum rotor states when
T < 1/L, because the lowest spin wave energy scale agL (while the quantum
rotor states scale agll%). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

A ~ §(S+1)
S = 3xN

(220)

wherey should be evaluated in the linlt— oo (first) andT — 0. Note thal = (3/2)Nx
here plays the role of a moment of inertia, giving an analogivieen (220) and the
energy spectrum of a rigid rotor in quantum mechanics.

The relation (220) can also be used as a way to compute theistty of a
Heisenberg models numerically; by extracting the lowest@gies as a function & (for
small S, where the quantum-rotor mapping should apply). More pedgj the smalls
energies gives an estimate fpas theN — o, S— 0 limit of the quantityx (S N):

1 3Ng(Es—E)
XSN)~ S51) (221)

Here Es denotes the lowest energy for total sf@nNote that we have to subtract the
ground state energys& 0) because in the two-spin effective model we only computed
the excitation energiels with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expecs-ardependent behavior
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FIGURE 49. Lanczos results for the Heisenberg model or 4 and 6x 6 lattices. (a) The energy
relative to the ground state of the lowest state for eacH spia sector, normalized bMSS+ 1), so
that perfect quantum rotor excitations should prod&candN-independent values. (b) Spin correlation
versus distance for all possible distancesn the periodic lattices. The known— o value (from the
QMC results in Fig. 5) is indicated by the dashed line.

only for S« L, as the higher rotor states should be influenced by effed¢tsaken into
account in the two-spin model.

In analogy with the low-energy 1D quantum numbers discugseiiecs. 4.1.6 and
4.3.1, on the 2D square lattice (whe¥e= 4n for all evenL) the quantum rotor states
correspond to momentuifrr, 77) and (0,0) for odd and evers, respectively. For even
S the lowest states have reflection quantum numpges py = pg = 1 in (214), while
for oddSthe appropriate quantum numbers gge= py = —1, pg = 1. The lowest state
for given S can be obtained in the magnetization sectpr= S (and sincem, # 0 we
cannot use the spin-inversion symmetry here). e Q) ground state is in the fully
symmetric sector; the momentum( 0) andpy = py = pg =z=1.

Lanczos results fo. = 4 andL = 6 are shown in Fig. 49(a). There are clearly
large corrections to (220), as there is a significant deereag —1(S,N) with Sand an
increase withiN. For fixedN, the difference betweed= 1 andS= N/2 is roughly 10%.
Considering the fact that the lim& < L cannot really be studied based on the small
lattices, deviations of this order are not surprising. T states have been studied
using QMC calculations for much larger lattices [171, 33]JeTmost precise calculation
for smallSand largeN givesy ~1(S,N) — 22.8 [33].

To understand the deviations from the rotor picture, onewsthe analogy of a
slightly non-rigid quantum rotor, which seems natural édesng that the two-spin
model is defined with fixed-length spins, while clearly in thal system the sublattice
spins fluctuate (in a way which can depend on the total Spith may be possible to take
these effects into account by adding higher-order tei®asSg)?, etc., in the interaction
(218). Details of this extended two-spin picture have netrb&orked out, however.

Transverse susceptibility.For an infinite system &t = 0 the spin-rotational symme-
try is broken. One can then consider transverse and loriga@lidomponents (with re-

spect to the Néel vectory, andy|, of the susceptibility. In the two-spin model it is clear
thatx = 0 and this is also true in the Heisenberg model. In a largesyst which the
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symmetry is not broken, the components are rotationallyeeyes, givingy = (2/3) X .

The transverse susceptibility is relevant in practice al Néel order quasi-2D systems
(such as the high cuprates) al > 0, because of anisotropies and/or 3D couplings due
to which the system can have a finite ordering temperature.eiergy scales associ-
ated with the ordering are small, however, and The> 0 value ofx, = (3/2)x of an
isolated 2D plane (modeled by the Heisenberg antiferromgyives a good estimate
of this quantity in the more complicated system.

Sublattice magnetization.The first attempt to compute the sublattice magnetization
of the 2D Heisenberg model was made using Lanczos calcnsatip Oitmaa and Betts
in 1978 [172]. At that time, the & 6 lattice was beyond reach, and extrapolations based
on smaller lattices resulted in a value that is too large. #49gshows the spin correlation
function at all possible separation®n 4x 4 and 6x 6 lattices. There is a slow decay
with r, and it at least appears plausible that the results are agiirg a valugmg) > 0
asr — oo (andN — o). QMC calculations, results of which were already showniin b,
give ther — o result indicated with a dashed line in Fig. 49. The existaid¢eng-range
order in the 2D Heisenberg model was, in fact, under debadiktla first reliable QMC
simulations were done in the late 1980s [173].

One can attempt to extrapolate Lanczos results$ te « for, e.g., frustrated systems,
were other calculations are very challenging [98, 99]. Tésults must in general be
viewed with caution, however, because it is assumed thabéhavior for very small
lattices are already exhibiting the ultimate asymptoticaséor. Fitting procedures based
on “Betts clusters” [174] of different shapes may then bd@aiding, even when the size
dependence is smooth. There are examples where crosseocers at larger distances
[82], due to the presence of some finite length-scale in tls¢esy, which has to be
exceeded by before asymptotic behavior can be observed.

5. QUANTUM MONTE CARLO SIMULATIONS AND THE
STOCHASTIC SERIES EXPANSION METHOD

Feynman’s path integral formulation of quantum statisticachanics [175] has played a
major role in the development of QMC methods. In the caseiofggstems and related
lattice models, methods based on the path integral in inaagitime are commonly
referred to asworld line methodg4176]. These techniques were originally based on
an approximate discretization of imaginary time—the SuzUiotter decomposition
of the Boltzmann operator ekpfH) [177, 178]. Later, exact algorithms operating
directly in the imaginary time continuum were developed)132]. The first practically
useful QMC method did not, however, use the path integrakady in the early 1960s,
Handscomb developed an approximation-free method for #iedrberg ferromagnet
based on the power-series expansion of(exgH) and exactly computable traces of
products of permutation operators (in terms of which theskleberg exchange can
be written) [180, 181]. Although this scheme was also gdizex to the Heisenberg
antiferromagnet [182, 183, 184] and some other systems],[18%Id line methods
were in general more efficient and dominated the field for g time. The power-series
approach to QMC calculations was revived with the introgucof a more generally
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applicable exacstochastic series expansi¢B8SE) formulation [186, 187], in which
also the traces are sampled (thus circumventing the previgiance on permutation
operator algebra). In addition to improved computationdityl and efficiency, this
generalization of Handscomb’s approach also shows clémmly closely the discrete
power series is related to the path integral in continuowgimary time. Modern QMC
algorithms based on the two formulations are also in the atieer similar [33, 31]. In
particular, in both cases the spin configurations for someetsqsuch as the Heisenberg
model) can be sampled using highly efficient loop-clustetates [188, 189, 179, 190],
which are generalizations [191] of the classical Swendalang [118] cluster algorithm
to quantum systems. Further generalizations of the loopemno “worms” [32] and
“directed loops” [190, 33] have an even wider applicabilieyg., in the presence of
external fields), and have enabled large-scale studies afaallvange of quantum spin
and boson models. Some of these can now be studied at a |lelegkdifapproaching the
state of the art for classical systems.

In the case of frustrated spin systems, QMC methods are iargehampered by
“sign problems”, i.e., a non-positive definite path intdgra series expansion [192].
While calculations can still be carried out in principledahere has been some progress
in controlling the sign fluctuations at high temperaturé&3[1the statistical errors due to
the mixed signs become uncontrollable at low temperatéyeart from discussing the
origins of the sign problem for frustrated models, we wilidnenly consider unfrustrated
(bipartite) systems. Despite constituting just a subsdhefsystems which we are in
principle interested in, such models still exhibit a weatthinteresting physics and
continue to provide important insights in cutting-edgeeegsh.

In these notes we will discuss implementations and apphicatonly of the SSE
approach, which for spin systems is normally more efficierd technically simpler
than the continuous-time path integral. It is still usefulunderstand the relationships
between the two schemes. In Sec. 5.1 we therefore first repadinintegrals in quantum
statistical mechanics and world line QMC methods, in bositiditized and continuous
imaginary time. We introduce the general series expansomulation of quantum
statistical mechanics in Sec. 5.1.3 and investigate ithemaatical relationship to the
path integral. An efficientimplementation of the SSE metfuodheS= 1/2 Heisenberg
model is described in Sec. 5.2. lllustrative calculationd eesults for several 1D and
2D systems are discussed in 5.3; single chains in 5.3.1etaglgstems in 5.3.2, the
uniform 2D lattice in 5.3.3, dimerized systems in 5.3.4 (fsiag on the quantum phase
transition between the Néel state and a non-magnetic statd)J-Q models in 5.3.5
(with examples of both continuous and first-order Néel-VB®sitions).

5.1. Path integral and series expansion formulations
of quantum statistical mechanics

The main technical problem in quantum statistical meclsaisitiow to deal with the
Boltzmann operator eXp-BH). As we saw with exact diagonalization methods in the

previous section, a direct construction of the correspupdaatrix becomes infeasible
for systems with more than a few tens of spins. The path iategethod offers a way
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to transform the trace of this operator (the partition fiortt into a form that can be
sampled using Monte Carlo methods. An alternative is tat $tam a power-series
expansion of the exponential. Here we introduce both thepeaches as a foundation
for implementing the SSE method for Heisenberg models in ®&c

5.1.1. The imaginary-time path integral

The starting point of the path integral formulation is toterthe exponential operator
at inverse temperatuyg as a product ok operators with\; = 3/L in the exponent;

L
Z=Tr{e P =T ~OH L 222
r{e "} r{ﬂe } (222)

The trace can be expressed as a sum of diagonal matrix ekenmeahy basis. We
can also insert a complete set of states between each of pbeenxtials. The partition
function then takes the form of dndimensional sum of products of matrix elements;

Z=3% 5 (aoleMar ). (azle M ar)(asle > ao). (223)
Qp 01 a—1

Formally, the exponential operator is equivalent to ther&dimger time evolution oper-
ator exg—iHt) (with h = 1) atimaginary (Euclidean) timte= —iA;. One can therefore
consider (223) as a mapping ofladimensional quantum system to an equivalent sys-
tem ind + 1 dimensions, where the new dimension is imaginary fifibe state index

| corresponds to a discrete set of imaginary time paints A, with0< 1, < 8 and
periodic time-boundary conditions|( = dg) for the states. Often the discrete times are
referred to as “time slices”.

From a technical perspective, the purpose of writthgn the form (223) is that,
while the matrix elements of expBH) are difficult to evaluate, we can use some
approximation to evaluate the matrix elements of (exfs;H) whenA; is small (the
number of time slices is large) . We can then compute the weighthe different time-
periodic “paths”ag — ai--- — a1 — ag over which the system can evolve in the
chosen basis. In QMC calculations, these paths are immatsampled according to
their weights in (223).

6 Often the equivalentd(+ 1)-dimensional system is referred to as an equivattssicalsystem. This
terminology is, however, appropriate only in cases whdrhalpath weights are positive, which we have
not yet ascertained. It will be true for some classes of systenly, and those are the ones for which
QMC calculations can be performed in practice. In some ¢a&sgsthe transverse-field Ising model, the
effective model is an anisotropic version of the classicatiel ind + 1 dimensions. In most cases, the
equivalent classical system is not, however, the same Kintbdel as the original one with just one more
dimension—typically the path integral corresponds to s@mepletely different statistical mechanics
problem ind+ 1 dimensions, with no apparent resemblance to the orighdiinensional system. In some
cases, one can, however, show that the quantum system igknj on large length and time scales, to
the same classical systemdnt 1 dimensions, e.g., the 2D quantum Heisenberg antiferrostaa low
temperatures has the same properties as a 3D classicahbleigenodel [5]. This mapping is normally
carried out using a basis of coherent spin states, as destusg., in the book by Auerbach [4].
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To discuss the possible space-time paths and their weilghtss first consider a
seemingly extreme method of approximating the exponeogiatator by just its Taylor
expansions to linear order i H, i.e.,

Zr {ZWOH*ATHWLJ) - (az|1—ArH|ag)(a1|1—ArH|ag), (224)
a

where{a} refers collectively to all the statésp),...,|aL_1). Since each factor now
has an error of ordeA? and there ard. = B/A; factors, the relative error iZ at
fixed B is of the orderA;. The leading neglected term in each expanded factor also
containsH2, and we might therefore suspect that the discretizatioor estould also
scale as\?. However, to find exactly how the error scales witlandN requires a more
careful analysis than just naively counting the negleateas at the level ofH?2) 0 N2
andL = 3/A;, because the paths contributing to the error are not the santieose
contributing to the approximaté written as (224). Based on arguments discussed later,
to achieve an error which is independen{BodndN we should expect to use at least of
the order ofNf3 time slices in the linear approximation (224), i, 0 1/N.

Far better approximations of the time slice operator cansieel to reduce the number
of slices (to independent & and proportional tg3, with an error ofA2 or smaller).
However, for the purpose of illustrating many basic aspetthe path integral and
QMC methods based on them, it is convenient to first use threatdiapproximation.
In fact, as we will see shortly, it is even possible to takelitmét A; — O within this
approximation and formulate QMC algorithms based on thetes@ntinuous time path
integral [179, 32, 33]. We therefore discuss the lineariversn some more detail,
although in practice it is not recommended to implement amahgrogram using
this scheme with\; > 0. After understanding the properties of the paths in thealin
approximation it will be easy to understand how to take thitl\; — O or use a higher-
order discrete approximation, such as the Suzuki-Trotteothposition discussed in
Sec. 5.1.2.

Boson path integral and world lines.At this stage it is better to continue the dis-
cussion with a particular hamiltonian in mind, in order tovéd&a concrete example of
the paths and how one might go about sampling them. Consigéafboson system
with only kinetic energy. We here work on the latticand the purely kinetic-energy
hamiltonian can be written as (with an unimportant prefasét to 1);

H=K=-5Kj=-3 (afa+3aa), (225)
(3 ()

wherea” and a are, respectively, boson creation and destruction opsrato the
sitesi = 1,...,N, and{i, j) is a pair of nearest-neighbor sites on an arbitrary lattice
(in any number of dimensions, although for ease of visuatimawe will explicitly
consider a 1D chain). For simplicity, we will consider haxare bosons, for which the

7 See [194] for a review of boson path integrals in continuqase, and [195] for more recent progress
on efficient QMC algorithms based on them.
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FIGURE 50. Graphical representation of terms in the discrete patlgratéor a system of three bosons
on a chain with 14 sites. There are 20 time slices, labelddb9, ..., 19, which correspond to the states
|ar) in Eq. (224). The bosons are represented by circles. Thegameected to show more clearly the
formation of world lines on the space-time lattice. Note gegiodic boundary conditions in the time
(vertical) direction, i.e., the first and ladt<£ 0) states are the same. Note also that with the linear time
slice operatof1 — AH), there cannot be more than one particle hop (diagonal ligmeat) within a time
slice. With periodic spatial boundary conditions, the itileal particles can undergo cyclic permutations
(winding), as in the configuration to the right.

site occupation numbers are restrictechte= 0,1 (which can be thought of as arising
from a very strong on-site repulsion). Hard-core bosons latsre a simple relationship
to S= 1/2 quantum spins. Occupied and empty sites correspond Igitect and |
spins, and with no interactions the boson hamiltonian isvedgent to the XY model,
with Hjj = —(S*Sj‘ +$Sj+). There is no chemical potential in (225)—we use the
canonical ensemble with fixed number of bosdis (density p = Ng/N or, in the
spin language, magnetization= p — 1/2). Later, we will see that it is easy to also
incorporate interactions.

We work in the basis of site occupation numbeysi = 1,...,N. Consider a ma-
trix element(a; 1|1+ A¢Kjj|a;), which appears in Eq. (224) when we also write each
instance ofH as a sum over all the individual hopping terigs (and note the cancel-
lation of the minus signs). There are then two possibleimriahips between the states
|a)) and|aj41) resulting in non-vanishing matrix elements; either, 1) = |aj.1) or
|ai+1) = Kijj|a). In the latter case, there must initially be a particle & sitvhich is
moved byKjj to a previously empty sit¢, or vice versa. Since these conditions must
hold for all consecutive matrix elements=0,...,L — 1,0, each patrticle has to fol-
low a “world line” (a term borrowed from the similar conceftaspace-time path in
relativity theory), which at each step of the imaginary tiptepagation either stays at
the same spatial position or moves (jumps) by one latticeisgaTwo such world line
configurations for a 1D system are illustrated in Fig. 50.

Note again the periodic boundary conditions in the imagirieme direction, which
follow from the trace ovenyg in (224). These boundary conditions apply to the boson
states (occupation numbers), but not strictly to the warldd. Since the bosons are
identical particles, they can be permuted in the courseaif #volution fromr = 0 to
T = 3 and still fulfill the required time-periodicity. The only psible permutation in a
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1D hard-core system with nearest-neighbor hopping is dapermutation involving
all the particles on a periodic chain, resulting in a net ipkrtcurrent around the
ring. An example of such a “winding” configuration is showntke right in Fig. 50.
Other permutations can take place with soft-core bosoas (With no restriction on the
occupation numberng), and also hard core bosons in two or three dimensions (aemd ev
in one dimension if hopping beyond nearest neighbors isuded), but only winding
results in a net current. The net number of times world linespraround the system
(the total current divided by the system length) is callegl wlinding numberlt is a
topological quantity, characterizing a non-local prop@tthe configuration. In higher
dimensions, there can be winding in each of the spatial tiineg, with corresponding
winding numbers. An interesting aspect of winding in bosegstems is that it (a
properly normalized variance of the winding number) cqroesls to superfluidity [175,
196]. In spin systems, winding is related to the spin stgBjer helicity modulus, as we
will discuss further below.

We now denote bW ({a}) the weight of a proper world line configuratidar } (i.e.,
one satisfying the constraints discussed above) in th&ipartunction;

Z= %W({a}). (226)

The weight has a very simple form in the case considered B&eh kinetic operation
Kij is multiplied by the time ste@\; in (224), and the matrix elements of the boson
operators is always 1 in the hard-core case. The path weighérefore

W({a}) = A, (227)

whereng is the total number of kinetic jumps, corresponding to disjavorld line
segments in Fig. 50. This weight can be simply generalizethéocase of soft-core
bosons, where the creation and annihilation operators sa@cated with factorg/n
and+/n; — 1. Below we will also consider interactions between the bsswhich lead
to a more complicated factor multiplying the kinetic cobtriion (227).

In a QMC simulation, one makes changes in the world lines ithsa way that
detailed balance is satisfied with the configurations disted according taV({a}).
Local updates of world lines are illustrated in Fig. 51. Ntiiat while these local
moves are ergodic within a sector of fixed winding numbery tb@nnot change the
topological winding number. In higher dimensions, locaMa®of individual world lines
also cannot lead to any of the other permutations that neleel itecluded. Local updates
involving two world lines can be used to sample permutatida$ are not enough to
change the winding numbers associated with periodic baisglaAlgorithms based
on simple local updates were historically successful imist of some systems, but
more sophisticated and powerfabp update$31], and related updating methods in an
extended configuration space [32, 33], have been developed racently. These are
much more efficient in evolving the world lines in an ergodiayinstead of “getting
stuck” or spending long times in some restricted part of th&tgbuting configuration
space) and can also lead to winding number changes.

In this section we are primarily concerned with the path graérepresentation
and we we will not yet address the practical implementatibwarld line sampling
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FIGURE 51. Local updates of world lines, which change the number oftigrjemps (diagonal world
line segments) by-2. In (a) the diagonal segments are directly following eattieig whereas in (b) they
are separated by one time slice. One can consider moveshitraay separation of the jumps.

(which we will do in detail only for the rather similar configations arising in the
series expansion formulation, although we will later irsteéction return to some more
quantitative discussion of world line sampling as well)xN&ve consider estimators for
expectation values that we may want to compute. This wib gise us some deeper
insights into the properties of the world lines themselves.

Expectation values and their world line estimator€Consider an arbitrary operator
O and its thermal expectation value;

(0) = %Tr{Oe‘BH}. (228)

Proceeding with the numerator as we did Zoin Eq. (223), the exact time-sliced form
of the expectation value can be written as

1
O=5> (aole ™ |ag 1) (azle " |ar) (as|le * M Ojag).  (229)
{a}

We would like to express this expectation value in the forprapriate for Monte Carlo

importance sampling;

Yy W({a})
This is not always possible, however, because the pathshuating to the numerator in
(229) may be different from those contributingZolf W({a}) = 0 for a configuration
contributing to the expectation value, then no estiméxdra }) can be defined in (230).

One then has to proceed with the calculation in a differert W begin by discussing
classes of expectation values for which (230) does apply.

(230)

Diagonal operators. For quantities that are diagonal in the occupation numbesgs,
a density correlatofnin;), the form (230) is trivially valid, becaus@|ao) = O(ao)|ao)
in (229), whereO(ap) denotes an eigenvalue @f. The estimator can then be taken
asO({a}) = O(ap). This form of the estimator for a diagonal operator remaialédv
regardless of how the time-slice evolution operatdi & is approximated. Because of
the cyclic property of the trace, by which the opera@oran be inserted anywhere in the
product of time slice operators in (229), one can also aweozgr all time slices and use

L-1

O({a}) = % > O(an), (231)

=0
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which normally improves the statistics of a simulation. fagiice, to save time without
significant loss of statistics, one may only perform a phgianmation in (231) over,
e.g., evenNth time slice (normally- > N), because eigenvalu€ o) andO(a 1) of
nearby states differ very little (at most corresponding e single world line jump).
States separated YN slices typically differ significantly and contribute inds=pdent
statistics, at least to some degree (exactly how much camakistigally quantified in
terms of an imaginary-time dependent correlation functo(r)O(0))).

The kinetic energy. Expectation values of off-diagonal operators are in gdmecae
complicated. The kinetic energK) is an exception. In addition to being easy to
evaluate, it is also a quantity of particular interest foderstanding the properties of the
path integral. At the level of the linear approximation ofd" in Z, we can approximate
Ke2H in the form (229) withO = K by justK, because this is done only at a single
time-slice and leads to a relative error of order This is of the same order as the total
error from the linear approximation made at all the otheeetstices in both (224) and
(229). Given a configuratiof } that contributes t&, the estimator for a specific kinetic
operatoiKjj is then

) __ {ofKij|ao)
K'J({a}) (al|1—ATK\O{0>.

Here the numerator is non-zero only if there is a world limaubetween siteisand j at
the first time slice. In that cad§; ({a}) = 1/A; = L/pB. In all other cases the estimator
vanishes. We can again average over all time-slice locatbthe operatokK;; in (229),
which results in

(i) = (233)

B

wheren;j denotes the number of kinetic jumps in the world line configion between
sitesi and j. Thus, the total kinetic energy is given by the average ofdke number of
kinetic jumpsng; (K) = —(nk)/B.

We could have derived the expression for the kinetic energysimpler way, by ap-
plying the thermodynamic formula for the internal energgréhjust the kinetic energy);
E=01In(Z)/0B, with Z given by Egs. (226) and (227). The more complicated dedwati
illustrates explicitly how the form (230) involves matchithe configuration spaces of
the numerator and denominator. This matching is not passilolgeneric off-diagonal
operators; only for ones that are part of the hamiltoniafiogeconsidering other cases,
let us discuss another important aspect of the kinetic grestimator.

The utility of the expression (233) is not just that it enahlis to compute the kinetic
energy. It also carries with it a fundamental message altmupath integral and the
nature of the world lines. It is natural to ask how typical lddmes will evolve as we
increase the number of time slices. Specifically, how mangtit jumps can we expect
in a typical world line configuration?

At low temperatures the kinetic energy should be almost tatpre independent
(approaching a constant Bs— ). It should be proportional to the lattice sike Using
Eq. (233), we can therefore deduce the expected size ancetatupe scaling of the

number of kinetic jumps as
(nk) = —(K)B ~NB. (234)

(232)
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FIGURE 52. Continuous-time world line configurations. Here the kioedivents (jumps) occur at
arbitrary imaginary times & 1 < . Configuration (a) contributes to the partition functiorhexeas
(b) includes a pair of creation (solid circle) and annilidat(open circle) operators separated by more
than one lattice spacing and does not contribufé éo diagonal expectation values. Such a configuration
instead contributes to an off-diagonal expectation véiie,;).

This tells us that there is a typical scale of roughness oibréd lines; for largel, the
typical time separation between jumpssisl/N. As mentioned in the beginning of the
section, we should expect to use of the orN@ time slices in a discrete path integral
with the linear approximation of the time slice operator oid errors growing wittN
andf. We now have the explanation for that, because it is clean {284) that a smaller
number of time slices cannot accommodate the number ofi&ijuehps necessary for
the correct behavior of the kinetic energy (and then indiyeamy other quantity).

The relationship betweefnk) and (K) is also important from another perspective;
it indicates that it should be feasible to formulate simiolaglgorithms directly in the
continuum limit—even if we let the number of time slides- o, the number of kinetic
jumps (“events”) in the contributing configurations staysté. The continuous-time
world lines can then be stored in the form of just a singleedt@s) and thenk events;
the timest;,i = 1,...,nk at which they occur and the direction of each jump. Witk)
scaling asN, it should be possible to construct Monte Carlo samplingtigms with
this scaling in system size and temperature of the time amdanerequirements.

Examples of world line configurations in continuous timeh®wn in Fig. 52. The
configuration to the left contributes to the partition fuoot whereas the one to the right
does not, because it does not satisfy all time-periodichstraints. It instead contributes
to the expectation value of an opera@ra;, the Fourier transform of which is the
momentum distribution functiop(k) = (&' ax). We briefly discuss such off-diagonal
quantities next.

Off-diagonal operators and broken world lineslf we consider a patfia } contribut-
ing to Z and proceed to treat the expectation value of a generaliaffodal operator
a"aj in the same way as we did for the kinetic terms in (232), it &acthat we always
get zero, unlesis j are nearest neighbors (in which case the operator is pdreédimetic
energy). On the other hand, we can construct other pathshwdai contribute tda;" a;)
but not toZ, like the one in Fig. 52(b). If the sitdsj are separated by more than one
lattice spacing, the expectation val(e"a;) cannot be written in the standard Monte
Carlo sampling form (230), becau¥é({a}) = 0 for all O({a}) # 0. It is still possi-
ble to evaluatea;jak), as well as the corresponding imaginary-time dependeiatifum
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(a (1)ak(0)) (the single-particle Green’s function) by working in thexdnined space
of the periodic world line configurations contributing Zoand those with two defects
corresponding to the presence of a creation and annihilaperator [32].

The path integral including interactions.lt is not difficult to generalize the bosonic
path integral discussed above to hamiltonians includingmt@l-energy terms in ad-
dition to the kinetic energK in (225). Let us denote by any interactions that are
diagonal in the occupation number basis, e.g., attractiye<(0) or repulsive j; > 0)
terms of the formyjnin;. With H = K +V, we can decompose epA;H) as

g Ot — g 8Kg= BV 4 5(n2), (235)

where the error is due to the commutafiérV] # 0. WithV diagonal, we can for each
time slice in (223) write

(aryale M o) ~ e M (o q e 2N ay), (236)

whereV, denotes the potential energy evaluated atltheime slice. The weight (227)
of a world line configuration is therefore modified in the mmese of interactions as

L-1
W =A%exp( —Ar Y Vi . 237
({a}) =47 eXD( I; |> (237)

The interaction part of the weight can be easily taken intmant in elementary world
line moves of the kind shown in Fig. 51, and also in more sdjfaited treatments in
continuous imaginary time [32].

The continuum limit. We have already discussed the fact that the continuum limit
of the path integral can be used directly in QMC algorithmewiver, examining the
configuration weight, (227) for the purely kinetic hamilian or (237) in the presence
of interactions, we have an apparent problem; the weighistias ag\; — 0. This must
clearly be compensated in some way by the number of configusaincreasing, in such
a way that the partition function remains finite. In Monte IGaralculations we do not
deal with the partition function directly and only need oatiof configuration weights
to compute acceptance probabilities for world-line upslat®oking at such ratios for
the simplest kinds of updates, the insertions and removatgpposite kinetic jumps
illustrated in Fig. 51, they are also problematic in the gomim limit: Formally the
probability for insertions and removals is zero and infinigspectively. This is not just
a problem in the continuum, but also for sm&jl where the probability of accepting an
insertion would be non-zero but very small.

Proper ways to handle the continuum limit were introducetthécontext of “worm”
[32] and loop algorithms [179], twenty years after simulas based on discrete path
integrals were first introduced [177, 178]. Here we only éderslocal world line moves
for a toy model, as an illustration of how Monte Carlo samglian in fact rather easily
be formulated in the continuum.

Fig. 51 shows two different ways to introduce two events mgwa world line to
and from a neighboring site. Consider a line segment whidhitially straight overm
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FIGURE 53. Local world line moves in continuous time. In (a), two oppesinetic jumps are inserted
at randomly chosen timeag and 1, between two existing jumps & and1z. In (b), two opposite jumps
are either removed-() or the times of the two events are randomly changed to neitvanptimest, and
T, betweert; andT, (—). The acceptance probabilities are given in Eq. (238).

time slices, between timeag and 12, with 72 = 11 + mA;. Assuming that there is no
world line on the neighboring site within the ranfm, 1], the weight change when
introducing the two events &2 (for a purely kinetic hamiltonian), regardless of where
in this range the events occur. There are a total(@fi— 1) /2 different ways of inserting
events, which gives a total relative weighfm(m— 1)/2 for the subspace of such
modified configurations, versus 1 for the original configiaratvith two less events. In
the continuum limit, the weight for all the possible updatedfigurations of this kind
becomes(1, — 11)%/2. As we have discussed above, whign— 0, the average total
number of kinetic events remains finite. The typical length- 7, of a straight world
line segments then also remains finite, and we should be@btestruct a scheme with
finite insertion probabilities. The key is that we do not juensider a single specific
updated configuration, but a continuous range of possildates.

We also need to consider the removal of two events. In ordsintplify the discus-
sion, we here consider just a single boson on two sites. Moiglsithe complications
of having to consider also constraints imposed by worldslioe neighboring sites. The
world line moves for which we will construct probabilitieatsfying detailed balance
are illustrated in Fig. 53. The event insertion discussexalis illustrated in (a), where
it should be noted that the timegsandT, correspond to two consecutive existing events
(and in case there are no events, we take 0 andt, = 3). We call the times of the two
new events, and 1, and these are chosen at random anywhere betweand 1,. In
the opposite update of removing two events, we consideptaéweight of two existing
eventsr, andt, within two surrounding events @& andt,. Then we can again compute
the total weight of the existing events, not only at the fixadent timesry and 1y, but
at any timesr} and t, within [11, T2]. That relative weight is agaifr, — r1)2/2, versus
1 for the single configuration with those two events absent.

Thus, oncer; and 1 have been identified by inspecting the current configuration
(which can be stored in the form of a list of events), the atarege probabilities for
two-event insertion and removal are

(2—12)?/2 1

Insert= 1 (1, — 1,)2/2’ femove= 1 . 11)2/2 (238)
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For an accepted insertion, we genergtandt, at random, while in a rejected removal
we also generate new time$andr;, for the existing events.

In a larger system, with more than one boson, the above schemlel have to be
modified to take into account the constraints of other warldd when a chosen world
line is moved. The times; and 1, should then reflect those constraints. In the presence
of interactions, the acceptance probabilities would beifreatito take into account the
potential-energy factor in (237). In practice, one would ose these local updates,
however, as loop and worm updates [32, 179, 33] are not muake ommplicated to
implement, but much more efficient. The purpose of the dsionshere was to show
how the apparent problems of the continuum limit can be araecin principle.

5.1.2. The Suzuki-Trotter decomposition

While modern world line QMC algorithms for lattice modelgarormally based on
the path integral in the continuum limit, historically tirdéscretized variants based on
a Suzuki-Trotter approximation of the time-slice operaop—A;H) were developed
first. The discrete approach is still some times used anckisnibst practical option in
some cases [197]. We here discuss the main features of Stmtkér based methods
and how they are applied to boson and spin systems.

One example of a Suzuki-Trotter (or split operator) appration [177, 198] was al-
ready written down in Eq. (235). This is just one among margsjide decompositions
of an exponential of two (or more) non-commuting operatots & product of exponen-
tials [199]. The most commonly used approximants are, fgrgair of operator#\ and
B and a small factof;

AA+E) { AN (239)

ehB/2MEBI2 1 (p3).

Here the errors are also proportional to the commutgids]. Using a larger number
of judiciously chosen exponentials of functions Afand B, the remaining error can
be further reduced, in principle to an arbitrary high powé&rAo[200]. High-order
approximants are often too complicated to work with in pragthowever.

If we are interested in the trace of a product of exponentésn the path integral, it
is easy to see that the two low-order approximants (239)atmby equivalent, because

L L
Trd [1eM8/2MAe8/2\ — 1) [ eaetB 240

due to the cyclic property of the trace. Thus, although thedvine method is often
discussed based on the first line of Eq. (239), where the &owr each factor i1 AZ,

the error is in effect smallef] A3. However, since the number of exponential factors in
the path integral it = 3/A;, the total error made in a product such as (240) for fiXxed
andp is 0 A2. In addition, one can show that for sufficiently laigethe error also does
not grow withN at fixedA;. In most cases, one can therefore kégpndependent of
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N and (although for some classes of expectation values, carehastaken to avoid
error divergences wheB — o [201, 202]).

In the context of path integrals, the utility of the Suzukbfer approximation is
that even though exp-A;H) in the partition function (223) cannot be easily evaluated,
if we find a suitable decomposition ¢f into two terms (or some small number of
terms)H = Ha+Hg, we may be able to evaluate éxpA;Ha) and exg—A;Hg) exactly.
The prototypical example is a one-dimensional system aaintponly nearest-neighbor
kinetic energy and interactions, which we collectively oerH; ;1 for a site paiii, i+ 1.

We then decompogd = Ha + Hp according to

Ha = ;Hi,m, He= > Hiit1, (241)
oddi

eveni

With this arrangement, all terms in each of the siia®ndHg are mutually commuting;
[Hii+1, Hiyomitome1] = O for anyi and m. We can therefore split expA;Ha) and
exp(—ArHg) into two-body operators without making any further errers,.,

e,ArHA _ efArHl‘ze*ArHSA . eﬁATHNfl-N . (242)

Using products like this in the time-sliced partition fuioct (223), we can insert com-
plete sets of states between all the exponentials. Sin¢ecgarator now involves only
two sites, the matrix elements reduce to the form

(Ble™ M |a) = (ng;, ngjle "M ngi, ngj), (243)

which for hard-core bosons are the elements ofaddmatrix. Since the bond operator
Hi j conserves the number of bosons on the two sites involvesl,ntlaitrix is bock-
diagonal, with two single-element blocks (fiagi = ngj = ng; = Ng;) and a 2< 2 matrix
with both diagonal and off-diagonal elements connectirgstfates with a single boson
on the bond. It is thus easy to evaluate all the matrix elemeiso if interactions are
included (as long as they do not extend beyond nearest raighbtherwise a more
complicated decomposition &f has to be used).

Pictorially, each matrix element (243) corresponds to a-8ie plaquette with zero,
one, or two world line segments going through it, accordimghie occupation num-
bers. Considering all time slices and all site paiiis+ 1 in both exg—A;Ha) and
exp(—A¢Hg), these plaquettes form a checkerboard pattern, with twacad rows cor-
responding to one time slice, as illustrated in Fig. 54. HMiaus reasons, the hamilto-
nian decomposition (241) is also often called the checkexbdecomposition.

For a hamiltonian conserving the total number of partidies constraints on allowed
world line configurations are similar to those in the linepp@ximation of the time-
slice operator, with a few important modifications. Kingtimps are allowed only on
the shaded plaquettes in Fig. 54, but there is no furthet@nson the number of jumps
within a time slice, unlike in the linear time-slicing apginmation illustrated in Fig. 50
(where there can be at most one jump in each time slice). Thiel e configurations
still look very similar. They become equivalent wh&p— 0, in the physically relevant
sense of their evolution from some timeo some later’, with 7/ — 7 > A;.

In a Monte Carlo simulation, the world lines can be updatedgisimple moves
of the kind illustrated in Fig. 51, with the constraint thaetdiagonal loop segments
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FIGURE 54. A 1D world line configuration based on the checkerboard dexmmition with the Suzuki-
Trotter approximation. Kinetic jumps of the bosons (or flgdsa pair of | and | spins) are allowed only
across the shaded squares (plaquettes). A time slice dfiwjdtonsists of two consecutive rows of pla-
guettes. The six isolated plaquettes shown to the righespond to the non-zero matrix elements, which
in the case of a spin model with Heisenberg interactionswfand lines and empty sites corresponding
to T and| spins, respectively) are given by Eq. (244).

(kinetic jumps) are allowed only on the shaded plaquett€sgn54. More complicated
“loop” and “directed loop” updates, in which large segmarftseveral world lines can
be moved simultaneously, are used in modern algorithms131, 33] (which we will
discuss in detail below in the context of the stochastiesezkpansion method).

Application to the Heisenberg modellt is useful to consider a particular example
of the path weights in the Suzuki-Trotter approach. Let usmate the plaquette matrix
elements for the antiferromagnetic Heisenberg interaghipi 1 = S - S11. In this case
the boson occupation numbers in (243) are replaced by spiasst and |. We can
consider the world lines forming between thepins (and note that we could also draw
world lines for the| spins in pictures such as Fig. 54; they occupy all sites nee rewl
by T world lines and cross those lines at each diagonal segmiérg)calculation just
involves straight-forward algebra and we just list the hssfor the six allowed (non-
zero) matrix elements;

Ty [ 1itg) = (Ll e8] Lily) = e/t
(il €72 i) = (Lt |e7 2| 1i1)) = +ef/4cosiA/2) (244)
(Lity e 2R 115y = (Tilj [e M| [i7)) = —€A/4sinh(Ar/2)

The weight of a world line configuration is a product of thesatnim elements, all of
which are pictorially represented in the right part of Fig. Blote the minus sign in
front of the off-diagonal matrix elements. For an allowedrldine configuration, all
the signs cancel out due to the periodicity constraint onvtbhdd lines. This is true
also for world line methods applied to bipartite latticeshigher dimensions, but for
frustrated systems there is a “sign problem” because ofrémepce of both negative and
positive weights (as we will discuss further in Sec. 5.1r8practice, world line methods
and similar QMC approaches are therefore useful primanilysfudies of bipartite spin
systems and bosons models. For a fermion system, permuftizvorld lines also
lead to sign problems, except in one dimension where onlyajloyclical permutations
(winding) are possible (with associated signs that can bé&lad by choosing periodic
or anti-periodic boundary conditions [176, 187]).
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In higher dimensions one can use the Suzuki-Trotter approsth various decom-
positions analogous to the one discussed above. Local epdath as those we have
discussed for 1D systems can be adapted to higher dimeresomsll. It is worth read-
ing Refs. [79, 203], which are two pioneering world line sagithat firmly established
the basic properties of the 2B= 1/2 Heisenberg antiferromagnet.

Although the number of time slices used in the Suzuki-Tratpproach does not have
to depend on the system size (becalldd events can take place within a single time
slice), the computational effort of Monte Carlo sampling thorld-line configurations
scales in the same way as in the continuous time formulasish3. This scaling is
achieved in the exact continuum formulation by only stodang manipulating the times
of the events, whereas in the Suzuki-Trotter approach ormaalty works with the full
space-time lattice (although one could also in principlly store the events there). For
this reason, the continuous-time methods actually nognmatl faster on the computer,
in addition to not being affected by discretization errdise only reason to use a discrete
path integral would be in problems where it is difficult to eathe continuum limit in
practice, e.g., in effective models including dissipatiahich leads to time-dependent
interactions among the world lines [197].

5.1.3. The series expansion representation

As an alternative to the discrete time-slicing approachootiouum limit of the path
integral, one can also construct a configuration spacetdeitar Monte Carlo sampling
by using the Taylor expansion of the Boltzmann operator;

—BH __ ad (*B)n n
e _nzoin! H". (245)

This approach was pioneered by Handscomb [180, 181], whelale®d a method for
studying theS= 1/2 ferromagnet. The Taylor expansion was later consideregt mo
generally as a starting point for exact QMC algorithms foriderange of models [182,
185, 186, 187]. The power-series expansion of the expaalespierator is convergent
for a finite lattice at finiteB (which technically is due to the act that the spectruniof
is bounded). In effect, as we will see below, the series esiparallows for a discrete
representation of the imaginary time continuum, thus augidpproximations but fully
retaining the advantages of a finite enumerable configuragace.

Choosing a basis, the partition function can be written as

zni)(—nﬁ!a)“{Z aoH|an-1) -+ (az|H|a1) {1 |H| o), (246)

(

where the subscript ofor }, indicates that there arestates to sum over. This expression
can be compared with the linear-order discrete path int¢@24). TakingH to be the
bosonic kinetic energy in (225), we can clearly draw worttelpictures very similar
to those in Fig. 50 to represent the contributing terms. Tlaénndifference is that
the number of “slices”, the expansion poweris varying and for givem there are
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particle jumps at each slice. The new “propagation” dimemsive have introduced
in this representation is different from imaginary timej lituis clear that the label
p=0,...,n—1 of the states is closely related to imaginary time in thd pategral.
We will discuss the exact relationship further below.

In the case of only kinetic energy, all matrix elements ingR&qual-1 for an allowed
configuration, the minus signs cancel and the weight is
BI’]
W({atn) = (247)
In more general cases, this weight will be modified by the pob@f matrix elements
in (246). As in the path integral, the weights are positivérite (or can be made so
with some simple tricks) for boson systems and quantum sgtheut frustration in the
off-diagonal terms. We will here proceed under the asswnpif positive definiteness
and discuss the precise conditions for this further below.

It is useful to derive a general expression for the totalrirakenergyJ = (H). For
any hamiltonian, we can write it as

12 (=B
=3 Z) 7 2 (ao[Hl|an) - (az[H|a1){a1|H|ao), (248)
{

alni1

where the presence of an additional matrix elemet @f each term should be noted;
for givenn, the summation is ovemn+ 1 states instead of the states in the partition
function (246). All configurations that contribute in (24&8)ntribute also to the partition
function, but the weights differ. We can match the configorat explicitly by writing

o n
25 CBRR s (aolHlan - (azH|an) (aiHlao).  (249)
Z4& nlo B s

E=—

We can extend the sum overto include alson = 0, because this term vanishes.
The terms in (246) and (249) then match exactly, af# can be identified as the
energy estimator. Thus, with the configurations sampledrdatg to their weights in
the partition function, the energy is simply given by

g (250)

Writing H as a sumH = — 3 Hi, and using this for all instances &f in (246) and
(248), we can derive a similar expression for the expeciatidue of an individual term
Hi. The result for this estimator is the average number of titheoperator appears in
the operator string in the expansion of the partition fumcti

(i) = %> (251)

In the case of a kinetic-energy term, this is identical to pilah-integral expression
(233). This shows that there is a one-to-one correspondestessen the paths in the two
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formulations, if we by path mean just the order in which kinevents occur, without
reference to the timeg of the events in the discrete or continuous path integrak Th
correspondence holds quite generally. The differenceaisiththe series expansion, the
potential-energy terms are treated in the same way as tletikioperators (i.e., they
are not re-exponentiated, as they are in the path intedradir presence corresponds
to “non-events”, which do not affect the world lines but assaciated with diagonal
matrix elements that modify the weight of the paths. In thih jpategral, there is instead
the potential-energy factor in Eq. (237), which dependsharaictual time-points of the
kinetic events.

Eqg. (250) shows that although the sum over expansion order§246) extends up
ton = o, it can in practice be truncated at some ondgsy I NS3. To further motivate
why this will only lead to an exponentially small and complgtnegligible error, one
can make use of the estimator for the specific heat, obtaipeaking the temperature
derivative of (250);

C=(n?) —(n2—(n). (252)
When the temperaturé — 0, C should vanish, and (252) then shows that the variance
of the distribution ofn equals(n). It is therefore clear that the distribution vanishes ex-
ponentially beyond some powef] Np. In practice, QMC (stochastic series expansion,
SSE) algorithms based on this representation automatisathple then-distribution
according to the relative weights of the differergectors.

By explicitly truncating the Taylor expansion, one can m#iesrelationship between
the series and path integral representations even cl@atgrcating atn = L, we can
formally construct a fixed-size sampling space by augmgraihpowersH" with n < L
by L — n unit operatord. Allowing for all possible locations of the unit operators i
the product ofL operators, we can define a modified operator st8rgS;,S,...,S.,
in which § € {H,I}, and do a summation over all these sequences. We then have to

compensate the Weight by the numhéb) of equivalent terms, giving
Z= Z Z (z’ aolSLlaL-1) - - (a2|S|a1)(a1]Si|ao), (253)
{ah

wheren now refers to the number of elemeris= H in the operator string (and we
no longer need an explicit sum ovey). If we now consider the boson kinetic energy
(225) and take the limit — o, the weight reduces t@3/L)", which is the same as
the path integral weight (227) fdr time slices. In this limit, it is clear that the index
p=0,...,L—1is related to imaginary time according to= pf/L. The difference
is that the series expansion with the full weigBt(L — n)!/L!, is in practice exact
for L 00 BN, whereas in the path integral we have to take the continuomt o avoid

a discretization error. For finite, the series index does not correspond exactly to
imaginary time, but represents a distribution of imagin@myes [187]. Because of the
close relationship between the propagation indaxd imaginary time, it is appropriate
to refer to thep space as the “time” dimension also in the series expansion.

The practical advantage of the series expansion is thaiviges an exact but discrete
representation of the imaginary time continuum. Algorithbased on it are normally
easier to implement than continuous-time world lines andlaEmore efficient compu-
tationally. On the other hand, for a hamiltonian with largegmtial-energy terms, the
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number of operatorén) in the expansion can be much larger than the number of ki-
netic eventgng) in the path integral. The latter approach should then be wifficent,
although an exact treatment necessitates manipulatiooatirfg-point time variables.
For quantum spin systems, there is in general a favorabémbalbetween kinetic (off-
diagonal) and potential (diagonal) energies, and the sesipansion is then typically
preferable. Next, we proceed to develop a QMC algorithmdbaseit.

5.2. SSE method for theS= 1/2 Heisenberg model

We now discuss in detail how to implement the SSE method ®8&th 1/2 Heisen-
berg model. Initially we do not have to specify the latticel monsider the hamiltonian
written as a sum of bond operators,

Hp = JoSi(b) - Sj(n) (254)

as in (204), with the lattice encoded as a list of sjtés), j(b)] connected by the bonds,
b=1,...,Ny. An example of a labeling scheme in 2D was given in Fig. 46.

A positive-definite SSE can be constructed for any bipalditéce, i.e., when all sites
i(b) and j(b) belong to sublattice A and B, respectively, in any numberiofeshsions.
This constitutes a large class of interesting and impoggstems. Initially we will con-
sider just a single antiferromagnetic coupling consfigat J > 0, but the modifications
needed for non-uniform systems are very simple.

5.2.1. Configuration space

It is useful to subdivide the Heisenberg interaction (254p iits diagonal and off-
diagonal parts in the standard basis of diaganapin components. We then define
operators with two indicedl, ,, with a = 1,2 referring to diagonal and off-diagonal,
respectively, antd =1,...,Ny is the bond index as before;

BRONICE (255)

(Sio)Sit) + Sio)Sitwy)- (256)

Hip =

Hyp =

NI B

Here we have also introduced a minus sign and a constant iidlgenal operator, so
that the full hamiltonian can be written as

Np J
H=-J Z (H]_’b — H27b) + TN) (257)
b=1

The reason for including the constanthii ;, is to make the series expansion positive-
definite, as we will see shortly. The constai,/4 is irrelevant in the algorithm but we
will include it when calculating the energy.
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Series expansion of the partition functionThe general form of the partition function
in the SSE approach can be written as (246), but here we wtillliy not write out all the
complete sets of states inserted between the operatorastéad focus on the operators,
expanding all instances &f as sums over all the bond operators in (257). The starting
point of the SSE algorithm for the Heisenberg hamiltoniathis

2:220( “ZBHZ< > (258)

Here J has been absorbed infd = J/T, S, refers to the products (strings) of the
Heisenberg bond operators (255) and (256) originating frbin

S = [a(0),b(0)], [a(1),b(1)];...., [a(n—1),b(n—1)], (259)

andn; is the total number of off-diagonal operators, i.e., the hanof elements with
b(i) = 2 in the string. Note that the label referring to the position of an operator in
the string here takes the values 0,n — 1; this labeling will be more convenient than
p=1,...,nin the program implementation.

When the operator string acts on the state= |S,..., ) we get a succession of
other basis states, with no branching into superpositibnsooe than one state. We will
refer to these as propagated stdte®)),

p—-1
)) O EL Hagiy b 1O) - (260)

We have not written down the normalization of these statediatty but will consider
all ja(p)) as properly normalized. These states of course corresmotitbse in the
summations over complete sets in (246), but in practice B &pproach is framed
around the summation over the operator strings in (258)vando not always have to
write out the states explicitly.

With the constant A4 in (255), all operations on parallel spins destroy theestat

Hibl TiwyTi) =0, Hapl Tiw) Tjw) =0
Hibl liwyljw) =0, Hapl liw)ljm) =0 (261)
An operator-state configuratiofm, S,) contributing toZ thus has to involve only op-

erations on anti-parallel spins, and the propagated sfa6f}y are defined under this
assumption. The corresponding matrix elements are

(Tiwy Li) IHbl T i) =3 UigTj) [Hapl TiwyLjw) = 3
(Lig) Tiwy Hool LiwyTiw) =3 (Tigybjw) IHzbl Liw) Tin)) = 3- (262)

The fact that all these are equal will be very useful in thepdarg algorithm, and this
was the reason for including the constayi 1n the diagonal operators.

In addition to the local constraints of only operations oti-parallel spins, for the
matrix element of the full operator product in (258) to be +zemo, the propagation also
has to satisfy the periodicityr (n)) = |a(0)), where|a (0)) = |a).
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Although one can formulate Monte Carlo sampling proceduréke space of oper-
ator strings of fluctuating length[180, 187, 204], it is normally in practice somewhat
easier to work within the fixed-size truncated space digaigs the previous section
(and mathematically it is also easier to prove detailedrizaan such a spacé)n ac-
tual simulations, the cut-off will be determined automatically by the program, as we
will discuss below, such thatsafely exceeds the largasever sampled. Note again that
the truncation then does not cause any detectable errorshadld not be considered as
an approximationDefining the unit operators used for augmenting stringh wit L as
Hoo = | and includinga(p),b(p)] = [0,0] as an allowed element in the index list (259),
the partition function can be written as

> (263)

N !

wheren refers to the number of noj®; 0] elements in the fixed-length operator strisg
(andn is summed implicitly by the sum ové&§ ). Since all matrix elements equal2,
the weight of an allowed configuration is given by

W(a,8) = (@>n (L=t (264)

2 L!

Here we have left out the sign factor1)", which, as we will discuss further below,
always is positive for a bipartite (unfrustrated) systerotéNalso that.! is an irrelevant
normalization factor and can be left out as well.

With T and | spins represented by the presence and absence of a harbesone,
respectively, we could draw pictures like Fig. 50 to illasérthe rules for the contributing
SSE configurations. However, we now also have diagonal tgsrthat do not change
the world lines but modify the path weight. In the path insg@pproach the diagonal
operators are all brought together into a common expondiatitor, Eq. (237), but
there is no simple way to do this in the series expansion. Astioreed above in
Sec. 5.1, the SSE approach should not be used when the diageargy dominates,
but in the case considered here we hédey,) ~ (H,p) and the diagonal operators do
not dominate. As we will see below, the presence of a sigmificamber of diagonal
operators is in fact exploited in the SSE algorithm. Wherulsing the SSE method,
it is useful to draw pictures showing explicitly the diagbaad off-diagonal operators.
An example is given in Fig. 55, which includes also illustvas of the data structures
that we will later use in a computer implementation of thehmét The states will be
represented by integeds(i) = +1 corresponding t& = +1/2. For compact storage of
the operator string, it is also useful to combine the indje¢p), b(p)] into a single list
of integerss(p) = 2b(p) +a(p) — 1. The full propagated states do not have to be stored
simultaneously. They can be generated as needed from tile stored statgr (0)) and

8 A case where itis clearly better to work with sequences oftiating lengt is when the SSE approach
is combined with a multi-canonical ensemble, in which a mafitemperatures is sampled and therefore
n can fluctuate over a very wide range [204].
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FIGURE 55. An SSE configuration for an 8-spin chain, with all the progadatates shown. Open and
solid bars indicate diagon#l; ; and off-diagonaH,; operators respectively, while no bar between states
corresponds to a “fill-in” unit operatdtlp 0. The T and| spins of the statén) are stored ag (i) = +1,

and the operator strin§_is encoded using even and odd integers for diagonal andagidal operators,
respectively, according &(p) = 2b(p) +a(p) — 1.

the operator string. We will later introduce a different qant storage involving some
spins of the propagated states as well.

Frustrated interactions and the “sign problem”.At first sight, it appears that we
have a sign problem—a non-positive definite expansion—imaf the factof—1)"
in (258). Actually, all the terms are positive for a bipartlattice. This is because an
even numben; of off-diagonal operators are required in every allowedfigpmation, in
order to satisfy the “time” periodicitja (L)) = |a(0)). We already discussed this in the
context of the world line method, where the off-diagonal nixaglements in (244) are
negative, but the continuity of the world lines require arremumber of these. This is
yet another example of the close relationship between theapproaches.

For frustrated systems, the series expansion is not pesitifinite (and neither is the
path integral, for exactly the same reason). This can béyeBsnonstrated for a system
of three spins on a triangle. As shown in Fig. 56, an allowedfigaration can in this
case contain three off-diagonal operators, resulting imaar-all minus sign. This is
true for any system in which loops with an odd number of sitaslwe formed between
antiferromagnetically interacting spins—this can be usethe definition of frustration.

Positive-definiteness for a bipartite system can also beegrin a different way, by
carrying out a unitary transformation of the spin operatr®ne of the sublattices, say
B, such thaSjJr — —SJ-Jr andS; — —S; (and no change in the diagonal operatsfisfor
j € B. This does not affect the spectrum of the model (since thenoatakion relations
among all spin operators remain unchanged), but the sigroirt bf the off-diagonal
terms in the hamiltonian (257) changestoThe factor(—1)™ in (258) is then absent.
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FIGURE 56. An example of three off-diagonal operations (indicated bysh bringing all spins on a
triangle back to their original states. Each spin flip is agged with a minus sign, resulting in a negative

path weight and a “sign problem” (due to cancellations offigumations with different signs) in QMC
simulations of this and other frustrated systems.

For a frustrated system, no such transformation can renibtreessigns.

Note that only the off-diagonal part of the interaction aaia sign problem. One can
study systems with frustration in the diagonal part, buhtties interaction is no longer
spin-isotropic. Just neglecting the sign for a frustrateiseinberg system corresponds to
antiferromagnetic diagonal couplings but ferromagndficimgonal couplings. Here we
only consider isotropic interactions and restrict the déston to unfrustrated systems.

For a bipartite system with periodic boundaries, the abs@fsign problems holds
strictly only if the lattice lengthd., are even in all directiong = 1,...,d. Winding
configurations, like the one shown for the path integral ig. FO(b), are negative if
there is an odd number of windings around an odd number of. stkearly, in such
cases there is also frustration, due to the boundaries. WWeheiefore consider only
systems of even length (in all periodic lattice directions)

Linked-vertex storage of the configurationdVe have discussed computer storage of
the SSE configuration as a st&g0)) and an operator string . By acting sequentially
with the operators, it is easy to generate all the propagsttee|a(p)) illustrated in
Fig. 55. However, during the Monte Carlo sampling we will d¢e access operators
and some properties of the propagated states also in namesgaj order—given an
operator and the spins it acts on, we will need to to know wbjgérators act on those
spins next (when moving up as well as down in the operatoresgmg). It would be
prohibitively time consuming to propagate a single statekkmnd forth to extract this
information, and also it would not be practical to store b propagated states. We
therefore use also another kind of data structure, in whieh“tonnectivity” of the
operators is explicit and represented as a network in a comysy. Thislinked vertex
structure is illustrated in Fig. 57, using the same SSE cardigpn as in Fig. 55. Here,
in the pictorial representation, the constant state of epiih between operators have
been replaced by straight lines, which in a computer progsdihcorrespond to links
(pointers). The operators are shown along with only the o states before and after
each operator has acted. We will call these spin-operajectiverticesand refer to the
four spins as th&egsof the vertices. One stage of the Monte Carlo sampling praeesd
will involve making changes to the vertices (while theirdtions are changed at another
stage). The links will allow us to quickly move between thetiees and make a series
of changes maintaining all the constraints.

The allowed vertices are dictated by the hamiltonian. Indhse of the isotropic
Heisenberg system considered here there are four of thepictee in Fig. 58. They
of course correspond to the non-zero matrix elements (26), again, the constaﬁut
in the diagonal operator is the reason why there is no verttxall four spins equal.
Anisotropic interactions or an external magnetic field vdonecessitate inclusions of
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FIGURE 57. Linked vertex storage of the configuration in Fig. 55. In tmapiical representation to
the left, constant spin states between operators have bptted by lines (links) connecting the spins
just before and after the operator acts. The links can bedtor a listX(v), where the four elements
v=4p+I,1 =0,1,2,3, correspond to the legs (with the numbering conventiomvshia Fig. 58) of the
vertex at positiorp in the sequenc§_. For two linked legw andVv/, X(v) =V andX(V) =v.
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FIGURE 58. Allowed vertices for the isotropi§= 1/2 Heisenberg model. The numbering 0,1,2,3
of the vertex legs corresponds to the positica 4p+1, in linked-list storage illustrated in Fig. 57.

additional vertices [190, 33] (and the algorithm discudsexet would then also have to
be modified). Although the spin states at the four legs urygdentify the vertices, we
will continue to use also the open and solid bars in pictui@édicate diagonal and
off-diagonal vertices, respectively, for added clarity.

For a given positiorp in the operator sequenc, the corresponding list element
s(p) tells us the operator type (diagonal or off-diagonal) arel lbndb on which it
acts (as explained in Fig. 55). As will become clear beloanglwith this information,
we only have to store the connectivity of the vertices, neirtBpin states. The links
allowing us to jump between connected vertex legs are sawedistX (v), as explained
in Fig. 57. For clarity of the illustration, the one dimensidlist has here been arranged
in four columns, with elements labeled= 4p+1, corresponding to each type of leg,
I =0,1,2,3, with the labeling specified in Fig. 58. We will later deberian efficient
way to construct this linked list, given the operator seqaefror now, it is sufficient to
know that for a given operator at locatignin the sequence, the position of it¢h leg
in the linked vertex list isy = 4p+1. This leg is linked to another vertex leg with list
address’ = X(v). This kind of structure constitutes a doubly-linked (bieditional) list,
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FIGURE 59. (a) A pair of off-diagonal operators, indicated by soliddiboxes, which can be replaced
by diagonal ones if the spins between the two operators ggefli as well. Such an update cannot be
done with the operators enclosed by dashed boxes, becatgeiliégal spin configuration (a vertex with
all four legs in the same spin state) that would result at gegator acting between the two boxed vertices
on their left spin. However, as shown in (b), this operatar pan be changed if instead the spins on the
opposite sides of the operators are flipped. This also fa@odsnge in the stored stdte).

with X[X(v)] = v, in which we can move both “up” and “down”. From a positioim the

list we can extract the corresponding operator locatio8 inp = v/4 (its integer part)
and leg index = modyv, 4]. We can move “sideways” to the other leg on the same vertex
by changing the leg label ©: 1 or 2 3, which in both cases can be expressed as a
simple rule of an everrodd change in the list addregsThese movements will allow

us to construct closed loops of changed spins and operators.

5.2.2. Monte Carlo sampling procedures

When Monte Carlo sampling the partition function (258), vexdto make changes
in the operator sequené&e as well as in the stored stdi). It is clear from Figs. 55 and
57, however, that updates in these two data structures amenessarily independent.
Allowed changes (i.e., ones maintaining all configurationstraints) in operators at
locationsp € {ps,...,p2} lead to corresponding changes in the propagated states in
the rangda(p1+1)),...,|a(p2)). Fig. 59 illustrates such an update of two operators,
where only the types of the operators are changed, diagavféldiagonal (which leads
to changes in the states similar to the world line update ¢n 51). As the changed
operator afp, acts onja(pi)), the statéa (p1+ 1)) and subsequent states also change
(by two flipped spins in the example), but when the last uptiaperator ap, has acted
the madifications are “healed” and the resulting stat@, + 1)) is the same as before
the update. Since the propagated states form a cyclicaliyygable periodic structure,
there is nothing special with the stored st&i¢ = |a(0)) and it can change as well,
depending on the locations of the updated operators.

Because of the timep] periodicity of |a(p)), the way state changes are forced by
operator updates is not unique. In the above example, wherassumedy, > ps,
we could also have acted first ¢a(p2)) with the new operator gby. Then the states
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FIGURE 60. Diagonal update. An operator is either insert@l0], — [1,b],, at a randomly selected
bond or removed1,b], — [0,0]p. In the former case, the update is canceled if the spins atrtbsen
bond are parallel, and therefore the statép — 1)) must be known. The acceptance probabilities depend
on the number of operatonsin the sequence before the update attempt, according t®E§).(

la(p2+1)),...,la(L—1)) as well aga(0)),...,|a(p1)) would be affected. There are
always two ways of changing the states in this way, but only oray be allowed in
any given case because of the constraints, as illustrate)irb9. In most cases, such
updates done at random locations would not at all satisfgdstraints, and one has to
specifically look for two (or more) operators that can be wed§205].

As seen in Figs. 55 and 57, the stée can some times be updated without any
changes to the operator sequence—since there is no opecsitty on the spiro (1),
its state is arbitrary. Such free spins are very rare at lowperatures, when the average
number of operators on each spin is large.

Focusing on the operator sequence, we will sample the numdferon-unit operators
[a,b]p # [0,0], their positionp € {0,...,L—1} in §, bond indiced € {1,...,Np}, and
typesinduces € {1,2}. The general strategy is to let the expansion ordgrange only
in exchanges of diagonal operators with the fill-in unit @per; [0,0], < [1,b], (where
n— n+1). Then, keeping all lattice locatiob®f the operators fixed, we change the type
index, [1,b], < [2,b], for some set of operators (as in the example with two opesator
above, but we will do it in a much more efficient way involving arbitrary number
of operators). With these off-diagonal replacements edrdut properly, the sampling
is ergodic in combination with the diagonal— n+ 1 updates. We next consider the
details of these updating procedures. We first assume thabgbansion cut-off has
been properly determined and then discuss how this can leeghis practice.

Diagonal updates. Updates of single diagonal operators, illustrated in F@.d&an
be carried out sequentially at the locatigns O,...,L—1inS_. There are no constraints
involved in such an update in the directi¢hb], — [0,0], (removal of a diagonal
operator), whereas an insertion of a diagonal operfdd|, — [1,b], is allowed only
if the spins on bond are antiparallelg(i(b)) # o(j(b)), in the propagated state (p))
on which the operator acts. We therefore have to generase thtates (storing only
the one currently needed), which is simply done by flipping tihio spinso(i(b)) and
o(j(b)) each time an off-diagonal operat{#,b], is encountered (in which case no
single-operator update can be carried oyt)at

The weight ratio to use in the Metropolis acceptance prdibalis easily obtained
from (264). Note, however, that we also need to correct feritiherent imbalance of
these update attempts—there is only a single unique wayrpoficg out the update in
the direction1,b], — [0, 0] ,, whereas when changin@, O] , — [1, b], the bondb should
be generated at random among tepossible locations [and if, for the chosbnthe
spinsa(i(b)) = a(j(b)), the update is immediately rejected and we proceed to the nex
p]. Therefore, following the criteria for detailed balandsalissed in Sec. 3.2, specif-
ically the transition probability (43) written as a produdtselection and acceptance
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probabilities, we have to include the ratiy of the selection probabilities for updates
involving a specific bondb. We then obtain the following acceptance probabilities;

Paccep([0,0] — [1,b]) — min[z(f'jbn),l}, (265)
Paccep([1,b] — [0,0)) = min [%1} (266)

wheren is the number of operators before the update (and aftem+1 orn— n—1).

To prove detailed balance for the diagonal updates, it maynsgecessary to carry
them out at random positions not sequentially. Otherwise, after having carried out an
update at some positiqn there is zero probability of carrying out the reverse updat
the next step. However, if we consider the whole sequencegsyof updates from=0
toP =L —1 and follow this by a reverse updating sequence, startogft=L — 1 and
ending atp = 0, then detailed balance holds for the sweeps. In practite does not
have to switch between the two directions of updating theatpe sequence.

Off-diagonal updates. Updates involving off-diagonal operators clearly haverto i
volve at least two operators in order to maintain the pecitgiconstraint on the prop-
agated sates. The simplest kind of pair update was alreagystied and illustrated in
Fig. 59. For a 1D system, such updates are ergodic with opendawoy conditions, but
with periodic boundaries local updates cannot change th&dgical winding number
(whichin clear from Fig 50, where no local deformations cé@c cyclic permutations).
This may still not be a very serious problem in principle,dngse for anyl > 0 only the
sector with zero winding number contributes when the systizN — o (in practice
for some largeN, larger for lowerT). If we are interested in ground state properties, we
also can obtain the correct result wh&n— 0 for fixed N, because in this limit an ef-
fective winding number defined within a finite range . ., p+Dp, with Dp >> N, of the
propagated statdst(p)) (corresponding to a finite range of imaginary times) can stil
fluctuate freely, irrespective of the constraint of zerobgllowinding number. Physical
guantities are then insensitive to the winding number [206]converge to the ground
state, much lowet has to be used, however.

In addition to their inability to change the winding numbepbine dimension, in higher
dimensions the kind of operator substitutions shown in B§ycannot lead to any of
the permutations of same spins (permutation of particlehénboson language) that
should be included (while in one dimension, cyclical perations of all spins are the
only possible permutations in the kind of system we considge). To remedy this
problem, one can construct other kinds of local updates, iexplving two operators
acting on the corners of a plaquette of 2 sites on a 2D square lattice [205], which can
sample among all such permutations within a given sectoiimdiwg numbers. Updates
changing the topological winding number has to involvesioésites wrapping around
the boundaries, but for lattices of length larger thaR0 these targeted updates become
very unlikely (i.e., it becomes too difficult to satisfy thertstraints when a large number
of operators are changed simultaneously) [186, 205].

Fortunately, instead of dealing with updates specificalgéting permutations and
winding number sectors, there is a very efficient and simygbe of loop updatethat
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FIGURE 61. A linked-vertex SSE configuration with one loop traced oud ahown in both of its
“orientations”, along with the corresponding operataiter sequences. All spins covered by the loop are
flipped, and operators are changed, diagerabff-diagonal, each time the loop passes by (with no net

change of an operator visited twice). Every vertex leg (spelongs uniquely to one loop, and spins not
acted upon by any operator (here the onie=atl) can also be regarded as forming their own loops.

accomplishes all these things automatically. This classpafates was initially intro-
duced as a generalization of a cluster algorithm for theglsiodel to a model where the
flipped clusters take the form of loops; the classical sistesemodel [191]. The effec-
tive world line system for th&= 1/2 Heisenberg model constructed using the discrete
Suzuki-Trotter decomposition is exactly equivalent to aisatropic six-vertex model,
and the loop update for it was therefore at the same time arglezadion of the clas-
sical cluster update to a quantum mechanical system. Tless were subsequently
applied also to continuous-time world lines [179] as weltathe off-diagonal updates

in the SSE method [190]. The improvements in performancaivel to local updates
are enormous (as in the classical case, leading to a muchegdlynamic exponent)
and brought simulations of quantum spin systems to an gntiesv level. Like classical
cluster algorithms, the loop updates are in practice lidnitecertain classes of models,
of which the isotropic Heisenberg systems is one. Geneataizs of the loop concept to
worms[32] anddirected loopg33] (both of which can be regarded as loops that are al-
lowed to self-intersect during their construction, unlike original loop updates where
no self-intersection is allowed) are applicable to a widerge of systems.

For theS= 1/2 model considered here, there is no reason to even disaredlf-
diagonal updates in any greater detail, and we will just $ooa how to implement the
much more powerful loop updates. In the case of the SSE mgtivodperator string is
again the main focus, and the loop update corresponds ttraotisg a loop of operators
(vertices) connected by the links in the linked-list repraation.

Operator-loop updates. An example of an operator-loop and how it is flipped is
shown in Fig. 61. Here “flipping” refers to the spins along kbap (explicitly those on
the vertex legs and implicitly in all propagated states ceddy the loop) as well as
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the operators themselves when we map the changes back egihenees ; a diagonal

vertex with two legs attached to a loop changes to off-diatjaand vice versa. In the
case of all four legs of a vertex belonging to the same lood @mmple of which is
present in the figure), the operator type does not change.

The key aspect of the loop update is that the weight (264) debends on the number
of operators, which does not change when the operator-ledfipped. Therefore,
according to the detailed balance rules, such a flip can allwayccepted. It is also clear
that loops can be large, and a loop flip can therefore leaddogds in the global spin
permutations. The previously discussed pair substitatamrespond to flipping loops
of two operators on the same bond. Any operator substitgmtifically constructed
to sample permutations can also be formulated as an opdoafmrincluding ones that
change a winding number.

Note that the loops are completely deterministic once tleatpr locations have been
specified and each spin in the full space-time configuratielortgs uniquely to one
loop. The diagonal update is tlie factomechanism by which the loops are changed,
and the purpose of the loop update is just to identify and fime of the loops. It is
then best to construct all the loops and to flip each of therh pribbability 3/2 (which
also maintains detailed balance), instead of construdtiogs at random and always
flipping them (in which case some loops would be constructedenthan once and
flipped unnecessarily). Free spins, on which there are ntcesr(such as the first spin
in Fig. 61), can also be considered as loops, since flipping awspin implicitly flips a
whole line of spins in the full configuration of time-periocgiropagated state.

5.2.3. Computer implementation

A convenient definition of a Monte Carlo sweep in the SSE netha full sequence
of diagonal updates, followed by construction (and flip vitbbability 1/2) of all loops.
From the loop illustration in Fig. 61, it is clear why the |edk-vertex storagi () of the
SSE configuration is useful; constructing a loop correspaaanoving in this list using
very simple rules (following a link or moving laterally todtadjacent spin on the same
vertex). On the other hand, in the diagonal update the aigtorage illustrated in
Fig. 55, using a single spin statg) and the operator string), is more convenient.
The configuration will always be stored in this way, and thekdid vertices will be
constructed before each set of loop updates. The loop updegearried out by moving
in the linked listX(), updating the corresponding operators(hat the same time (as
indicated in Fig. 57). The stored spiog) can also be affected by the loop updates,
and this can be taken care of after all loop flips have beefedaput. We now discuss
pseudocode implementations of all the main steps involvedVWonte Carlo sweep.

Diagonal update. We assume that we currently have a valid configuration stored
(which in the beginning of the simulation can be a random spaite and an operator
sequence with only0,0] elements), using (i) = +1 for the individual spins and the
compact storage dh, b]p as single integers(p), with even and odd numberd 2nd
2b+ 1 corresponding to diagonal and off-diagonal operatospeetively (as illustrated
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in Fig. 55). A sweep of diagonal updates can then be implegdakntthe following way;

dop=0toL—-1
if (s(p) =0)then {27}
b=random[1,...,Ny]; if a(i(b))=o(j(b)) skip to nextp
if (random[0 — 1] < Ppser(N)) then s(p) = 2b; n=n+ 1 endif
elseif(mod[s(p), 2] = 0) then
if (random[0— 1] < PemovdN)) then s(p) = 0; n=n— 1 endif
else
b=s(p)/2; a(i(b)) = —a(i(b)); a(j(b))=—0a(j(b))
endif
enddo

HerePnser(n) andPemovd N) are the acceptance probabilities (265) and (266) for insert
ing and removing a diagonal operator when the current expaosder isn. These prob-
abilities can be precalculated or evaluated on the fly. Oneltsa just precalculate time
independent constapiN,/2 and accept a removaliéndom[0— 1] x (L—n) < BNp/2
and an insertion ifandom[0 — 1] x BN,/2 < L —n+ 1. This avoids the more time
consuming divisions required with the full acceptance pholities (265) and (266), or
storage of a large number of thedependent probabilities.

The sites belonging to borimican be stored in a ligi(b), j(b)]. With the exception of
this list, the SSE sampling algorithm is lattice independkiis also easy to modify the
above code for non-unifornip{dependent) Heisenberg coupling strengths. The diagonal
update is the only stage at which the interactions appedicékpand no modifications
at all are required in the loop update.

Construction of the linked vertex listWe will construct the linked list by traversing
the operators(p), starting fromp = 0. Recall that for vertex leg numbke 0,1, 2, 3 of
an operator ap, the corresponding links are storeddw) with v=4p+1, as illustrated
in Figs. 57 and 58. To construct the list, we will make use af tther data structures.
The positionv in X() of the first vertex leg for spim will be stored as/;«(i), while
Viast(i) will be the position of the last leg onencountered so far. Note that the first
leg on a given spin is always below the operator (before tleeaipr has actedl= 0,1),
whereas the last leg is above the operdter 2, 3). Initially all Vss(i) andVas(i) are set
to —1. Later, when encountering an operagqp) acting on spin andVias(i) > 0, then
Viast(i) is the previous list element corresponding to an operation e then use the
corresponding lower led & 0 or 1, depending on which of the two spins acted on equals
i) of the new operator and set the links betweea 4p+1 andVias(i); X(V) = Vias(i)
and X(Viasf(i)) = v. On the other hand, ¥,s(i) = —1, then we have found the first
operation on and seWs(i) = v. In both cases, we set the element for the last operation
oni asMas(i) = v+ 2, where the addition of 2 corresponds to the vertex leg omispi
after the operation (leg inddx= 2 or 3). For each operator, we have to examine both
the sping; andi, on which it acts. In the following pseudocode, the verteddissitions
to be filled for the operator gt arevp + 1, with vp = 4p, where the leg pairs= 0,2 and
| = 1,3 correspond to sping andi,, respectively. We use; andv, to denote the list
elements of the last (previous) operation on the two spifidinks, except those across
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the boundaryp =L — 1,0, can be constructed according to;

dop=0toL—-1
if (s(p) = 0) skip to nextp 28)
Vo=4p; b="5(p)/2; i1 =i(b); 2= J(B); Vi =Vhasin); V2 =Vasi(ic)
if (v1 7 —1) then X(v1) = Vo; X(vo) = V1 elseViirsi(i1) = vo endif
if (v2 # —1) then X(vz) = Vo; X(Vo) = V2 elseViirst(i2) = Vo + 1 endif
Viast(i1) = Vo +2; Viast(iz) = Vo +3
enddo

To connect the links across the time boundary we can use thgsarontaining the first
and last list positions;

doi=1toN
f:Vfirst(i) {29}
if (f #£—21)thenl =Vag(i); X(f) =1; X(I) = f endif

enddo

Since there are also positionsX{) containing no links, corresponding to fill-in oper-
atorss(p) = 0, we should have some way to distinguish these. We can sé{\altto a
negative number, e.gX(v) = —1, before constructing the links. Then anjor which
X(v) > 0 can be used as a starting point to trace a loop.

Implementation of the operator-loop updatéNe want to trace all the loops and flip
each of them with probability /2. In order to make sure that no loop is considered
more than once, we should always start a new loop from a pasitiX () not previously
visited. We then need some flag to indicate whether a podiid@been visited or not.
Instead of allocating separate storage for such flags, weactally use the liskK()
itself—the links stored in it only have to be used once, anda as a link av has
been used we can s¥{Vv) to a negative number, to indicate that this position should
not be used again. To start a new loop, we can look for the fasitipn vp for which
X(vp) > 0. Before traversing the loop, we make the random decisiarhether or not to
flip it. If we do not flip, the loop tracing still has to be cawlieut, in order to flag all the
corresponding(v) as visited. For a flipped loop, we should also change the tpera
in s() to reflect the change diagorabff-diagonal for each visited vertex. We will take
care of possible flips of free spins in the stored statelater. The structure of a code
for tracing and flipping the loops is;

dovo=0to4L —1step2
if (X(vo) < 0) skip to nextvg {30}
V=\p
if (random[0— 1] < 1/2) then
e traverse the loop; for altin loop, setX(v) = —1
else
e traverse the loop; for allin loop, setX(v) = —2
o flip the loop (change operator typs$ = v/4) while loop is traversed)
endif
enddo
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Herevy is a tentative starting point for a new loop, and we actuailytsa new loop
only if X(vp) is a non-negative number. Note that we only have to consider starting
points (thestep 2 on the first line of{30}), because of the structure of the vertex list
and the loops, i.e., two consecutive (even, odd) elementgvn always correspond to
the same loop. To not visit the same loop more than once, wé(s¢t= —1 for loops
that are only visited, anX(v) = —2 for loops that are also flipped. We will need the
distinction between flipped and only visited loops laterewlupdating the stored state
|a) to reflect the flipped loops.

To trace a loop starting at sorag we can use the leg indéx= mod|vp, 4] and move
to the adjacent letj, on the same vertex. With the leg labeling convention in Fgj tbe
rule for the leg adjacent to a légan be summarized &s-= (0,1,2,3) — ' =(1,0,3,2).
This rule can be very efficiently implemented using a bielewperation onl, asl’
corresponds to flipping (6~ 1) the lowest bit ofl. Here we just assume that such
functionality is available in the programming languagedugg., in Fortran 90 one
can use the exclusive-or operation of the intelgeiith 1; I’ = ieor(l,1)] and assign
I = flipbit (1o, 0), where 0 is the bit flipped. We actually do not need to extriaetieég
index itself, but can do the corresponding move to the adjdeg just by manipulating
its locationvg = 4pg + lp in X(). We can use the same bit flip method to find it;
v, = flipbit (vp,0). To move to the next vertex, we use the link; = X(v). This
completes one step of the loop tracing procedure. We nexteprbin the same way
to find the location/] of to the adjacent leg, and from there we move to thevjdinked
to it. This continues until at some st&pve find v, = vo. We have then completed a full
loop. In pseudocode form the traversal of a loop and flippirmgun be accomplished by
(where no subscripts or primes are needed on the visiteddiagtionsv);

V=\p

do {31}
p=v/4; s(p) = flipbit ((p),0); X(v)=-2
v = flipbit (v,0); X(v)=-2
v=X(v); if (v=vp) exit

enddo

Here the flip of the operator type diagorabff-diagonal is also accomplished using
theflipbit procedure, which corresponds exactly to the changing theatqr codes(p)
from 2b (diagonal operator) tot?+ 1 (off-diagonal operator) or vice versa. In the case
in code {30} where the loop is not to be flipped, the only difference is that two
statements involving ands(p) in {31} are absent, and we mark all visited locations as
X(v) — 1 instead if—2 (information which will be used to update the staie).

After all loops have been traced, we also have to update tine 8pthe stored state
|a). For each sité which has a flipped loop passing through it, the stored sgin
should be flipped. We should also flip with probability2lany spin that has no loop
connected to it (i.e., spins on which no operator acts). Butke tasks can be taken care
of using the information stored Wj;.(i) during the construction of the linked vertex list.
If v=Vgst(i) = —1, that implies that there is no operator acting on spi@therwise,
we can use the flag 1 or —2 now stored irX(v) to determine whether the loop passing
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throughi has been flipped [witiX (v) = —2 for flipped loops]. In pseudocode form:

doi=1toN
V= Viirse(i) {32}
if (v=—1)then
if (random([0-1]< 1/2) a(i) = —o(i)
else
if (X(v)=-2)0(i)=—-0o(i)
endif
enddo

This completes the loop update, and we can repeat the cyatesting of: (i) perform-
ing a sweep of diagonal updates, (ii) constructing the linkertex list, and (iii) trac-
ing/flipping all the loops and updating) accordingly. These procedures constitute one
Monte Carlo sweep in the SSE method.

Equilibration and expansion truncation.We now discuss the expansion cut-ff
(when the fixed-length scheme is used). We should make satré #xceeds the max-
imum expansion ordem that will be sampled, so that the truncation in practice is no
an approximation. Since new diagonal operators are irséint®ugh exchanges with
the fill-in unit operators, we also want there to be a reasignabge number of these
s(p) = 0 elements present. But since the memory and CPU time scifek,we should
not makel excessively large. One could in principle define an optimdbr which the
acceptance rate of the diagonal updates is maximized. ktipeait does not matter
much, however, whethér is really optimal, since the off-diagonal updates are argywa
more important in determining the autocorrelation timeg. Will therefore just make
sure that some significant fraction of the elemexifs = 0, so that the samplednever
reached and that many insertions of operators can be attempted dlidlgenal update.

We can aim folL ~ (1+a)(n) with, e.g.,a= 1/3. Since the relative fluctuations of
are small~ /N, we can do this by letting — a x n and augmentin@_with additional
s(p) = O elements after each Monte Carlo sweep whenn > L [settings(p) =0
for Loig+ 1 < p < Lpew Or distributing the zeros randomly. Fig. 62 shows an example
of how this procedure works in practice, during equilibvatiof a 16x 16 system at
inverse temperatur@ = 16. Initially L was set toN/2 = 128. The adjustment df
quickly converges to an acceptable value, and, as showreiingiet, in a subsequent
long simulatiom never comes close 1a

5.2.4. Estimators for physical observables

The autocorrelation time in SSE simulations with loop updais typically very
short; often just a few Monte Carlo sweeps or less [33, 31llc@ations of physical
observables (“measurements”) should therefore normallpérformed after every (or
every few) Monte Carlo sweep. As discussed in Sec. 3.2, tteraurelation times do
not dictate how often measurementaybe done, only with what frequency independent
data are generated. Autocorrelations, thus, affect tloe bars but have no effect on the
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FIGURE 62. Evolution of the expansion cut-dffat the initial stage of an equilibration run of a 186
Heisenberg system #& = 16. The number of operatorsin the string after each Monte Carlo sweep is
also shown, along with the maximumreached so far. The final cut-off after 5000 sweeps was6764.
The inset shows the distribution ofin a subsequent run of IMC sweeps.

correctness of computed expectation values (i.e., it isnmohg to measure correlated
data, although it may be wasteful if the measurements take@ time to evaluate)

provided that the total simulation time is much longer tHemautocorrelation time. Data
binning should be used to compute error bars reliably, asdifgussed in Sec. 3.2. We
here discuss several types of observables of interest inc&8Hlations. More details

and derivations of the expressions can be found in Refs, [IBB 207].

Energy and specific heat.We already discussed some observables in Sec. 5.1.3; the
internal energy (250) and the related expectation valug)(@ban individual operator
in the hamiltonian, as well as the specific heat (252). Giba(H) = —(n) /3, it may
seem surprising that the specific h€t ((H?) — (H)?)/T2 is not given just by the
fluctuation inn, but there is also a term (n). This is becaus¢H?) = (n(n—1))/B2,
which can be easily shown using the same procedures leadlifig)t= —(n)/B in
Sec. 5.1.3. Note that this expression includes the conktdrsubtracted from each bond
operator in (256), but that this constant cancels out in pleeific heat expression (252).
The specific heat in practice becomes difficult to computiabgl (i.e., its statistical
error is large) at low temperatures (where it becomes spt@tause it is the difference
of two large numbers~ N?32).

Diagonal operators. Expectation values of operators diagonal in freomponent
basis are also easy to evaluate, using averages over thagattep states;

L-1

1 1t
(O = L ‘)Zo<a(p)‘oz‘a(p)> =L pZoOz(p)' (267)

286

Downloaded 27 Feb 2012 to 128.197.40.223. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



It is not necessary to evaluate this average using,adls successive propagated states
differ by at most two flipped spins. One can instead use agha@timmation ovep,
e.9.,0,(0) + OL(N) + O,(2N) + .. ., to save time. In some cases, however, one may as
well just propagat®,(p) from p=0to p=L—1 by first computingd,(0) and then
update the valu®,(p) according to the spin flips occurring when propagatim@p)).

For example, the fully averaged contribution to the expemtavalue of the squared
staggered magnetization from an SSE configuration can beutaah as follows:

m=(1/2) 3;@o(i); me=0
dop=0toL—1 {33}
if (mod(s(p),2)=1)then
b=s(p)/2; a(i(b)) = —a(i(b)); a(j(b))=—0a(j(b))
m=m+2@o(i(b))
endif
if (S(p) # 0) Mg = Mg+ P
enddo
Me = Mg/ (NN?)

Here @ = 41 is the staggered phase factor for sitand m contains the staggered
magnetization, which evolves as the operator string istsad. The change mwhen
two antiparallel spins are flipped can be expressedpas(Rb)), becausepjo(j(b)) =
@ao(i(b)). The average ai squared is accumulated B, in this example only using
then propagated states generated by the original index sequétiaaut the fill-in unit
operators [i.e., skipping the steps where the operttor= 0]. One can also sum over
all L instances of the states, in which case the result would beedhbyL instead ofn
on the last line. As written above, the special caseO0 is not treated correctly, but the
code is easy to modify by just usimg, = m? /N2 in that case.

The computational effort of the measuremen{88} scales agN, i.e., the same as
the SSE sampling algorithm. To compute the Fourier transfofrthe spin correlations
(the static structure factor) at some arbitrary momentustifig thatm? corresponds to
S(m), with 1T denoting the staggered wave-vector, erg= (7, 17) in two dimensions],
e.g., for use in the correlation-length definition (70) oB);7one can use a similar
procedure for the real and imaginary partsngfy),

m(q):Zs?cos(q~r)+i2§sin(q-r), (268)

with @ in {33} replaced by the corresponding sine and cosine factors [aplitigly
considering the changes from both the flipped spinglatand j(b)]. The structure
factor is then accumulated according3@|) = S(q) +Re?{m(q)} +Im?{m(q)}.

For computing the full correlation function,

Co(rij) = (SS)), (269)

averaged over ali, j [or the Fourier transforms for alfj, which can be written as
(m(g)m(—q))], it would not be practical to update all theSeN different functions after
each spin flip as i{33}. It is then better to compute all the correlations from strat
in, e.g., evenN:th propagated state. This still leads to a rather expemssiating] BN?
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of the effort to measure all the correlations—a fadtbworse than the sampling. One
should then judge whether it is better to compute only a dudfstbe correlations [e.g.,
along some lines in théx,y) plane] or just measure them less frequently, in order for
the measurements not to completely dominate the calcualatio

Susceptibilities. Another important class of observables are generalizezkgtibil-
ities, i.e., linear response functions of the form

_ 9{A(D))
XAB= T (270)

whereb is the prefactor in a field terimB added to the hamiltonian awdis the operator
whose response to this perturbation we want to compute. ¥amgle, we may be

interested in the respongg at sitej when a magnetic field acts only on sitén which
caseA = Sf andB = §. Such a susceptibility is given by the Kubo formula [186]

B
xoa = [ dT(ATIB(0) ~ B(A)(B) @)
0

where A(T) = e ™Ae™. If both A and B are diagonal, this Kubo integral can be
evaluated in SSE simulations using the generic formula

/B arameo) = (L (S am) (580 )+ (L5 amsp
/ n(n+1) \ & o n+1 &, '

(272)

The sums oveA(p) andB(p) can be computed using code similaf{&83}.

We are often interested in susceptibilities for whith: B, e.g., the magnetic response
x(q) at wave-vectoq, in which caseéA = B=m(q), with m(q) the Fourier transform of
the spin configuration given by (268). Since the exact vafyg(q) must be real-valued,
one only has to compute the real part of (272). If all locapmesse functionsgy;; =
X(rij) are computed in a simulation, the Fourier transfor(q) can later be evaluated
using these. These response functions are directly abte=#siNMR experiments; see
Ref. [208] for an example.

Note that if A and B commute with the hamiltonian, thei(t) = A(0) = A [and
A(p) = AandB(p) = B are independent gf in (272)] and the susceptibility reduces to
the classical expressigie = B((AB) — (A)(B)). In practice, for the Heisenberg model
the only case where this form applies is the uniform magrsetsceptibility;

N
x=xO=kmz, m=3¢ @73)
i=1

Here the ternB(M,)? in (271) vanishes, sinde does not include a magnetic field.
If the operatorsA andB in (271) are not diagonal, the susceptibility is more com-
plicated in general. Here we will only discuss an importgecsal case, in which the
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estimator actually is very simple. If the operators invalae two terms of the hamil-
tonian, as defined in Egs. (255) and (256) and here referrggstasHa andHg for
any two instances of those (any two diagonal or off-diagdsid operators), then the
susceptibility measurement just involves counting the nersN(A) andN(B) of those
operators in the sampled SSE operator sequences;

Xeabts = % [(N(AIN(B)) — Eas(N(A)] . (274)

The most important example of this type is the current suguéty x,,., where the
spin current operatdy (here in the lattice direction, for definiteness) is defined by

N

IX:_Z[S(ri)ﬁ(ri+ﬁ)—S+(ri)§(ri+?)], (275)

where we assume, for simplicity, a hamiltonian with onlymes#neighbor interactions.
For longer-range interactions, there would be correspandirrent terms between the
same site pairs as in the hamiltonian. Although (275) is mattly a sum of the off-
diagonal operators (256) used in the SSE sampling, thosatopge can be written as
sums of two parts,

Hop=HS +H,, Hf= Sﬁb)%)’ H, = 5T(b>5Ib>v (276)
where the site pairi(b), j(b)] in each case are assumed to be ordered in such a way
that the+ and — terms transport one unit of spin in the positive and negatikection
rj—r; of the bond, respectively. A key point here is that, althotihghSSE configurations
contain the full off-diagonal operatoks, , only the+- or — part in (276) contributes in
each instance (with the other part destroying the statdst@t). One can therefore use
(274) to evaluate local current-current response funstadrihe form

B
Nos, = [ Al (Dl 0)). (277)
0

wherely, here denotes the current operator at bbnidsing (274) one obtains
Npyb, = ([N (b1) = N7 (b1)][N" (b2) — N7 (b2)]) — Byb, (N (b1) =N~ (by)), (278)

whereN™(b) andN~(b) denote the number of operators in the SSE operator sequence
transporting spin in the positive and negative directi@spectively, across the bond

b. The meaning of this becomes clear when looking at a graptgpaesentation of an
SSE configuration, such as Fig. 55. There one just has to sumuthber of off-diagonal
events in which an spin is moved to the right (the positive direction) minusiienber

of left-moving events. The terltN™ (b) — N~ (b) is zero, unless the winding number in
the lattice direction defined by boiids not zero, which can be seen in the illustration of
winding numbers in Fig. (50). It can be noted that the formBj23 the current response

is identical in SSE and path integral (world line) methods.
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Spin stiffness. We discussed the spin stiffness in the context of the claks3iy
model in Sec. 3.5. The basic definitions of this quantityTat 0, Eq. (83), and at
T > 0, Eq. (86), are identical for quantum spin systems (XY orsdeberg models)
as well as bosonic systems more broadly (where the analag@uity is the superfluid
phase stiffness, which is proportional to the superfluidsitgh Deriving Monte Carlo
estimators for SSE or world line methods, one finds that tha &12) in (97), which
is a classical response function, should be replaced by dhesponding quantum
mechanical Kubo formula, giving the spin stiffness in thenfo

B
ps= () [ dT((DI(0). (279)
0

where we assume that the phase twist is imposed in the lattiection. The Kubo
integral here consists of a sum of bond-current responsgifuns of the form (277),
and using the result (278) one finds that the energy téfghis exactly canceled by the
J-function terms coming from (278). This leads to a very sienptpression for the spin
stiffness in terms of the SSE (or world line) configurations:

1

= B—N<<N¢—N;>2>- (280)

Ps

HereNy andN; denote the total number of operators transporting spinérptisitive
and negative direction, respectively. For a spatially isotropic sysfartwo or three di-
mensions, this can of course be averaged over the dimensgibareas for an anisotropic
system the stiffness depends on the direction.

The spin stiffness is often expressed as the fluctuationeofvithding number (here in
thex direction, with analogous expressions for other direcjon

1
W= — (N =N, (281)

i.e., the size normalized curremif{ = 0,+1,+2,...). For ad-dimensional system with
N = LY the stiffness is jusbs = (W2) /B for any directiona, but for other shapes (e.g.,
N = Ly x Ly with Ly # Ly) the lengths also enter and (280) looks simpler.

In derivations of the spin stiffness, it is normally for silicfty assumed that the spins
order in the XY plane (in spin space), whereas in a Heisenimerdel the direction of
the order parameter in spin space is not restricted to thisep{the symmetry is not
broken) in an SSE simulation of a finite system. A simple iotal averaging argument
shows that the expression (280) should be multipliedt2/i8 order to obtain the correct
stiffness of a symmetry-broken state (i.e., when considettie thermodynamic limit).
The expression (280) applies also to the qguantum XY modél][20here the result
should not be multiplied by 2.

A winding number estimator completely analogous to (2803 wrgginally derived in
the context of the superfluid phase stiffness of bosons itirmoous space [210]. The
role of global cyclical permutations of particles in supgdity dates back to Feynman’s
pioneering work on path integrals [175].
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FIGURE 63. Example of clusters formed by space-time loops passingitiira propagated stgie(p))

(for arbitrary fixedp). Here there are six such clusters, labeled.16. Open and solid circles correspond
to T and| spins, respectively, iftor(p)). When a loop is flipped, all spins in the corresponding cluste
also flipped, as indicated here with two different configiarsg corresponding to the two states of cluster
1 (the sites enclosed by larger circles). Note that the spithén each cluster are always in one of the two
staggered configurations.

5.2.5. Improved estimators

The operator-loop update in the SSE method (as well as lodptap more broadly
[31, 191]) is an example of a cluster update. Such non-lqoddtes were first developed
for classical Monte Carlo simulations of the Ising model§lL10ne aspect of cluster
methods is that it is possible to take averages of estimé&iogshysical quantities over
all orientations of the clusters, because the configuratieight does not change upon
flipping a cluster. This is immediately clear in SSE simuati ofS= 1/2 Heisenberg
models, because the weight (264) only depends on the nunftmgreoatorsn in the
sequence, which does not change when a loop is flipped. Ifuhwar of clusters (here
operator-loops) isn, then the total number of equal-weight configurations™s @d
the average over all of these configurations can provide ehrfegs noisy estimator
than one depending on just a single configuration. The drpciat here is that, for
many important quantities, this average can be computdgitaradly, and the resulting
improved estimatais of a simple form that can be evaluated rapidly in simulaidlere
we only discuss the rather simple cases of the the statial¢upe) structure factor and
the uniform magnetic susceptibility. For improved estionatfor some other quantities,
see the review article by Evertz [31].

Consider a propagated state(p)), e.g., the storeda(0)). In the linked vertex
representation of the SSE configuration, illustrated in Bify there is a loop passing
through each of the spins in this state (with spins witho@rafors acting on them also
considered as individual loops). The same loop can go thirowny spins ina (0)), and
all spins belonging to the same loop form a cluster, in thesdémat if the loop is flipped
all the spins in the clusters are flipped simultaneouslyeNbat the loops are objects
in space-time, while the clusters discussed here are defimedcut at fixed time (here
propagation indey). A cluster can consist of several parts that appear disagied in
space, since such pieces can be connected in the largertgpaceolume where the
loops exists. An example of clusters on a 2D lattice is showfig. 63

Since we are dealing with a bipartite lattice, and becausdabp structure is such
that the spin on a vertical loop segment (referring to pe$wsuch as Fig. 61) changes
each time one changes direction when moving along a loopsgims within a cluster
formed at a given state (p)) always have a staggered structure. The staggered magne-
tizationmg( ) of a cluster labeled, with j = 1,...,C, whereC is the total number of
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clusters, is themg(j) = 4n;, wheren; is the number of spins in clustgr For a given
configuration, the total staggered magnetizatiy= zjc:lms(j). When averaging the
square of this sum over all the different realizations ofstdu orientations, the cross
terms(mg(i)mg(j)) = 0 (fori # j). One is then left with just the= | contributions, and
the staggered structure factor is simply given by

C
S(m) = % <J_zln,2> : (282)

Structure factors at other wave-vectarsare only marginally more complicated, de-
manding in place of the cluster sizag a summation over each cluster of the phases
@exp(iq-r), wherer refers to sites on a given cluster agd= +1 is the staggered
phase factor, which takes care of the staggered spin steusithin the clusters (and the
denominator 4 corrects for the fact that the spin valuestdr€). One can here also use
the fact that the true structure factor must be real-valoedriyq.

In principle, equal-time correlation functions such as $treicture factor can also
be averaged (fully or partially) over the propagation ingexas in Eq. (267). This,
however, requires more work for the improved estimator thaode{33} for the simple
estimator, because it takes some book keeping during theudpdate to construct the
clusters for several fixed, and doing so may not always pay off. Without this averaging,
however, a simpl@-averaged estimator, such as the one implemented in{8R}emay
actually give better results at low-temperatures, wheeegthin due to averaging can be
very significant. The casg= 0 is special in this regard, because this corresponds to the
total squared magnetization, which is a conserved qudintity independent on the SSE
propagation index), and no further averaging overcan then be done to improve the
statistics further. The optimal estimator for the uniforaseeptibility (273) is therefore

GRS e

Susceptibilities at other wave-vectors involve the fulksp-time loop structure, not just
the clusters (cut through the loops) formed at a fixed stateekample, the staggered
susceptibility is given by the sum of the squares of all thuplsizes [31].

5.2.6. Program verification

QMC programs should always be verified by comparing resoitsiall systems
with exact diagonalization data. When correctly implerednthe SSE method should
be exact, which means that the deviation of a computed duénim its true value
should be purely statistical, due to the finite number of dathgonfigurations. We
have discussed how to quantify the statistical fluctuationterms of “error bars” in
Sec. 3.2. Deviations beyond the error bars are due eitheotpgamming errors of flaws
in the random number generator used. While most programerimys would lead to
obviously wrong results, there are also possible subtlergthat may only lead to
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FIGURE 64. The uniform susceptibility of a # 4 Heisenberg system versus the temperature. The curve
is the exact result from a full diagonalization. The points 8SE results based on®@ipdating sweeps

for eachT. The error bars cannot be resolved on this scale. The ineetsstine deviation of from the
exact result with error bars, for both simple and improveal) estimators. The data points have been
slightly shifted off their actual’ values in order for the error bars of the two estimators not/&rlap.

minute deviations from exact results for small latticesclSaystematical errors may
grow with the system size, with potentially grave consegaesnThe same may be said
about random number generators; bias effects due to ingpeggfedom numbers may
be very small for small lattices, but can become more sigmififor larger systems. It
is therefore important to make comparisons with exact diaipation results based on
very long SSE runs, to detect possible small deviationsI&\tis impossible to strictly
prove that a program is correct in all respects, agreemenittin very small error bars
with exact data makes this very likely.

Test results. We now discuss some test results for 1D and 2D Heisenberglmode
The random number generator used in these calculationsrfastiother SSE calcula-
tions discussed in these lecture notes) was a simple 6ihéirl congruential generator
with multiplier 2862933555777941757 [211] and additiorl61.3904243.

Fig. 64 shows the susceptibility per spin of a4t system. For each temperature
10% updating sweeps and measurements were carried out, wittataesubdivided into
100 bins for computing the statistical errors. Foe J/10, this required approximately
100 CPU hours on a mid-range PC workstation. The error bdin@teas one standard
deviation of the estimated fluctuation of the average, asidsed in Sec. 3.2) is typically
~ 10-6 when the standard estimator fpris used, and even smaller with the improved
estimator (283). The relative error (the error bar dividggbis ~5x 10 8 for T /J~ 1.
The deviations of the averages are completely consistehttive size of the error bars.
Recall that for correctly computed statistical errors, sheuld expect about/3 of the
data points to bracket the true data within one error bar.g&ie in precision with the
improved estimator can be much larger than in Fig. 64 fordagystems.

While it is essential to confirm the unbiased nature of the 8&Eulations on small
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FIGURE 65. SSE results for the internal energy per spin at several sevemperature8 = 2™ for
Heisenberg chains of lengtih = 1024 and 4096 compared with the corresponding exact (Betbetz)
ground state energies. The SSE results were obtained usi@g1L0° updating sweeps for eaah which
required several hundred CPU hours for the large&.

lattices, one might still worry about potential problemahwihe random number gen-
erator for larger systems. In one dimension, we can alsdS8Et calculations against
exact Bethe ansatz results for very long chains in the gratatk. To approach the
ground state in SSE calculations, it is convenient to usersa/temperatures of the form
B =2Mand go to sufficiently largen for calculated quantities to becomeindependent.
This approach is illustrated in Fig. 65, which shows therimdéenergyE = (H), com-
puted using the simple expansion-order estimator (250¢tains of lengtiN = 1024
and 4096. Numerically computed Bethe ansatz results f@etbbain lengths are listed
in [212]. The agreement between the calculations is pewfibin error bars, with no
detectable temperature dependence for the last threerqudnts for eachN. This good
agreement, to within relative statistical errors as low asl®~’, shows quite convinc-
ingly that the calculation is for practical purposes corngiieunbiased and that ground
states of even quite large systems can be studied.

5.3. Applications of SSE to 1D and 2D systems

We next discuss several illustrative results for 1D and 23 étgerg models obtained
with the SSE method. Results showing clearly the logaritheairrections to critical
behavior in the 1D chain are presented in 5.3.1. The quablgtdifferent ground states
of n-chain ladder systems with even and addre discussed in 5.3.2. The sublattice
magnetization and some other low-energy parameters assdevith the Néel state are
computed for the standard 2D Heisenberg model in 5.3.3, m5d3.4 dimerization is
introduced in this model, to drive a quantum phase tramsitito a plain non-magnetic
state. Quantum critical finite-size scaling behaviors afows quantities are analyzed.
The more complex case of a Néel-VBS transition is invesigjan 5.3.5, using two
types of J-Q models that exhibit, respectively, continuaug first-order transitions.
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FIGURE 66. Spin correlation function at distances= 2™ for chains of lengtiN = 1024 and 4096.
The error bars are smaller than the symbols. The solid csreé ihe expected formr=2in(r /ro)Y/2,
with A = 0.21 andrg = 0.08. The dashed curve shows the fofir—1 for comparison. These results
were obtained using inverse temperatyBes 213 and 24 for N = 1024 and 4096, respectively, which is
sufficient forT — O convergence.

5.3.1. The Heisenberg chain

Spin correlations at T=0. In Sec. 4.3.1 we discussed Lanczos results for the spin
correlation function of the Heisenberg chain and saw somts luf the expected loga-
rithmic correction to the- 1/r critical behavior (Fig. 34). The system sizes accessible
with the Lanczos method are not sufficient for studying theesding corrections quanti-
tatively, however. As we saw above, with the SSE method weiatudies of the ground
state is possible for chains of several thousand spins @aiteful checks of the conver-
gence to th& — 0 limit). Fig. 66 shows the spin correlations fdr= 1024 and 4096
at distances = 2™, graphed on a log-log scale. To save time, only the coroelatat
these distances were computed [for a scahrigg(N) of the time to carry out spatially
averaged measurements]. The results for the two system&ingcide closely for up
to 27, indicating convergence to the infinite size values up te distance foN = 1024
(and therefore up to ~ 2° for N = 4096, since the convergence behavior should scale
approximately linearly witiN).

The expected fornC(r)| = AInY/2(r /ro)r 1 [57, 58, 59] is very well reproduced up
tor = 2 for N = 4096. The parameters andrg obtained from a fit are listed in the
figure caption. If one leaves the exponent 1/2 of the logarithm as a free parameter
to be obtained from the data based on a fit, the exponent ircsrds out close t0.5,
but with a rather large error bar of, roughl0.1. To really investigate the exponent
carefully, one should further increase the chain lengthig¢lvis possible in principle).

If one did not know about the existence of a log correction tied to extract the
form of the spin correlations on the basis of numerical dations alone, one might at
first sight conclude that the decayfisl/r® with a ~ 0.85, based on the data in Fig. 66.
There are, however, small but significant deviations fronuige power-law, which can
be detected only if the relative statistical errors are cigifitly small. In the data shown
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FIGURE 67. The circles show SSE results for the uniform susceptibditghe Heisenberg chain at
temperature3 of the form 2™ m=0,1,2,... for different power-of-2 chain lengths up t = 4096.
Error bars are much smaller than the circles. The edaet16 result is shown as the solid curve and the
dashed curve shows the Iofvform (284). The asymptotit — 0 value, Jx = 1/7, is indicated by the
short horizontal line segment on the left side of the graph.

in the figure, the error bars are too small to discern. Whieathsolute errors are small,
typically ~ 2 x 10 for N = 4096 (based on approximately®l®lonte Carlo sweeps at
B = 2 and using an improved estimator), the relative error is maajer, about W02
for r = 27, growing to 002 for the longest distange= 211,

Low-temperature magnetic susceptibility.ogarithmic corrections are also impor-
tant in the Heisenberg chainat> 0. The most prominent example is the uniform mag-
netic susceptibility, for which a renormalization-groupdy of the low-energy field-
theory predicted the form [7, 213]

1 1
X(T):HCJFW’

where theT — 0 valuex(0) = 1/2rc, wherec = Jm1/2 is the spinon velocity, agrees
with the Bethe ansatz solution of the ground state of theddisrg chain. The Bethe
ansatz can also be extendedlto- 0. Good agreement with the asymptotic expression
(284), with the parametély = 7.7 (adjusted to fit the Bethe ansatz results), was found
at low temperaturesT(/J < 0.02) [7]. Note that the logarithmic correction in (284)
implies a very slow convergence to tfie= 0 limit, and it would therefore be difficult

to extrapolate numerical results without knowing about phesence of this kind of
correction. A higher-order logarithmic correction to (2&talso known [213], but here
we will just consider the leading-order correction.

Fig. 67 shows SSE results for the susceptibility obtainedgushain lengths of the
form N = 2" and temperature$ /J = 2~™. Due to the excitation gap in chains with
finite N (discussed in Sec. 4.3.1y,decays exponentially to zero below a temperature
T ~ 1/N. The log-lin scale used in the figure makes these finite-dfeets very clear
and also shows how the results converge rapidly to the thdyn@amic limit form once

(284)
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the finite-size gap becomes smaller tlanThe agreement with the form (284), using
the valueTp = 7.7 determined in Ref. [7], is very good fdr/J below Q05 (in fact, for
some unknown reason, the agreement appears to be evenibattar Ref. [7]).

The main utility of the form (284), beyond its role in estabiing the correctness of
the low-energy field-theory, is that it is valid not only fdret simple Heisenberg chain
considered here, but for any 1D spin system (at sufficiewtly temperatures) which
is in the same phase as the Heisenberg chain. This includdsustrated ¢-J, chain
discussed in Sec. 4.3.2, fds/J; less than the dimerization poiid,/J1)c ~ 0.241.
Exactly at the dimerization point the leading logarithmacrection should vanish [164]
(but there are still other, higher-order corrections), le/tsibove the transition point a
spin gap opens angd — 0 even forN = «. The asymptotic form (284) should be valid
throughout the QLRQT¥) phase of the chain including longer-range interactiohs [t
model discussed in Sec. 4.3.3], as well as in many other regst€he parameters
andTy depend on the model parameters and fitting of numerical datades a way to
extract, in particular, the velocity. As we will see in the next section, ladder systems
consisting of an odd number of chains also are in the sanmieatnithase as the single
chain, and (284) applies also there.

5.3.2. Ladder systems

A ladder lattice consists of a fixed numbsgrof coupled 1D chains (often referred to
as the legs of the ladder) with the chain lenggtaken to infinity (or, in practice,x/Ly
sufficiently large to give results converged to this limBtrongly-correlated quantum
systems in this geometry [9, 214, 215] play an importantasla means of interpolating
between one and two dimensions. Many materials exhibiuetsire of weakly coupled
ladders with smally, which motivates studies &f, = 2,3, etc. On a more fundamental
level, it is very interesting to see how the special propsrtf 1D systems evolve with
increasingLy and approach the 2D limit [216]. Here we will investigate soaf the
most essential properties of Heisenberg ladders ljtlp to 6.

The most important aspect of the physicsSef 1/2 Heisenberg ladders is that they
have completely different low-energy properties for eved addL, (the number of sites
on each rung of the ladder). For evignthere is always a spin gap (which vanishes as
Ly — =), while oddiy systems are gapless and have properties similar to a sibgle 1
chain (below an energy or temperature scale which vanighigs-a «). This difference
can be understood roughly based on a simple picture of valeods [217], illustrated
in Fig. 68. If there is no coupling between the rungs= 0, J, > 0), the ground state of
the 2-leg ladder is just the product of rung singlets—a uaignon-degenerate) state with
a gapJy to the first excited state (in which one of the singlets is pted to a triplet).
For the 3-leg ladder, on the other hand, the ground state ioffwvidual rung is two-fold
degenerate, witB, = +1/2. When coupling the runggy(> 0), this degeneracy is lifted,
but, for any ratiaJy/Jy, there is a remnant of the degeneracy, which can be unddrstoo
as arising fromLy interactingS= 1/2 degrees of freedom. This leads to low-energy
properties similar to those of a singke= 1/2 chain. In the 2-leg ladder, the singlet-
triplet excitation gap remains non-zero for afy'Jy, and the low-energy excitations
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FIGURE 68. lllustration of the ground states of the 2-leg and 3-leg Elelzerg ladders at inter-rung
couplingJx = 0. The vertical bars indicate valence bonds (singlets) theaircles show unpaireland

| spins. The ground state of the 2-leg ladder is a unique ghpgéeluct, whereas in the 3-leg case each
rung-state is two-fold degenerate, wify,, = +1,/2. Each of these states is a symmetric combination of
the two states with the unpaired spin on the upper and low@nchere a random configuration of the
location ands? of the unpaired spin is shown for each rung.

above this gap form a band of propagating rung triplets [2IB§ spin correlations are
exponentially decaying with distance, with the correlatiength diverging aky — oo.

In the valence bond basis (discussed in Sec. 2.2), the Zdietel withd, > 0 is still
dominated by short bonds (one can say that it is an RVB spindjcut, due to the
constraints of the ladder geometry, it is also appropriateat! it a VBS), whereas the
critical state of the 3-leg ladder requires bond probaesithat decay with the bond
length as a power-law [217] (and such a state may be calleificat RVB state). The
same pictures remain valid also for the ground states ofladaf larger width, but the
energy scale associated with ladder behavior vanisheg-ase, with cross-overs into
2D behavior at higher energies. The relevant energy scttie ispin gap for evehy and
the spin stiffness for oddy—as we discussed in connection with the KT transition in
Sec. 3.5, power-law correlations can be sufficient to sagtainon-zero spin stiffness,
and this is the case with the 1/r correlations in the single chain and odd-leg ladders.

Here we will discuss results only for spatially isotropiaptings; Jx = Jy. For even
Ly, the behavior is similar for periodic and open boundary @ in they direction
(and forLy = 2 periodic boundaries only corresponds to doublijgwhile for oddLy
the gapless nature of the system forJ)lJy applies only for opety boundaries. In the
“tube” geometry (periodiy boundaries), oddly leads to frustration, and the behavior
is then much more complex, with several possible grouna giises [219]. In the
SSE calculations discussed below, ogdroundaries were used in all cases, whilexhe
boundaries were periodic.

Spin correlations. In the preceding section we studied the spin correlatiorthef
single chain and confirmed the presence of a logarithmiection to the 1/r critical
behavior. We now test this behavior for oblgl> 1, and also look at the exponentially
decaying correlations for every.

With open boundary conditions in thedirection, the correlato(S - Sj) is not a
function just of the separatian between the two spins, but depends ontbeordinates
of both spins. Here we use the maximal reflection-symmatrithey-direction) distance
between two spins, i.e., for a given spin(aty), withx=1,..., Ly andy=1,...,Ly,
the correlation is computed with the spin (&t+ Ly/2,Ly — y+ 1), with the periodic
boundary condition taken into account in theirection. Averages are then taken over
all (x,y). This is just one convenient choice, and it is not importacdy how the
separation in the direction is treated, because the correlations anywayrikpaly
weakly on it when thex separation is large.
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FIGURE 69. Spin correlation function at the longestdistance (with a certain averaging ower
separations, as discussed in the text) jnx Ly Heisenberg ladders with differefi, as a function of
the lengthLy. The dashed line has the foi@ix) O 1/x.

Fig. 69 shows the long-distance correlation function vessg Ly /2 for ladders of
width Ly = 1—6. The qualitative difference between even and bgis clear, and in the
case of odd_x > 1 the behavior for largéy is very similar to theLy = 1 system, with
deviations from the forn€(x) O 1/x that can be explained by a logarithmic correction
(which we will not analyze in more detail here). For evsp there is an exponential
decay for large, but forLy = 6 a different short-distance behavior can already be seen
emerging. For very largey andx up to~ Ly, one should expect the correlation function
to be of the 2D form, for both even and odg, i.e., C(x) should approach the value
mé ~ 0.095 of the 2D squared staggered magnetization (illustratéddata in Fig. 5).
Forx> Ly, there should be a cross-over into either an exponentladfiafor evenlLy)
or the 1/x form with a logarithmic correction (for odty). In Fig. 69 one can see that
the correlation ak = 8 is almost the same fdr, = 4 — 6, but for largerx there is still
an increase witlhy. To clearly observe 2D behavior followed by cross-overs &ither
even- or odd-leg ladder asymptotic behavior, much lakgevould be required.

Susceptibility. The temperature dependence of the susceptibility proadesnve-
nient way to extract the spin gafp for eveniy ladders, and it is also interesting to
investigate the applicability of the expected asymptatiorf (284) for odd.y. Fig. 70
shows SSE results fax, = 1 — 6, with Ly sufficiently large for each temperature to con-
verge accurately to the thermodynamic limit. For the lowestperatureky = 1024 was
used. For fixed', convergence as a functionlof can be seen fof /J > 0.2, where the
results forLy = 4,5, and 6 are almost the same. The converged curve corresfmtis
2D limit (for which results for largé. x L lattices are shown in Fig. 73). The qualitative
difference between ladders of even and odd width is cleavatémperatures, witly
for evenLy decaying to zero exponentially below bjpdependent temperature. For odd
Ly, it can be noted that tHe — 0 value decreases witly. One can argue that tiie— 0
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FIGURE 70. Temperature dependence of the susceptibility of Heisgriadders of different width,,.

The lengthLx was sufficiently large for each to represent accurately thg — co limit. The right panel
shows the low-temperature behavior fgr= 2 — 6 on a more detailed scale. The statistical errors are not
discernible, thanks to the use of the improved susceptitditimator (283).

susceptibility per rung should be roughly independent,dbr smallLy [216], and, thus,
the susceptibility per spin should scale approximately/as.We will not do any fitting
to the asymptotic form (284) here, because it is valid onhywEry low temperatures for
Ly > 3 (and a higher-order logarithmic correction may be necgsasaless extremely
low temperatures are used [216]). Note that {@) ~ 1/L, form is not inconsistent
with the 2D behaviok2p (0) > 0, because the ladder behavior (for both even antdy)ff
applies only below som&*(Ly) which goes to zero wheln, — co.

Let us now analyze they dependence of the spin gépfor the even-width ladders.
One expects roughly an exponential low-temperature stibdép, x ~ exp(—A/T),
due to the fact that the ground state is a singlet (non-magneth (M2) = 0) and the
first excited state is a triplet (magnetic, withM2) = 2/3). This behavior is, however,
modified by the fact that there is a whole continuum of magnsttites (folLy — )
aboveA. A low-temperature form of the uniform susceptibility o&tB-leg ladder,

a
T =-"e?T, 285
XM=~ (285)
has been obtained by analyzing the limit of weak inter-ruagptings perturbatively
[218]. This form can be expected to hold asymptotically Tor- 0 for anyJy/Jx and
evernly (for Ly — ). The gap can be extracted from numerigél ) data by considering
the logarithm ofy/T x in (285), giving
~TIn(vTx)=A—-TIn(a). (286)
Thus, the intercept of a line fitted toT In(v/T x) versusT equals the gap. Fig. 71
shows data analyzed in this way. In all cases, a linear behabitains at low tempera-
tures, and line fits give the gaps listed in the figure. A fielebtietical treatment shows

that the gap for a spiS-ladder system should decrease wlithas A ~ exp(—7Sly)
[220], which is not in good agreement with the results oladihere (and less precise
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FIGURE 71. The susceptibility of even-width ladders analyzed aceuydd Eq. (286). Extrapolations
in the linear lowT regime, shown as lines extending through the points uséderiits, give the spin gaps
indicated in the figure. The statistical precision is royghke number of digits shown.

earlier calculations [216]). Calculations for lardgrwould have to be carried out (which
can certainly be done) to investigate this issue in moreildeta

It would also be interesting to study the odd-leg laddersléoger Ly and lower
temperatures than what has been done until now, to extradtytdependence of the
parameters andTgin (284). An alternative approach is to map the low-energpprties
of a ladder onto a single chain with longer-range intera&i@21], which arise because
the S= 1/2 degrees of freedom of the isolated rungs are not compl&iedlized to
individual rungs once they are coupled. The localizatiowgth increases withy, and
eventually, forLy — oo, an effective model with sufficiently long-ranged intefant to
produce Néel order (as discussed in Sec. 4.3.3) shouldofdtae mapping procedure
has not yet been tested for ladders with largehowever, and one should therefore also
study the full ladder systems at lower temperatures ancafgetLy.

5.3.3. Long-range order in two dimensions

We already discussed the nature of the antiferromagnigticedered (Néel) ground
state of the 2D Heisenberg model in Secs. 2.1 and 4.4.2. iotation of the best
currently available QMC results [50] for the squared suldatmagnetization, shown in
Fig. 5 givesms = 0.307431) for the infinite system, whergl) denotes the statistical
error in the preceding digit. This result deviates only bywbl1% from the linear
spin wave resultms = 0.3034. Higher-order spin wave calculations [40, 41, 42] give
ms ~ 0.3070. As discussed in Sec. 2.1, this good agreement withctbalavalue can be
traced to the fact that the quantum fluctuations are not ttaig, reducing the sublattice
magnetization by only about 40% from the classical valuae®important ground state
quantities, such as the spin stiffness [222], the transveragnetic susceptibility, and
the spin wave velocity, are in similar good agreement with s@ve theory (but we will
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not make any detailed comparisons of values here).

After discussing some general data fitting issues, we wilk lempute the energy
and the spin stiffness using finite-size extrapolation¥ ef 0 converged SSE results
(with proper convergence confirmed using checks such a® tstoswn in Fig. 65 for
all quantities of interest). In addition to thex L lattices normally used, we will also
consider rectanguldr, x Ly lattices withLy = 2Ly. This enables a consistency check of
the extrapolations. We also discuss the finite-temperatuseeptibility and extrapolate
it to zero temperature, using x L lattices sufficiently large to completely eliminate
finite-effects for the range of temperatures consideredfivedly discuss the divergence
of the correlation length a6 — 0, which is another important manifestation of the Néel
ordered ground state [5].

Extrapolations of the ground state parameters of the 2Ddrbmsrg model have been
presented in a large number of papers previously, e.g., &3, 224, 205, 225, 226].
For most practical purposes, the precision already actiisvguite sufficient. Since the
model is one of the most important prototypical systems ianqum magnetism, it is,
however, useful to continue to establish more precise baadh calculations (which
can be useful, e.g., for testing other methods [94]). Sontkefesults presented below,
in particular the ground state energy, represent the mestige calculations to date.
In addition to the extrapolated = o, T = 0 values of the various physical quantities,
their finite-size and temperature corrections are alsotef@st, because they have been
predicted in great detail based on field-theoretical metfpd7], and numerical test are
useful to establish the range of validity of the low-energgdries. The corrections are
statistically much noisier and require very long simulatido establish precisely. The
discussion here is only intended to give a flavor of what caddree.

Data fitting issues. When extrapolating finite-size result to the thermodyndimit,
it is useful to know the expected form of the size correctibased on analytical calcu-
lations. Away from a critical point, the size corrections fystems of dimensionality
d > 1 normally take the form of a polynomial in the inverse systemgth /L, but
some times the leading correctionlis1/L? with a an integer larger than 1. As dis-
cussed in Sec. 2.4.1, the leading size correction to thexttidel magnetization of the
2D Heisenberg model can be obtained from the spin wave tlafdhe Néel state and is
O01/L. This resultis also a more general consequence of the fatdtth order parameter
is a vector, as discussed in Sec. 3.3. The ground state eB¢hNyper site has a leading
correction 1/L3, and thanks to this high power it is relatively easy to obtagenergy
to high precision even based on rather small lattices [2I}%8.leading correction to the
spin stiffness i€1 1/L [228]. Even if the leading power is not known, one can norynall
find it empirically based on data, provided that the numéipcacision is sufficiently
high. When fitting data to a polynomial one may find that theffagent of the linear
term (and possibly higher-order terms) is very small, whifedn makes it likely that it
actually should be exactly zero. It is best to use a fittinggpm which allows one to
specify exactly what powers iryL should be included.

For a given set of data (here a quantity computed for a settafdasizes, but we will
use the same technigue also for fitting temperature depegdantities as powers if)
one should include high enough powers gt Xor the fit to be statistically sound, i.e.,
X2 per degree of freedony?/dof) should be close to 1 for a large data set (as discussed
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FIGURE 72. Size dependence of the ground state energy (left) and sffiress (right) of 2D Heisen-
berg lattices with aspect ratR= 1 (whereN = L?) and 2 (wheréN = 2L.2). ForR= 2, the spin stiffness
on a finite lattice is different in the andy direction. Both values are shown here along with the average
The curves are polynomial fits discussed in the text.

in standard texts on data analysis). The statistical ewbthe fitting parameters can
be computed based on the error bars of the data. The safestwviah does not rely
on any assumptions of the errors being small (although nibyrrireey should be), is to
carry out a large number of fits with Gaussian noise addedstdaia (with the standard
deviation of the noise equal to the corresponding error &iad) compute the standard
deviation of the distribution of the resulting parametduea. Note that when increasing
the number of fitting parameters (here powers g)1 the error bars of the best-fit
parameters normally increase (gntdof may also get worse). One should therefore not
include many more powers than needed to byAgdof close to 1. To safeguard against
possible remaining effects of higher-order correctioms may nevertheless want to
include one more parameter than strictly needed for andpéaioke x 2 /dof.

Ground state energy and spin stiffnes3he energy per sité€/N and the spin
stiffnessps were evaluated using the estimators (250) and (280), régplycwith the
energy adjusted for the constant4lsubtracted from each bond operator in the SSE
simulations. As discussed in Sec. 5.2.4, the value of thegtjfiness extrapolated to the
thermodynamic limit should be multiplied by a factof23 to account for the fact that
the spin-rotational symmetry is not broken in the SSE sitimia.

Comparing extrapolations for lattices of different shajses good way to check for
detectable consequences of finite-size corrections betyasé included in the data fits
[82, 94]. Fig. 72 shows results for bokh= L x L (aspect raticR= 1) andN = 2L x L
(R= 2) lattices, graphed versug¥N (= 1/L for R=1 and(] 1/L for R= 2). These
results were computed using inverse temperat@res high as 3% L for the largest
systems|( up to 40 forR= 1 and up to 32 foR = 2). For the largest systems several
hundred CPU hours were used. The error bars are too smalliisibée in the figure.
An example of the results produced, for the»332 systemE/N = —0.6695115%8)
andps = 0.126065), based 5< 10° Monte Carlo sweeps. The error bars are of similar
maghnitude for the other systems as well.
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For R =1 using the systems with > 6 and a Bh-order polynomial (without the
linear and quadratic terms, which are predicted not to beanmte as discussed above)
givesE/N = —0.66944215), while a fit of the same order to thHe = 2 data with
Ly > 6 deliversE /N = —0.66944226). These results are in perfect statistical agreement
with each other, and it is then permissible to use their statilly weighted average,
E/N = —0.66944214), as a final estimate of the ground state energy. It should tegino
that the numerical values depend slightly on what latticesracluded in the fit and the
order of the polynomial used. Once the fit is statisticallyrsd these fluctuations should
be consistent with the statistical errors.

Turning now to the stiffness, note first that for a finite letiwith aspect rati® # 1,
there are two stiffness constants, for phase twists impiostbe x andy direction. Both
of them are graphed fdR = 2 in the right panel of Fig. 72, along with the arithmetic
average of the two and tHe = 1 values. It can be seen here that fhe- 1 stiffness
and the average of the = 2 stiffnesses are better behaved for extrapolations then th
individual x andy values forR = 2, and no fits are therefore included for the latter.
Quadratic fits foR= 1 andR = 2 (usingL > 6 andLy > 8 data) giveps = 0.120654)
andps(») = 0.120706), respectively. Taking the average of these statisticalfyscstent
values, and including the rotational factof23 gives the final estimates = 0.1810Q5)
for the infinite system.

Properties at T> 0. Since the Mermin-Wagner theorem rules out magnetic order
in the 2D Heisenberg model for anl > 0O, the correlation length must diverge as
T — 0 for the behavior to be consistent with the ordered grouatksiThe behavior
is similar in the classical 2D Heisenberg model, where threetation length diverges
exponentially. The long-distance correlations and flubtns of the quantum system
can in fact formally be mapped onto a classical system wittomalized couplings
[5], and the low-temperature regime in which such a mappinigshis referred to as
therenormalized classicalegime. Many predictions in this regime have resulted from
field-theoretical treatments [5, 227, 84]. Remarkably itledaresults have been derived
for the temperature dependence of, e.g., the correlati@ilieand the susceptibility. The
predicted forms, which are believed to be asymptotically 0) exact, depend only on
the ground state parameters (e.g., the spin stiffness agpth wave velocity).

Let us first investigate the uniform magnetic susceptipilithich should have the
following form for T — O (in an infinite system) [227] :

T T \?
1+ N ( ans) ] . (287)

The only model dependent parameter here is the ground siatsti#fness, which we
determined above. To compare numerical data with this tiesel first have to make
sure that we can achieve the thermodynamic limit. For fixetptrature, we can study
the behavior as a function of the system size, where we herguedratic lattices with
N = L2. The left panel of Fig. 73 shows results for several latticess For any finite
system the susceptibility vanishes s~ 0 due to the singlet ground state and finite-
size gap in the spectrum. As we discussed in Sec. 4.4.2, Westexcitations are the
quantum rotor states, with gaps scaling @8 1TheT /J < 1/L susceptibility for a finite
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FIGURE 73. Uniform susceptibility of the 2D Heisenberg model compuisihg severdl x L lattices.
The right panel shows low- results forL = 128 and 256 on a more detailed scale (with the two data
sets coinciding within statistical errors, indicating gergence to the thermodynamic limit). The solid
curve in the right panel is a fit to tHe= 256 data (using only th& /J < 0.18 data points) of the form

X = a+bT + cT2 with the parameters discussed in the text. Error bars arertwil to discern but are
typically = 2 x 105 for the low-temperaturk = 256 results.

system is dominated by these excitations. Ohice1/L spin waves can also be excited,
and one may therefore suspect that a system size of atleadt/T will be required
for convergence to the thermodynamic limit. Here we will statdy the convergence in
detail, but just conclude based on the data in Fig. 73 thalt the256 results are safely
converged down td /J = 0.03 and can be used to test the form (287).

Tests of analytical predictions can be carried out in différways. We could here
use the value obs extracted from the finite-size extrapolations of the- 0 data above
and check the agreement between the SSE resultg(fby and Eq. (73), with only
X (0) adjusted as a fitting parameter to obtain the best agreereather way would
be to also adjusps, the best-fit value of which can be compared with the resuthef
ground state extrapolations. Here we will proceed in a difie way, which tests both
the T andT? corrections in (287). Fitting SSE data to a foym= ag+ a1 T +a, T2, we
can use the form of the coefficients in (287) to extract cpwesing estimateps(1)
and ps(2) for the spin stiffness from the linear and quadratic coeffita; and ay.
These estimates should agree with each other and with thé céghe ground state
calculation if the temperatures used in the fit are suffitydotv. At higher temperatures,
corrections including higher powers dfwill be important and should lead to a bad fit
to the quadratic form and disagreements between the diffstiéfness estimates.

The quadratic fit is good and consistent values of the exgerer obtained if only
data forT /J < 0.18 are included. The fit is shown in the right panel of Fig. 78] the
stiffness constants extracted from the parameterpsfg = 0.180(3) from slope and
ps(1) = 0.179(6) from the quadratic correction. These values are in goodeageet
with (but noisier than) the ground state regayt= 0.1811(1). Fixing the form (287) and
extracting the best-fit values af(0) andps gives a less noisy estimate [225], but since
we are still dealing with corrections tola= 0 quantity it is not easy to achieve the same
precision as we did by extrapolating the finite-size valdess@t T = 0.
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FIGURE 74. The temperature dependent correlation length (grapedséhe inverse temperature) of
the 2D Heisenberg model computed for different lattice siasing the spin structure factor definition
(70), divided by the factox/15/16 coming from Eq. (72). The dashed curve is the expected pisyin
(L =, T — 0) form (289) with the parameteps = 0.1811 anct = 1.660 determined previously.

TheT — 0 susceptibility extracted from the above figig= x(0) = 0.0437§3). As
we discussed in Sec. 4.4.2, the transverse susceptibility the symmetry-broken state
atT = 0 is this number multiplied by 2, giving x, = 0.065674). In combination with
the spin stiffness, this value gives us access to anothendrstate parameter; the spin
wave velocity. We discussed the spin stiffness constam ataatic modulus in Sec. 3.5.
This elastic-medium approach to the long-wavelength ptagseof quantum magnets is
also referred to as theydrodynamic descriptiof229]. The transverse susceptibility is
there analogous to a mass density, and one can relate theagnvelocity to the spin
stiffness and the susceptibility according to

_ |Ps
c_\/:. (288)

Using the values extracted above farand x, gives the velocityc = 1.660(1). Recall
that linear spin wave theory (Sec. 2.1.1) gives /2. The difference between these
two values is captured very well by spin wave theory inclgdiffS corrections, and
the “renormalization factor” ot can also be computed quite precisely using a series
expansion around the Ising model [230].

The temperature dependence of the correlation length oihfiréte system is also
known, including a correction to the leading exponentiakdjence [5, 227]:

e c 411ps 271Ps
&M= 8270 (1— T >exp( T > . (289)

We have already determined the two parameters involved bHezeground state spin
stiffness and velocity, and we will use their values quotbdve to directly test the
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analytical prediction against SSE results based on thefgkmoment” structure factor
definition (70) of the correlation length.

Since the correlation length is a rapidly divergent qugntiery large lattices are re-
quired to converge the calculations to the thermodynamiit &t low temperatures. The
lattice lengthL should be several times larger th&ro achieve complete convergence.
Fig. 74 shows results for several lattices sizes up9256. While larger systems have
been studied in the past [225, 226], already these resutishvare well converged for
T/J > 0.25, show that the form (289) describes the numerical datawell. The small
deviations have been discussed in the literature [225, @@@]can be understood as
arising from higher-order corrections to the form (289) .

5.3.4. Quantum phase transition in a dimerized system

We now study the quantum phase transition in the 2D columinagrized Heisenberg
model illustrated in Fig. 4(b). The phase transition of theumnd state takes place as a
function of the coupling ratig = J,/J; > 1 and is caused by quantum fluctuations,
which here correspond to an increasing density of singletshe dimers and at some
point lead to the loss of the Néel order existing wiger 1. We already examined some
SSE results for the sublattice magnetization of this systekig. 5, and the behavior
indicated a phase transition between a Néel-ordered anch@magnetic ground state
at coupling ratiog ~ 1.9. In this section we apply the machinery of finite-size swali
at criticality, which we discussed in the context of claakigystems in Sec. 3.3 and
generalized to quantum systems in Sec. 3.6. Here we firsgan#ie critical behavior
of several quantities calculated at sufficiently low tenapeares to access the ground state
critical behavior, and then discuss consequences of the) quantum critical point at
non-zero temperatures. Before that, let us spend a few vasrdise implementation of
the SSE algorithm for a model with non-uniform couplings.

SSE method. An appealing feature of the SSE algorithm for the Heisenbsodel
is that the coupling strengths only enter in the acceptanaiegbilities (265) and (266)
in the diagonal updates, where the couplihgs absorbed in the inverse temperature
B =J/T. For non-constant couplings, we only have to defige- J,/T for each bond
b. In the implementation in pseudocogi27}, some scheme has to be used to identify
the coupling corresponding to a generated bbrid an insertion attempt. In a system
with a large number of different couplings (which could eveEnrandom, different for
every bond) the couplings (in the form Bf) should be stored as a list. For systems with
just two different couplings, such as the dimerized lattoasidered here, it is better
to just order the bonds in such a way that the coupling can bxkigudetermined, e.qg.,
with b < N/2 andb > N/2 corresponding td, and J;, respectively. Note that for an
operator removal, unlike the case of uniform couplings idef27}, we now also need
to extract the current bont,= S(p)/2, in order to determine the probability.

Finite-size scaling for 7= 0. When analyzing the ground state, we can proceed as
in the case of the standard uniform 2D Heisenberg model iptgous section, simu-
lating systems at sufficiently low temperatures to achieve 0 convergence of all the
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FIGURE 75. Binder cumulant (left) and spin stiffness (in thedirection) multiplied by the system
length (right) of the dimerized Heisenberg model. The angspoints of these curves for differelntend
toward the critical value of the coupling ratip Error bars are much smaller than the symbols.

quantities of interest. This approach is discussed foouardimerized systems in, e.g.,
Refs. [85, 88] (as well as in many older works). Another apptois to study systems
at inverse temperatui@ = L%, wherez is the dynamic critical exponent (which we dis-
cussed in Sec. 3.6) [231]. This is motivated in the followivey, by a generalization of
the finite-size scaling hypothesis (64): In a quantum systenscaling functiorf (& /L)
should be replaced by a function with two arguments,/L, & /L;), where the correla-
tion length in the imaginary time dimension depends on tlaialcorrelation lengtl§
according taf; ~ &% (which defines the dynamic exponent) and the length of thiesys
in the imaginary time direction ie; = ¢/T ~ 8 (wherec is a velocity). If we choose
B O L? then the scaling function can be written §g /L, (£ /L), which is a function
of the single argumer&/L. Thus, the finite-size scaling procedures can be used gxactl
as in the classical systems discussed in Sec. (3.3.2). Jhigicase also if we take the
limit B — oo for eachL (in practice finitef large enough for convergence to this limit),
because thed;/L; — 0, and there is again only one argumérit left in the scaling
function.

There is plenty of evidence already ttzat 1 in dimerized Heisenberg models, and
we will here use systems with = L. This allows for studies of larger systems than in
the B — oo limit, although it is nota priori clear which approach is in the end better,
since the corrections to the leading finite-size scalingbien can be different. Here we
useL up toL = 128. We will also test explicitly that systems wih= L exhibit behavior
consistent witte = 1, by studying quantities which depend nn

We first locate the critical coupling by examining quanstighat should be size
independent ac. Fig. 75 shows thg dependence of both the Binder cumulant and the
spin stiffness, with the latter multiplied Hy to compensate for the expected quantum
critical scaling formps ~ 1/L, obtained the classical form (99) with— d 4+ z= 3.

The Binder cumulant is defined according to (77), with the hanof components
n = 3. Note, however, that (77) is defined with the full scalardorct m? = m-m in
(75), whereas with the SSE method we here only compute tbenponent expectation
values(mg) and (m¢) (the off-diagonal components being more difficult to evedua
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FIGURE 76. Size dependent critical coupling for the dimerized Heisggbmodel extracted from
(L,2L) crossing points of the Binder cumulant, the spin stiffnemsstants, and the correlation lengths.
The curves show fits to the forgy(L) = gc() + a/L®.

[232]). One can easily find the geometrical factors relatimgse by integrating the
component cq®) of a classical 3D unit vector over the the angles, givimg) = 3(mg)
and(mf*) = 5(mg). For locating the critical point, these factors play no yaled we could
also use the plain Binder ratio definedrys = (M) / (mg)2.

Since the dimerized lattice does not havé Bftational symmetry, the stiffness con-
stants in thex andy directions are different. Although the numerical values iadeed
quite different, their scaling behaviors close to the caitipoint is very similar, how-
ever [thex stiffness is approximately a factor 2 larger—the dimersaaiented in thex
direction as in Fig. 4(b)]. Only the stiffness is shown in Fig. 75(b).

Curve crossings are indeed seen in Fig. 75 for Bdthand psL, and after some
significant drift of the crossing points (e.g., for systenfissize L and 2.) for small
L, they seem to converge to roughly the same value in both ddsésthat the crossing
points forU, and ps approachg; from opposite directions, which can be useful for
bracketing the critical value [85, 88]. Crossing points ¢enlocated numerically by
fitting a polynomial of suitable order to some of the data pgirepeating the procedure
several times with added Gaussian noise to compute errer Bay. 76 shows results
of such procedures for the Binder ratio, theandy stiffness constants, as well as
the correlation lengths [computed using the definition 70)both thex and they
direction. Fits to the data points of the forgg(L) = gc(e0) + a/L® are also shown.
This form describes well all the data fbr> 10 (the sizes shown in the figure). All the
extrapolated values of. fall within the rangg1.9094 1.9096, and if theL = 10 data are
excluded the range narrows even further. The expowdatin the range 2- 2.5 for all
quantities (being largest fat,). Treating all five values obtained in these extrapolations
as independent statistical data giggs= 1.909484) as a final estimate for the critical
point. This is in good agreement with (but with smaller efvar than) a recent estimate
gc = 1.90962) obtained usind — 0 data for the same quantities on lattices withp
to 64. The crossing point shift exponemtsare also in good agreement.
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The existence of a limiting value of the locatignat which thelps curves cross does
not prove thaz = 1. One also should check that the valuet of are well behaved, i.e.,
that a crossing point in the plarig, psL) really forms. A plot such as Fig. 76 faeL at
the crossing points for lattices of sizeand 2. confirms that this is the case. Examining
the Binder cumulant in a larger window of couplings, one carfind any indications of
negative values, which would be a sign of phase coexisteracfirat-order transition (as
discussed in Sec. 3.4). Thus, the scaling behavior so faostgat continuous quantum
critical point withz= 1.

We could now proceed to perform data collapse fits in ordemim fine correlation
length exponent, as we discussed for classical systems in Sec. 3.3. Thisdesisdone
for dimerized Heisenberg model, including also scalingextions [85, 88], and the
results are in good agreement with the expected 3D claddrigkenberg universality
class. Here we instead just discuss the exponeappearing in the critical correlation
function (53), where we should again replatéy d + z= 3. The staggered structure
factor §(m, 1) is the spatial integral (sum on the 2D lattice) of the cotrefafunction
(269), while the Kubo integral (271) for the staggered spsbéity x (71, 17) corresponds
to a 3D space-time integral (a 2D lattice sum and an imagitiayintegral). Performing
these integrals with the above critical form of the corielatfunction, with a cut-off
equal to the system site givesS(7t, 1) ~ L9211 and (1, 71) ~ L9-"1. We will test this
behavior of the critical system and extract the expomgnising the value ofj. found
above. Instead of performing new simulations at this poiviti¢h is known only to
within a statistical error), one can perform polynomiaémuolations within the existing
data sets. One can then also easily check the behavior fotspalightly off the best
estimate ofg. (plus and minus one error bar), to check the sensitivity effitbedny to
the location of the critical point. The simplest way to arzalyhe critical behavior is to
fit a straight line to I4S) and In(x) versus IfL) (as was done fo®(r, r7) of this model
in [88]). Some corrections to scaling are always expectad,ifithe data have small
error bars a straight line can only be fitted to large lattigdish the data sets used here,
statistically acceptable linear fits are only obtained whsing system sizds > 48. We
will therefore also include subleading corrections andiaesthe following forms

S(mm) =all " +bL®,  x(mm =al®> " +bL®, (290)

where one would expect the subleading exporet be much smaller (possibly even
negative) than the leading exponents. One could in priagiplform a combined fit with
n fixed to be the same for the two quantities (withand the constants different), but
here we will fit the data sets independently.

In order to more clearly see the role of the subleading cbmecS(, 17) andx (11, 71)
are graphed in Fig. 77 with the domindnandL? factors divided out. The asymptotic
L — o behavior is then in both casesL™", wheren is expected to be small. The cur-
rently best estimate for the classical 3D Heisenberg usality class ig) = 0.03755)
[113]. The fits to (290) give) = 0.0292) for S(r, 1) andn = 0.020(3) for x (T, 7).

In principle the forms (290) should of course work only exaet gc, but in practice,
for a finite range of system sizes, they fit the data well in sevirelow around the
true critical point. As seen in Fig. 77, the interpolateduesl of the two quantities at
dc plus and minus one error bar deviate visibly from those antigpoint, but the fits
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FIGURE 77. Finite-size scaling of the staggered structure factot)(#fd susceptibility (right) in close
proximity of the estimated critical coupling ratip = 1.909484). The powers of correspondingta= 1
andn = 0 have been divided out. The remaining asymptotic size digoere should then be governed by
the actual value of}. The fits to the forms in (290) givg = 0.029(3) from S(m, m) andn = 0.020(4)
from x (11, ). The fits were based dn> 8 data, but the resulting curves also go throughl.tke4 and 6
points. The dashed curves shows the behavigr=atl.90948 without the scaling corrections (i.e., with
anda kept at their values obtained in the fit including the coiimet).

are statistically acceptable in all three cases. The 8statiserrors quoted above arise
predominantly from the uncertainty in the critical couglifhe subleading exponents
in (290) arew = —0.2(2) for S(1, 1) andw = 0.6(2) for x (T, 17).

Fig. 77 also shows the fitted functions with the subleadingemions disregarded
(with the other parameters kept at their values obtainedhénfit with corrections).
Clearly the corrections are quite significant, being conghyeresponsible for the maxi-
mums in both curves dt =~ 10. One can of course obtain much better fits to the larger
lattices without subleading corrections. As mentionedvabwith the rather small er-
ror bars of the data used here, only systems Wwith 48 can be included in such a fit.
Even then, there must be some influence of the neglectedctiorrs. The values aof
do in fact come out somewhat lower if no corrections are itketl With the corrections,
all the data Il > 4) can be included, but to be on the safe side dnly 8 data were
included in the fits quoted here and graphed in the figure. & fissstill do pass very
closely through thé. = 4 and 6 data points, which further reinforces the qualityhef t
functional form used.

The n values obtained here, and also in Ref. [88], are a bit lowgralbew error
bars) than the best available classical 3D Heisenberg Jalg] quoted above. Most
likely, these small discrepancies are due to further sgalorrections, but it would still
be good to push QMC calculations for various dimerized Héseg models to even
higher precision (using larger lattices, a denser grid tiickes sizes, and also reducing
the error bars of the computed quantities) in order to estalthe agreement with the
classical exponents for sure. This is particularly inténgsand important in light of
the fact that the staggered dimer model illustrated in Faj.4and also some other
dimerization patterns) seems to show small but statifisagnificant deviations from
the expected 3D Heisenberg exponents [89, 233, 234]. Tlystenss may still not be in
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FIGURE 78. Cross-overs (indicated by thick curves) in the couplingqterature plane of a generic
dimerized 2D Heisenberg model. The quantum-critical p(girtle) controls the behavior in thE > 0
guantum critical (QC) regime, up to some temperature wladtieé¢ effects become important (i.e., when
& ~ 1). For couplings away from the critical point there is a lmwmperature cross-over into either
renormalized classical (RC) or quantum disordered behavay a 2D system there is Néel order only
exactly atT = 0. The thickness of the curves separating the differentregireflect the fact that the
cross-overs are not sharp, but can take place over sigrifieaperature windows.

a different universality class, as originally proposed][&®&cause the deviations could
also originate from anomalously large scaling correcti@38, 234]. Regardless of the
underlying reason for the deviations, their origin remainslear and should be further
examined (and such work is in progress [234]).

Quantum critical scaling at T> 0. One of the most remarkable and important as-
pects of quantum criticality is that the properties (thevarsality class) of & =0
critical point also can strongly influence a systenT at 0, often up to rather high tem-
peratures [84] and also if the system does not have exa&lgdhplings corresponding
to aT = 0O critical point (but is near such a point, in a sense which wemake more
precise below). Critical fluctuations and scaling behaeam therefore be much more
generic features of quantum systems than classical sy$1&®f where critical behav-
ior often can be observed only very close to the critical poin

In a quantum system, critical behavior can be expected wieteimperature is the
dominant energy scale. In dimerized 2D Heisenberg modadsehergy scales on the
Néel and nonmagnetic side of the transition are, respéytithee spin stiffnesgps and
the singlet-triplet excitation gafd. One can therefore expect manifestations of quantum
criticality for T > psandT > A, for g < gc andg > g, respectively. In continuum field
theories there is no upper-bound temperature for the goaotitical behavior, while
for a lattice hamiltonian there has to be a cross-over tofaréifit behavior above some
temperature where the spins become essentially indepetideto thermal fluctuations
(which cannot be captured by continuum field theories, winetependent discrete spins
do not exist). The cross-over to the high-temperature kwitid be defined, e.g., on the
basis of the Curie (independent spin) susceptibjity- 1/(4T) obtaining forT > J.
As we will see below, the quantum critical susceptibilitg@npletely different.

Putting all this together, for a 2D dimerized Heisenberg et@ihe expects a generic
“cross-over diagram” [5, 84] of the type shown in Fig. 78. Femperatures below the
high-T cross-over, there are three different “regimes”, in whiehkiehavior is controlled
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be the corresponding largest energy scale in the prolggem; or T. In the renormalized
classical (RC) regime, the spin stiffness dominates, aadttinrelation length diverges
asT — 0 according to (289), as we saw explicitly for the standarfioum Heisenberg
model in Sec. 5.3.3. In the quantum disordered (QD) regitme,correlation length
saturates at some finite values- 0, with & — constant roughly beloWw ~ A. In the
quantum critical (QC) regime, the correlation length sadiverge atg. whenT — 0
according to

&~1/T% (291)

This behavior can be understood based on the path integmgbintpof the quantum
system ind dimensions onto a classica { z)-dimensional system. There the coupling
g of the quantum system corresponddtof the {d + z)-dimensional system. We we can
then think of temperature scaling in the quantum system asdadf finite-size scaling
in the imaginary time dimension, in which the thickness @&f éfffective system is finite;
L, O01/T (i.e., we kee constant and just change the thickness of the effectivesyst
By definition of the dynamic exponent, g¢ we have

E~ &2 (292)

If the time dimension thickneds = o, both the correlation lengti&andé; diverge at
this point, but with finitel; (but infinite spatial siz&) we should replacé; byL; O1/T
in scaling formulas (exactly as we do in classical finiteesizaling whei < &), whence
(292) gives (291).

Quantum critical scaling forms have been derived for margntjties based on these
ideas worked out quantitatively and in great detail [84Jngsienormalization group
methods and largBt expansions [withN here being the number of components of
SU(N) symmetric spins, wittN = 2 for the physicaS= 1/2 spins] within the continuum
field theory [the(2+ 1)-dimensional nonlinear sigma-model]. The main point i tree
can observe scaling, with some corrections (the size oflwiépends on the quantity),
also wherg # g, in the QC regime illustrated in Fig. 77. Away frogg, there is a cross-
over into either RC or QD behavior. Here we only look at two artpnt quantities;
in addition to the correlation length we also analyze thdarm susceptibility, which
is perhaps the quantity for which QC behavior away frgé¢ris the most robust. The
predicted form is linear i exactly atgc, with a constant shift away from;

X = C%T+b, (b=0atg = go), (293)

wherec is the spin wave velocity. The constaais not known exactly, but its value
computed based on the leading terms in AN &xpansion is believed to be close to the
actual value [84]. The linear behavior should apply styiothlly whenT — O, since there
are higher powers of, with unknown prefactors, which are not included in (293).

We begin by investigating the finite-size convergence oftszeptibility ag. (using
gc = 1.9095, within the error bars of the critical point determiradmbve), in order to
make sure that we can reliably obtain results reflectinghbentodynamic limit at low
temperatures. The left panel in Fig. 79 shows the temperdegendence ¢f/T (which
is easier to look at in graphs thanitself) for several power-of-two system sizes up to
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FIGURE 79. Susceptibility divided by temperature for the dimerizedtsyn at the critical pointy(=
1.9095) computed using different lattice sizes. The peaksisgbe left panel for small systems is a finite-
size feature which moves towald= 0 as J/L. The solid curve in the right panel is a cubic polynomial
fit to the L = 512 data T/J; < 0.20), which gives the prefactar/c> = 0.09161) in Eq. (293). For
comparison, in the right panel, size-converged resultfofoy = 1.9090 are also shown (the lowest curve,
marked with+). In this temperature range, quantum critical behavioe&nsalso at this coupling, which
is slightly on the nonmagnetic side of the transition (anddeg(/T — 0 eventually a§ — 0)

L = 256. As expected, the results converge quickly at high teatpees, with finite-size
effects entering at approximately ~ 1/L (which can be expected on account of the
dynamic exponert = 1). The right panel of Fig. 79 shows the Iolvresults on a more
detailed scale, including also results for= 512. Based on this comparison of results
for different sizes, one can conclude that the thermodyodimit can be studied with

L <512 lattices down td@ /J; = 0.03 (and probably even a bit below that).

The right panel of Fig. 79 also shows a fit gf T to a cubic polynomial at low
temperatures. The corrections to the asymptotic lineam f(#93), is quite prominent,
leading to an= 8% increase irx /T [which can be considered as effective temperature
dependent prefactay/c? in (293)] from the minimum around /J; ~ 0.3 to the eventual
T — 0 value. In principle the extrapolatd= 0 valuea/c? = 0.0916 can be used to
extract the spin wave velocity, but since the prefaet® not known exactly [84], this
estimate would likely not be very precise. Another use ofréseilt obtained here would
be to use it in combination with an accurate estimate olftained in some other way,
which would allow a test of the approximate calculation [8f#]he prefactor. This is
beyond the scope of the discussion here, however.

Fig. 80(a) shows the temperature dependenge atfg = g; and at two values some
distance away on either side of the critical point. Therelsaad maximum at = Ji,
which corresponds to the cross-over into the eventual tegiperature Curie behavior.
Below the maximum, these near-critical systems all exk@bipproximatelyf -linear
susceptibility, in accord with the form (293) with< 0 andb > 0 for g > g and
g < 0., respectively. At still lower temperatures, there will egs-overs into RC or
QD behavior, which are not seen clearly here because thestamopes are still too high.
In the QD regimey — 0 exponentially foll below the gag\. The RC formis also linear,
like the QC form, but the slope changes in the cross-oveore@uch a cross-over can
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FIGURE 80. Temperature dependence of the susceptibility (left) aedcthrrelation length (right) in
critical (g = 1.9095) and near-critical systems. The solid lines show tlgenptotic quantum-critical -
linear behavior of( (from theT = 0 value of the fitin Fig. 79) and the/T -linear behavior ofx [following
the form (292) with a small negative constant correction].

actually be seen in the standard 2D Heisenberg model, pameing tog = 1, which
may appear to be too far away from the critical point. In ttieganel of Fig. 73 one can
nevertheless see an approximately linear behavigr iofthe rangerl /J € [0.3 ~ 0.5,
before the RC behavior sets in at lower temperatures. Thpeshbx in the narrow
window is in very good agreement with that obtained with thewn spin wave velocity
and the approximately calculated prefacddn (79), which indicates that this behavior
really is a manifestation of quantum critical behavior faomi a quantum critical point
[84, 225] (although the very good agreement may be to sonemefdrtuitous, since, as
we concluded above, there are significant corrections tgtinely linear form exactly
atgc, at much lower temperatures than the QC windog atl).

Fig. 80(b) shows the correlation length in theirection (which is about 30% larger
than they correlation length at);) at the same near-critical couplings as in Fig. 80(a).
While the behavior is very linear, with a small constant eotion to the asymptotic
form (292) withz = 1, the results for the systems slightly off the critical gaileviate
significantly from linearity belowl /J; ~ 0.3. Being a divergent quantity far< gc, the
correlation length has much larger corrections to theoalifiorm than the non-divergent
uniform susceptibility.

5.3.5. Néel-VBS transitions in J-Q models

With the J-Q models introduced in Sec. 2.4.3, one can studytgun phase transi-
tions at which not only the antiferromagnetic long-ranggeoivanishes, but a different
symmetry is broken in the nonmagnetic state as a VBS fornze@uaially, a VBS may
seem rather similar to the nonmagnetic state of a dimerizgddberg model, because
in both cases the system exhibits a pattern of strongly arakieorrelated nearest-
neighbor pairs. These states are fundamentally very diffethowever, because in a
“manually” dimerized Heisenberg model the hamiltoniaelitbreaks the translational
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symmetry, and the strongly correlated bonds also correspmnhe stronglycoupled
spin pairs. In contrast, in J-Q models, the hamiltonian skalthe symmetries of the
lattice, and the translational symmetry is spontaneousién in the VBS state. The
quantum fluctuations of this VBS, especially close to thesphteansition, are therefore
very different (and much more interesting).

On the square lattice, which we will consider here, and withtypes of interactions
we choose, the VBS can form in four equivalent patterns; &éme broken symmetry is
Z4. We will first discuss the standard J-Q model with four-spomings [17] (and the
term J-Q model will then refer just to that particular case)this case the Néel-VBS
transition appears to be continuous and shows many of thedrds of the proposed
[16, 235] (and still controversial [236]) deconfined quantaritical point. The VBS
state in this case is most likely columnar, but the exactreatdi the state is masked
by an emergent U(1) symmetry in the VBS state (which in thislehgs always near-
critical, with large fluctuations of the VBS order paramgtdihis is one of the salient
features of the putative deconfined quantum critical pd@spite the many ways in
which the behavior of the J-Q model agrees with the theopyetlare also aspects of
the Néel-VBS transition that remain unexaplained—altiaugt necessarily in conflict
with the theory, because detailed analytical calculatiaresvery difficult [235, 237]
and many properties of the deconfined quantum critical poir8U(2) spin systems
are simply not known quantitatively based on the field themoposed to describe the
transition. We will here look at one example of strong caiitets (possibly logarithmic)
to the quantum critical scaling behavior, which had not herdicted by the theory of
deconfined quantum critical points.

We will also discuss some results for a different kind of msiitin coupling, which
leads to a staggered VBS pattern [like the dimer patterngn4ic)]. The phase transi-
tion in this case is clearly first-order [109]. We will dissuthe reasons for the qualita-
tively different nature of the transitions in the two models

SSE implementation for the J-Q modelVe first discuss some implementation issues
for studies of the J-Q model with the SSE method. The modelfirstsstudied with a
projector QMC technique formulated in the valence bondséshich we will briefly
discuss in Sec. 6). It is, however, also easy to implemenEtie method for it [238],
which was initially done using “directed loop” updates (angelized loop algorithm,
which we will also summarize Sec. 6). An SSE algorithm forih@ model can also be
devised which is almost identical to the standard algorithith operator-loops for the
isotropic Heisenberg model. To see this, we can write theéhdu®iltonian with four-spin
interactions, Eq. (23), in terms of the diagonal and offgdiaal bond operators (255) and
(256) used in the SSE algorithm for the Heisenberg model;

H=-J% (Hip—Hzy) = Q) (Hip — Hap)(Hic — Hazc). (294)
[b] [bc]

As in the Heisenberg modHd] is a bond with two interacting spinigb), j(b)], while [bd
denotes two parallel bondgb), j(b); k(c),l(c)], corresponding to the singlet projector
productSjSq in (23). We will consider these bonds arranged as in Fig. & wie
summation in (294) taken over all translations on the latdad including horizontal
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FIGURE 81. Examples of vertices in the J-Q model. Only some of the altbspin states of the
vertex legs (open and solid circles) corresponding to theraiprs are shown. Open and solid bars
indicate diagonal and off-diagonal bond operators, respey. The J-vertices are identical to those in the
Heisenberg model. The Q-terms in Eq. (294) are products @fbwnd operators, which when expanded
out include all combinations of diagonal and off diagonatdas. Allowed loops pass only through one of
the operator factors in the case of Q-vertices, as illustrbere with loop segments at all the permissible
leg pairs. Flipping loops can lead to any combination ofvedld operators and spin states.

as well as vertical bond orientations. The scheme is, howewependent on how the
singlet projectors are arranged, and also the generalizé&ti an arbitrary number of
bonds in the Q term is trivial. The only constraint is that veednto avoid sign problems,
which we do if both] > 0 andQ > 0 [with the minus signs in (294), which corresponds
to energetically favoring singlets on the bonds includebath the J and Q terms]. The
absence of sign problems was discussed based on a sublattitien in [238], and it
can also be demonstrated using the simple operator cowargngnents used for bipartite
Heisenberg models in Sec. 5.2.

We now have J-vertices with four legs as well as Q-verticeth wight legs, as
illustrated in Fig. 81. The Q-vertices can be consideregvasitvertices joined together,
in all possible combinations of diagonal and off-diagonailtp arising from the four
operators in the Q term of (294). It is then clear that we cacged in the same way as
we did for the Heisenberg model, updating the operatorgtimd a stored state using a
combination of diagonal and loop updates. The key is hermaigat the matrix elements
are the same for all J- and Q-vertices (the values b&i@gandQ/4), which means that a
loop update in which the type of vertex (J or Q) is not changedalways be accepted.
In the case of the Q-vertices, the loops satisfying this taitd enter and exit at the
same operator factor, as illustrated with loop segmentginda.

Both J and Q diagonal operators are inserted and removed dfidgonal update. The
simplest way to insert diagonal operators is to choose cetglyl randomly among all
the possible single-bonth] and double-bongbc] instances in (294). There akeeach
of horizontal and vertical bondb] and alsdN each of horizontal and vertical bond pairs
[bd, for a total of N cases to choose from. The spins in the current state have to be
antiparallel on the bond or bonds acted on by the chosen topeaad if that is the case
the acceptance probability is a simple modification of E§5)2with either3; =J/(2T)
or Bo = Q/(4T) replacingB, depending on the type of operator inserted. The number
of bondsN, is replaced by the total number of bonds and bond pairs4iNe.The same
modifications apply to the removal probability (265) as wHlthe ratioQ/J is much
different from 1, which is the case in the VBS state and at tfesp transition, it is better
to take this ratio into account already when generating tmelb or bond pairs (but even
the trivial random operator generation actually works wegll). Note thatQ is much
larger thanJ in the parameter regime we are interested in, and it is therdfest to
define the temperature in unitsQf i.e., settingQ = 1 in the program.
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FIGURE 82. Binder cumulant of the staggered magnetization of the J-Qahdhe left panel shows
results up toJ/Q = 1, whereU, approaches 1, indicating a Néel state. For smdlf&) the cumulant
vanishes with increasing size, as shown in greater detdilkimight panel, demonstrating a nonmagnetic
state forJ/Q < 0.045 (below the crossing points, which accumulate at th&atipoint). The cumulant
remains positive for all /Q, showing that there is no phase coexistence, i.e., baselese tesults the
transition is continuous.

The loop update is identical to the one we developed for tHedtberg model, with
the simple extension that the linked vertex list (illustichtn Fig. 57 for the Heisenberg
model) now has eight elements for each vertex, instead offonlr in the case of the
Heisenberg model. Although the J-vertices have only fogs,|¢he most practical way
is to allocate eight storage elements for all vertices,asinly the first four of them for
the J-vertices (and filling the unused ones with a negatinebay, so that they are never
visited in the loop update).

Continuous quantum phase transition in the J-Q mod@lhe initial study of the J-Q
model [17] established the existence of a VBS ground statenfall J/Q and a Néel—
VBS transition compatible with a= 1 quantum critical point. These results were soon
thereafter confirmed in SSE studies of the- 0 quantum critical regime [238, 239]. A
later world line QMC study claimed evidence for a first-ortl@nsition [240], and this
scenario was argued for also based on studies of other syf288]. Recent calculations
on very large lattices (up tb = 256) do not, however, find any indications of first-
order behavior [110]. This is in violation of the “Landau’ley according to which a
direct transition between states breaking unrelated symeseshould be generically
discontinuous, but it agrees with the theory of deconfineghtium critical points [16].
There are, however, significant unexpected scaling coorecin some quantities (which
may have been mistaken for signs of a first-order transitid240]). Here we will first
discuss some of the evidence for a single continuous Néeb-tvahsition.

The Binder cumulant is a useful quantity for analyzing botimtsuous and first-
order phase transitions. As we discussed in Sec. 3.4, witxample in Fig. 20, phase
coexistence at a first-order transition leads to a negateggent peak in the cumulant
at the transition point. Fig. 82 shows results for the anifi@agnetic Binder cumulant
U of the J-Q model, calculated with the SSE method uging Q/T = L (motivated
by the previous work showing that= 1). ForJ/Q > 0.05, U, increases with_ and
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FIGURE 83. Finite-size scaling of the spin (left panel) and dimer (tighnel) correlation lengths of
the J-Q model. Note that the crossing points§eand &g move with increasing lattice size in different
directions, toward each other.

tends toward 1, showing that the system has long-range Méel. ¢-or smaller coupling
ratios the cumulant decreases to 0, with no indications cfgative peak developing.
The crossing points are well behaved and indicate a cripicait at(J/Q). ~ 0.045.

Next, we examine the correlation length, computed usingsthgcture factor defi-
nition (70) for both the spin-spin and dimer-dimer corriglas. While the wave-vector
for the spin (Néel) order parameter(ig, 17), a columnar VBS corresponds (a, 0) or
(0, ), which then is used as the reference pa@jrt 0 in (70). To compute the dimer
correlations, we use the definition (25) but only includedregonal correlations in the
bond operator (26) i.e.,

Bux(r) = SH(r)S(r +X). (295)

Although the finite-size scaling properties of the corielatfunctions based on the
rotational-symmetric and ttecomponent definitions may be different [238], the corre-
lation lengths extracted from these functions should Istith exhibit finite-size scaling
~ L (up to scaling corrections) at the critical point.

We can use the scaled correlation lendftd. (spin) andéy /L (dimer) to test whether
the two order parameters vanish at the same point, or whitidner could possibly be two
different transitions. Fig. 83 shows the raw SSE data, whgdin was generated using
B = L. The curves for different system sizes cross each othéQudh there is some
drift, both horizontally and vertically, even for the laggdattices. While the crossing
J/Q values forés/L and&q/L are quite far apart for small lattices, they move toward
each other with increasing system size, in a way consistightansingle critical point.

Fig. 84 shows crossing points extracted froemand 2. data for several different
quantities (those discussed above as well as the spinest#ffn It is interesting to
compare this graph with the corresponding one for the diredrHeisenberg model,
Fig. 76. The convergence of the critical point is clearly imstower for the J-Q model.
While the behavior for all quantities is almost linear iflLlover some range of system
sizes, for the largest systems the behavior starts to chamgeway which suggests
an eventual convergence with some higher powet db a common critical point
(J/Q)c = 0.045. Recall that for the dimerized Heisenberg model theviehs ~ 1/L“
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FIGURE 84. Size dependent critical coupling estimates based on cuossings for systems of site
and 2., using several different quantities—the Binder cumuldgntthe size-scaled spin stiffnepgL, as
well as the spin and dimer correlation lengfgsl. andéy /L. The average of th&/L andéy/L estimates,
shown with solid squares, exhibits almost no size deperedéite average of these points for the four
largestL give the critical-point estimat&l/ Q). = 0.044983), which is shown with the horizontal line.

with w in the range 2- 2.5, and this behavior applies already for rather small legtic
(L = 8). Because of the slow convergence, it is difficult to estarthe critical point
of the J-Q model precisely based on these individual crgsgoint estimates. There
is, however, a remarkable feature seen in Fig. 84: §#i& and &y /L crossing points
form curves that look very symmetric, approaching the apmtzaisymptotic value at the
same rate but from different sides. Therefore, the averbiese two estimates exhibits
almost no size dependence at all (as also shown in the figdased on these average
values one can therefore obtain a much better estimate afrith@al point than what
might initially have been expected. The result based ondhelargest points (which
agree completely withn statistical errors)3/J). = 0.0449§3).

The slow convergence of the crossing points indicates laogding corrections in
the underlying physical quantities. Note that the Bindemualant crossings have the
weakest size dependence of the quantities analyzed in BigwBich is also clear
when comparing the raw data in Figs. 82 (cumulant) and 83rétadion lengths).
Since the Binder cumulant involves a ratio of two similar mfities, anomalous scaling
corrections in these may partially cancel each other. Ibisat all clear why the finite-
size corrections in the crossing points for the two corietetengths cancel each other
almost completely. It may indicate some hidden symmetryvbenh the near-critical
VBS and Néel states—perhaps some kind of duality inheredietmnfined quantum
criticality [which is the case for the U(1) version of the ¢ting [16], but not explicitly in
the SU(2) variant, which is the one of relevance for the J-Q@etloNote that it is not
just the locations of the crossing points that are symmebtit in fact the correlation
length curves themselves look rather symmetric in Fig. 83rélecting one of the
graphs about the critical poinl/Q — (3/Q)c — —[J/Q — (J/Q)¢, the spin and dimer
correlation lengths for the largest system fall almost gndbeach other, i.e., even the
scaling functions for these correlation lengths appeaetthb same.
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FIGURE 85. Uniform susceptibilityx /T of the J-Q model graphed on linear (left) and logarithmic
(right) temperature scales, for three coupling ratios snkighborhood of the critical valuél/Q); =
0.044983). The solid curve is a fit to the formy/T = a+bIn(Q/T) +cT? atJ/Q = 0.045 (which is
within the error bar of the critical value). The SSE calcialias were carried out using sufficiently large
lattices (up td. =512 at the lowest temperatures) to obtain results repriegethie thermodynamic limit.

Quantum critical susceptibility scaling at¥ 0. At a conventional quantum critical
point, one would expect an asymptotic linear temperatupeddence of the uniform
magnetic susceptibility, as we saw in the dimerized Heisgnmodel in Fig. 79, where
corrections in the form of higher powers ®fare also visible in the ratig /T. In the
J-Q model there are much stronger corrections to the expegtantum critical form.
As shown in Fig. 85, there appears to be a multiplicativelfiitiginic correction, i.e., the
asymptoticT — O critical behavior may be of the forpp ~ TIn(1/T). The results are
graphed both on linear and logarithmic temperature scalesder to clearly convey
how the behavior differs from that of the dimerized model ig. 9. The behavior in
the J-Q model does not appear to be compatible with a comraithigher power-law
correction, while a logarithm describes the behavior vécgly.

Logarithmic corrections have not been suggested based eoprisent theory of
deconfined quantum criticality. All analytical calculaiBwithin the non-compact GP
field theory proposed to describe the transition have beeforpged using largeN
expansions of the SM) generalization of the system (the field theory generalized
CPN-1, whereN = 2 is the physical number of spin components) [16, 16, 237]. It
is possible that different features appear foe= 2. On the other hand, Monte Carlo
calculations of lattice versions of the field theory [24122236] have not pointed
to any anomalous scaling corrections (although one onlyddirst-order transitions
[236]). Since these calculations are in disagreement veith ether, the situation for the
N = 2 theory remains unsettled. Logarithmic corrections indheceptibility and other
quantities do appear in related fermionic gauge field tlesoj243]. As we discussed
in Sec. 4.3 and 5.3.1, in field theory language logarithmitesttions can appear as a
consequence of marginal operators, but other explanai@lso possible. In principle
the corrections may also not really be logarithmic—theyldaiso be due to almost
marginal (but in the end irrelevant) operators. Correspanghower-law corrections
with a very small exponents may not be distinguishable frogs!for the system
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FIGURE 86. lllustration of how local fluctuations of valence bond paiem lead to a gradual change
of a columnar state (a) into a plaquette state (d). In (b) ahd 6mall number of bond pairs have been
flipped. Local horizontat- vertical fluctuations of the maximum number of all bond paas take place
with the plaguettes (bond superpositions) arranged a9 joig@ of four equivalent translated patterns]. A
fractionp € [0, 1] of vertical bond pairs on these plaquettes corresponds 8&anglep € [0, ], defined
using thex andy dimer order parameters (296). In these figures, angles$r, 2m1 correspond to shifting
the vertical bonds up by one step up.

sizes accessible. While this scenario is possible for samatiies, in the case of the
uniform susceptibility that would also be highly unusuabce normally all corrections
to quantum critical behavior in 2D antiferromagnets areget powers of [84].

Emergent U(1) symmetry in the VBSA prominent feature of the theory of decon-
fined quantum criticality is that, in addition to the normarmelation lengthé (which
can be taken as the dimer correlation lengftin the Néel state and the spin correlation
lengthésin the VBS state), there is another length sdale the VBS phase. This is the
distance scale on which excit&d= 1/2 spinons (which are defects, a kind of vortices,
in the VBS [245]) are confined int8 = 1 “triplons” (i.e., A is the size of the spinon
bound state). The same length scale should also be assbwidtean emergent U(1)
symmetry, related to a particular kind of quantum fluctuagioonnecting two different
kinds of VBS ordering patterns—the columnar state and thgumtte state. These “an-
gular” VBS fluctuations and the two kinds of VBS states anasiftated in Fig.86. The
angular fluctuations occur on length scales less thdne., on length scales less than
A, the system is in a superposition of the two different VB$esta The excited spinons
can move freely away from each other up to distan¢éout at larger distances they
become confined, due to an effective potential mediated &S long-range order
(and in this regard one can note interesting connectionsnfirement/deconfinement
in certain gauge theoreis in particle physics [18]). As thigcal point is approached\
should diverge as a power of the correlation length; &2, with the exponena > 1.

The existence of an approximate U(1) symmetry in the VBS ropdgameter can
be tested by examining the distributid®(Dx,Dy) of order parameter®y and Dy,
corresponding to columnar order withandy-oriented bonds and defined as

DX—iS(ro-suiM)(lw, Dy—isui)-smw)(l)yt (296)

For a given Monte Carlo configuratioBx andDy can be evaluated at fixed imaginary
time (propagated state in the SSE), using the improved atdirfor the correlation func-
tion discussed in Sec. 5.2.5. The improved estimator isgational invariant, which
can best be understood by considering the equivalence éetthe loop formulation
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J/Q =0.045

FIGURE 87. VBS order parameter distributiof$Dy, Dy) calculated fol. = 128 systems at/Q =0
(left) and Q045 (right). The histograms are shown in regifidg, |Dy| < Dcyt, with Dyt chosen for the two
coupling ratios to cover the region where the weight is sigant. Brighter features correspond to higher
probability density. The absolute scale is not importaméhenly the circular shapes of the distributions.
The weigh is not distributed completely uniformly in thegstbgrams [obeying neither perfegf nor
U(1) symmetry], due to the inefficiency of the simulationdltwtuate the VBS angle for large systems.

and the valence bond basis [244, 31, 50] (which we brieflydisén Sec. 6). In fact, the
improved loop estimator for an equal time correlation fimtis exactly equivalent to
an expectation value of the operator in a particular valdroeel state, provided that the
temperature is sufficiently low for the simulation only torgae the singlet sector.
While the calculation oP(Dy, Dy) could be done with the SSE method, the results to
be discussed below were instead generated with a grouredme&thod in the valence
bond basis (which in its most recent formulation [50] adyu& very similar to the
SSE method, as discussed in Sec. 6). The rotationally snviagistimator is not strictly
needed here [109], and one can also just use #pn components in (296), as we did
in the correlation function Eq. (295). In the valence bongib# is, however, natural to
compute rotation-invariant quantities. Note tR&Dy, Dy) is not an operator expectation
value (i.e., it is not a normal physical observable), justistridution of individual
measurements in a simulation carried out in a particulaisblis symmetry properties
nevertheless reflect the actual symmetries of the VBS ora@npeter of the system.
We have already looked at a classical analogy(@y, Dy); the distributiorP(My, My)
of stripe order parameters in the frustrated Ising modeh wésults shown in Fig. 19.
In that case the four-fold symmetry of the order parametamdtbelow the transition
temperature is obvious, while going to very high tempergynot shown in the fig-
ure) the distribution turns into a central peak with fullatbnal symmetry [i.e., U(1)
symmetry] because of the independent Gaussian fluctuadfahe short-range order in
different parts of the system. In a similar way, in a VBS oneuwti expectP(Dy, Dy)
to be U(1) symmetric in the Néel state (where there is onlytstamge VBS correla-
tions), and become four-foldZg) symmetric inside the VBS state. As seen in Fig. 87
(which shows recent results for larger systems than in [40, 208]), this is not quite
the case, however. Inside the VBS phase] /& = 0, the distribution is ring shaped,
with no weight at the center and no signs of a four-fold symmmndthis shows that the
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magnitudeD, with D? = DZ + D, of the VBS order parameter has forme®?) > 0,
but its angular symmetry has not yet been establishedwitele the magnitude of the
VBS order parameter has relatively small fluctuations, thetdiations in the individual
component®y andDy [which define an angle of the VBS in the(Dy, Dy) plane] are
very large. Close to the critical point, 83YQ = 0.045 in the figure, the distribution is
peaked at the center, as expected, but again thereds symmetry.

In the continuum field theory, the operator responsible far YBS formation is
dangerously irrelevanfl6, 245, 246], which means that although it is a perturlpatio
with Z, symmetry, which leads to 3, symmetry-broken VBS state, this perturbation
does not affect the critical point. The theory of deconfinedrgum critical point has
built-in U(1) symmetry, and this is unchanged in the preseotthe VBS operator.
The J-Q model has no explicit U(1) symmetry—what is built erénis instead the Z
discrete rotational symmetry of the square lattice, an@emgione would expect the
VBS forming on this lattice to exhibiZ, symmetry, exactly as the stripe order of the
Ising model discussed in Sec. 3.4. Instead, we see a U(1) sitienorder parameter
distributionP(Dy, Dy), which in light of the theory of deconfined quantum criticalmqts
should be expected if the system is smaller than the decoméinglength scal& (which
therefore has to be largA, > 128 even all/Q = 0 according to the results in Fig. 87).
If we increase the system size, we should eventuallylfor A, obeserve a four-fold
symmetric distribution (which has been seen in some relsystems [108, 247, 248]).
A columnar state corresponds to peakélattD) and(+D,0).

As discussed above and illustrated in Fig. 86, the emergéh} &ymmetry is a
consequence of local fluctuations between columnar andietsrVBS patterns [245],
in such a way that all possible values D§ and Dy compatible with a magnitud®
(weakly fluctuating) are sampled equally (or almost equalberfect U(1) symmetry
only applies at the critical point). There is an analogy aneéntary quantum mechanics;
a particle in a slightly assymmetric double well. If the barbetween the wells is very
high, then the particle is localized in the deeper well, btité barrier is not very high
(relative to the kinetic energy), then the particle fluctabetween both wells and the
wave function also has weight inside the barrier. In the VB8 wells correspond to the
columnar and plaquette states, at anglgs2 (columnar) andht/2+ 11/4 (plaquette),
with n=0,1,2,3, and fluctuations between them correspond to non-zerapiiitly in
the continuum of angles between these points. In the de@mnént theory, the columnar
and plaquette VBS states are almost degenerate, becomangyedegenerate at the
critical point. Approaching the critical point, the bamigetween them also is reduced.
In the double-well analogy, the wells are becoming more degee and the barrier
between them is reduced. There will then be significant fataus between columnar
and plaquette states in finite systems (up-te A), and this impliesP(Dy, Dy) with
weight at all the angles and an U(1) Zg cross-over of the symmetry whdn> A.
This applies also to the order parameter computed on sumgsif finite length in an
infinite (or very large) system (which has been studied issitzal models with g-fold
order parameter which exhibits U(1) Iy symmetry cross-over [249, 250]).

Since theZy symmetry is not yet clearly manifested in the J-Q model upédargest
lattices studied so far, the issue of the nature of the VBSanesopen. However, a J-Q
model in which the Q term consists of products of three palralhglet projectors, the
VBS order is more robust andZ symmetric distribution corresponding to a columnar
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state is seen clearly [108]. Simulations of Sl)(generalizations of the standard J-Q
model, withN = 3 and 4, also show columnar VBS ground states [108]. Moslylike
the standard SU(2) J-Q model also has a columnar state, argisindeed some weak
hints of this in recent (ongoing) long simulations for= 64.

For system sizek > A, the VBS distribution should be four-fold symmetric, and by
investigating how the change from U(1)Zg symmetry takes place one can in principle
determine the exponeatrelating the deconfinement length scaland the correlation
length &. Classical examples of the cross-over phenomenon, whath iabpired the
theory [16], were studied in Refs. [249, 251, 250, 252]. Atérgize scaling method
for a quantity sensitive td, symmetry can be used to extract the exporzef252]. In
the standard J-Q model, such an analysis cannot yet be pedobecause the cross-
over into aZ, symmetric order parameter is not seen clearly enough in uhermtly
accessible lattices. The analysis has, however, beeredartit in the J-Q model with
columnar six-spin interactions, with the result that 1.2.

Other critical exponents. In addition to the dynamic exponent= 1, other critical
exponents have been analyzed in several QMC studies [17,2333 108, 110]. The
most noteworthy result is thajs (the exponent of the critical spin-spin correlation
function) is anomalously large)s ~ 0.3, which is in qualitative agreement with the
theory of deconfined quantum critical points. A “largg’was argued for [16] based on
theN = o valuens = 1 in the /N expansion of the C¥* field theory (i.e., different
from the conventional mean-field valug = 0). The /N corrections are difficult to
compute, but in general support an unusually large expd2& (although it is not
possible to extend the results reliably kb= 2). The behavior of the dimer-dimer
exponentny obtained in QMC calculations for SNj systems [108] seems to follow
the scaling withN predicted in the theory [246, 253] (whemng diverges withN).

In light of the presence of significant scaling correctiopsssibly logarithmic, in
the susceptibility analyzed in Fig. 85, and also in the sfiffness [110], an important
question is whether the calculated exponents also aretedfedhis has so far not
been apparent, because standard data collapse procedilresasonable values of the
subleading exponents work very well [108]. The best curestimates forns, based on
bothT > 0 [238] andT = 0 [108] QMC calculations agree well with each other. On
the other hand, the results discussed here and in [110] putrittal point at slightly
higherJ/Q than previously, and also the correlation length expomeanalyzed with
a logarithmic correction included [110] is significantly aler than other estimates
[238, 108]. It would therefore be good to repeat the studfesldhe exponent, using
several different quantities and larger lattices (whiclwask in progress).

There is also evidence for logarithmic corrections in tig dhodel from studies of its
response to impurities. Introducing a vacancy into theesystind studying the spatial
distribution of the resulting magnetization imbalances ean normally, at conventional
guantum critical points in dimerized models, observe sgalvith the system size in
this distribution [254, 255]. In the J-Q model, such scalamglysis again requires the
introduction of a multiplicative logarithmic correctio@$5].

Applications of other methods to the J-Q modeDne interesting and puzzling as-
pects of the J-Q model is that it seems very difficult to capits properties correctly
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FIGURE 88. Inthe J-@Q model studied here, three singlet projectors are arramgedtaggered pattern.
All distinct orientations (as shown) and translations & fiojector products are included.

using analytical many-body techniques, even ones thatatheraccurately locate the
Néel-VBS transition in the 2D frustrated-J, Heisenberg model. A mean-field treat-
ment starting from a columnar dimer state gives a critlyd@) very far from the QMC
result [256]. This approach can be improved to better talcedncount some of the local
fluctuations on plaquettes, which improves the value of titecal point but seems to
results in a strongly first-order transition [256]. Clustezan-field calculations converge
very poorely with the cluster size [257]. These results pmininusually strong non-local
guantum fluctuations [256], which cannot be easily capturiglillocal approaches start-
ing from small clusters or conventional fluctuations aroanitked dimer pattern. The
reason for these difficulties to capture the VBS state mayhbeetnergent U(1) sym-
metry, which makes it difficult to obtain both the correctdedistance behavior (likely
columnar order) as well as the strong fluctuations betwekmotar and plaquette order
on shorter length scales.

First-order transition in a staggered J-Q modelOne way to test the link between
emergent U(1) symmetry and a continuous Néel-VBS tramsisido construct a model
in which the local fluctuations responsible for rotating ¥i8S angle are suppressed.
Intuition for how to accomplish this comes from the RokhKarelson (RK) quantum
dimer model [258, 259], which can be regarded as an effeativdel for an extreme
nonmagnetic system dominated by short valence bonds (farhwthe internal singlet
structure is also neglected—the bond configurations a@rdegd as orthogonal states).
The RK hamiltonian on the square lattice can be writtertHag = v — kK, where
V is the diagonal (potential-energy) operator, which couhts number of flippable
plaquettes [parallel bond pairs, exactly as in Fig. 86{pa)d K is an off-diagonal
(kinetic) term which flips such a pair. This model has a citipoint atk = v which
separates a plaquette VBS state [similar to the one in F{@)B®r v < k and a staggered
VBS state [with the bond pattern exactly as in Fig. 4(c)]. Whhe plaquette state is
destroyed continuously by quantum fluctuations ask—, the staggered state (of which
there are four symmetry-related equivalent ones) has ntufitions, because it has no
flippable plaquettes. The transition upor- kt is therefore first-order.

This simple picture of the RK model suggests that an actagiggtred VBS in a spin
model also should have strongly suppressed local fluctustiand therefore should
not be associated with an emergent U(1) symmetry. Due touppression of local
fluctuations (and therefore also of large-scale fluctuadiothe transition between it
and the Néel state should be first-order. The picture is noipbete, however, because
clearly there must be some fluctuations in the staggered \&®, considering that
a reasonable spin hamiltonian will be quite far from a dimedel and the valence
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FIGURE 89. Evidence for a first-order transition in the saggerecs¥@del [109]. The Binder cumu-
lant of the sublattice magnetization (a) exhibits a negapigak, which grows with the system size. (b)
Hysteresis effects are observed: simulations in which thipling ratio is slowly increased and decreased
give different properties in large systems, with the eregirossing each other at a point which can
be taken as a size-dependent transition point. Extrapgl#iiese points for different system sizes gives
(Q3/J)c = 1.19331), which is marked with the vertical dashed line in the left @all these results
were obtained with SSE simulations at inverse tempera&yyd = L.

bond configurations making up the gound state should aldodacsome fraction of
longer bonds (in the presence of which some local fluctuataoe always possible). It
is therefore worth testing this picture in simulations of adel whose ground state can
be tuned from a Néel antiferromagnet to a staggered VBS. Suwhdel can easily be
constructed within the J-Q framework, by arranging theIsigrojectors of the Q term
in a staggered fashion, instead of within & 2 plaquette (or in columns of three or more
projectors, as in [108]). It turns out, however, that a Q teomsisting of two staggered
projectors is not sufficient for destroying the Néel statéhwhree projectors, arranged
as in Fig. 88 (and the coupling of which we clk), a staggered VBS is stabilized,
however. We here briefly summarize the evidence for a fidéoKéel—VBS found in
a recent SSE study of the staggeredslr@del [109] .

Some results are shown in Fig. 89. The Binder cumulant of thel Nrder parameter
exhibits a negative peak, which grows with increasing sysséze. This is a strong
indication of a first-order transition, as discussed in $e4.(and the results can be
compared with those of the classical frustrated Ising modelg. 20). The data become
very noisy forL > 12, because of the inefficiency of the simulations in tramsihg
between the two coexisting states. Eas 24 the system can get completely trapped in
a metastable state. On the VBS side close to the transifitire simulation happens to
enter a Néel like configuration during the equilibratiorwill stay in a metastable Néel
state for a very long time (and vice versa on the other sidé®transition). One can
use this trapping to investigate the transition in other sva8y doing a series of runs
at closely spaced values @&/J, starting either far inside the VBS or Néel phase, and
starting each new run from the last configuration of the pnesirun, one can follow the
ground state into its corresponding metastable state amtomg” side of the transition.
The energies computed in two such runs, wii§yJ either increasing or decreasing,
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are shown in Fig. 89. The two branches cross each other, wléahly shows the first-

order nature of the transition. The level crossing is méstyi an avoided one, between
two states with the same quantum numbers, but the spacingé&etthe levels should

be extremely small here. This spacing should be inversédyea to the tunneling time

between the two states at the coexistence point (but notéhdaelationship between
simulation time and the real time dynamics of the system iknown).

The crossing point of the two energy branches can be takeffigiseasize definition
of the critical coupling. It shifts with the system size apximately as 1L2, which is
consistent with a first-order transition with dynamic expotz = 1 [260]. The extrap-
olated transition point iQs/J = 1.19331). At the transition, the VBS order parameter
is about 75% of its maximum value (in a perfect staggeredheaidond state), which is
rather large and motivates the classification of the traomsés strongly first-order.

6. SURVEY OF RELATED COMPUTATIONAL METHODS

In these lecture notes we have discussed exact diagomatizaethods and the SSE
QMC method in some detail and also looked at some illustai@lculations with results
for S=1/2 models. There are many issues that were left untoucheatdieg methods
as well as physics, by restricting the discussioBt01/2 systems, and within that class
also to spin-isotropic systems. The exact diagonalizagigproach can be easily used
for any spin model, but the rapidly growing size of the Hilbgpace withS imposes
even more severe restrictions on the lattices sizeSferl/2 systems. The world line
and SSE QMC methods can be generalized to any spin modelpgsathere is no
frustration leading to sign problems. In this section westlyisummarize some QMC
schemes for more general spin models, as well as some fuettemt developments for
isotropicS= 1/2 systems.

There are several other important computational methatgthbeyond the scope of
these lecture notes, such as series expansions technidglesdmperature expansions
and expansions around some solvable limit of the ground,stag., the Ising limit of an
anisotropic Heisenberg model) [261, 262] and the DMRG nt{8, 29]. While series
expansions can in principle be applied to any model, therésaues with extrapolating
the series in a controllable manner, and one cannot, in nassiscof interest, expect to
reach the same level of accuracy as in QMC simulations of gighlem free models
(e.g., in studies of quantum phase transitions). Seriearestpn methods are neverthe-
less one of the most powerful classes of methods currendifadole for 2D frustrated
guantum spin systems [100], where QMC methods are limitethé@gign problem (but
note recent progress in controlling the sign problem at kéghperatures [193]). More
powerful series expansion schemes are also still beingedgtieveloped [263], and one
can expect progress to continue on this front. The DMRG nekib@ery powerful for
1D systems and can also be used for 2D systems of moderaf@4jzExtensions of the
DMRG method and the related matrix-product states [26, 26}to higher-dimensional
“tensor-network” states [21, 106, 265] are currently besrplored very intensely. This
is an exciting line of research, that may eventually leadiable schemes for unbiased
studies of frustrated spins (and even fermionic systerhg)ppears unlikely, however,
that these methods will, for the foreseeable future, betaleobe quantum spin systems
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FIGURE 90. Examples of the four possible paths through vertices intiigéropicS= 1/2 Heisenberg
model (which may include also an external magnetic field)thechew vertices generated when moving
along the paths in the directed loop algorithm. The vertiiceds at the vertices to the left in each box
indicate the entrance and exit legs (with either directibmovement being possible). Given an entrance
leg, the exit must be chosen such that a new allowed vertesnisrgted when the leg spins are flipped (the
vertices to the right, without the path indicated). In thetihce” process (d), the exit is at the same leg as
the entrance and the vertex is not modified. There are sixvadovertices in the generic anisotropic
Heisenberg model—those in which the spmcomponent) is conserved. In the “deterministic” loop
algorithm discussed in Sec. 5, there are only four vertioelsamly paths of type (a) are allowed

at the level of precision possible with existing QMC methfmtsunfrustrated systems.

In light of the above advantages and disadvantages of éiffenethods, the author
advocates a two-pronged approach in research on quantummsmiels and related
systems: (i) Explore new and improved schemes (includisg 8MC schemes) that
may be useful to study models beyond the reach of currendlijale QMC techniques.
(i) Study interesting physics with state-of-the-art QM@timods for sign problem free
models. It is far from true that everything that can be doredieeady been done with
sign problem free models (although one can some times heardaims)! With the
QMC methods available now, such as the SSE algorithm destiibSec. 5, and with
the power of modern computers (which still is increasingreaimazing pace, e.g., with
a steadily increasing numbers of cores per CPU), it is plesgibaccess very interesting
physics that was beyond reach only a few years ago. The gdiscusf the dimerized and
J-Q classes of models in Sec. 5.3.5, in particular, has htpebnvinced the reader that
there is much to explore in such systems, and beyond (erglpna systems exhibiting
unusual states and quantum phase transitions [266, 26,72288.

Directed loop QMC algorithms. The directed loop algorithm is a generalization of
the SSE operator-loop scheme, introduced in [33] (building previous less efficient
formulation [190]) and applied there ®= 1/2 Heisenberg systems with interaction
anisotropies (Ising and XY) and external magnetic field. @n difference between
loops and directed loops (in both SSE and world line formoite) is that the path
through the vertices is not unique in the directed loop s@&herhe path (the exit leg,
given an entrance leg to a vertex) is chosen according taingrntobabilities, constructed
to maintain detailed balance in a space with two defects—eften loop ends (in a
way similar in spirit to the “worm” algorithm [32]). Fo6 = 1/2 systems, there are
four types of vertex paths, corresponding to the locationthef exit relative to the
entrance, as illustrated and discussed in more detail indBigThe path probabilities,
which should be solutions of the corresponditigected loop equation§for detailed
balance) are in general not unique. For some models, elimgthe “bounce” process
in Fig. 90(d) reduces the directed loop scheme to one of #wedatd loop updates
previously developed fo6= 1/2 (as in the isotropic system discussed in Sec. 5)
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and higherS models [191, 31, 189]. In other cases the directed loops (emrin)
algorithms allow for efficient simulations where the stamdeop algorithms are not
applicable [33, 269, 270, 271]. Here it can also be mentidhatit is some times useful
in SSE directed loop algorithms to work with operators defioa cells larger than
those containing the elementary operators of the Hamétoie.g., the two-spin bond
operators of the Heisenberg model) [272]. This allows foremaptions in choosing how
operators are reconfigured when vertices are traversededpdips, which some times
can make simulations much more efficient.

QMC algorithms in the valence-bond basidn Sec. 2.2 we briefly discussed the
valence bond basis, in which a basis state is a product ofspiro-singlets, as in
Eq. (20), and in which any total singlet singlet state can xgaeded. The basis is
overcomplete and non-orthogonal, which implies that suchxansion is not unique.
One way to work with the valence bond basis is to constructapiinize variational
states, the simplest type of which is amplitude product statg273]. Such a state is a
superposition

|¥) = z Wa|Va), (297)
a

where|Vy) is a valence bond product state of the form (20) and the eipacseffi-
cients are products of amplitude§ ¢ ;) corresponding to the “shapes” of the bonds (the
bond lengths in the& andy direction in the case of a 2D system), witk-1,...,N/2
referring to theN /2 valence bonds in the configuration (bond tiling) labeledrby

N/2

Wy = r! h(ra.i). (298)

Amplitude product states of this kind can closely reprodingeground states of many
bipartite Heisenberg systems, for which each singteb) = (| Talp) — | lalb))/V2
should be defined with sieon sublatticeA and siteb on sublatticeB. With all positive
expansion coefficientd, in (297), this convention for the singlet sign corresporals t
Marshall's sign rulefor the ground state wave function of a bipartite system [274
which in the standardl, | spin basis can be written as

SignWa] = Wo/|Wa| = (-1)™, (299)

whereny, is the number of spins on sublatticé.

The properties of these bipartite amplitude product stesé@sbe studied by Monte
Carlo sampling of the valence bonds [273, 275, 50]. For theHdsenberg model,
the state with all the amplituddgx,y) variationally optimized is a Néel state with
properties in very good agreement with the true ground $2at8], e.g., the energy is
within 0.1% and the sublattice magnetization within 1% of the vall#aioed in QMC
calculations. For frustrated systems, appropriate sitgsrare not known (and may be
too complicated to write down in practice).

The idea to use amplitude product states as a starting poinprbjector QMC
simulations is quite old [276, 277], but was only recentlyweleped into a generic
and efficient tool [47, 49, 50]. The general idea of a projestheme is the same as
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FIGURE 91. Example (from Ref. [50]) of a loop configuration in the valerAwmond projector QMC
method formulated in a combined space of spins (open and sitiles) and valence bonds (the arcs
capping the loops on the left and right boundaries). Thewdhsfour spins are diagonal and off-diagonal
vertices with the same meaning and function as in the SSEatgrdoop method (illustrated in Fig. 61).
Loops form according to the connectivity of the verticesd afso through the valence bonds at the
boundaries, and can be flipped without changing the confiigmraveight. The sum over all possible
loop configurations corresponds exactly to the formulatibthe projector scheme in the pure valence
bond basis (i.e., without using the spins at all) [47]. Using spins allows for a more efficient sampling
of the configurations. Expectation values are evaluatetgusiop estimators at the mid-point indicated
with a vertical dashed line, and this is analogous to the avga estimators (discussed in Sec. 5.2.5) in
the finite-temperature versions of the loop algorithm.

e}

we discussed in the context of Krylov space methods in S&c.By acting with a
high powerH” of the hamiltonian on an arbitrary staf¢’), only the component of
that state with the largest energy eigenvalue—normalhgtbend state (and if not this
can be arranged by subtracting a constant fidya—survives in the limitA — o, as
demonstrated by Eq. (170). Expectation values of the form

(A = (WHMNAHM W)

R 00

where|W) is a valence bond state or superposition (e.g., an amplitratRict state), can
be sampled using Monte Carlo simulations. In the originahfalations of this approach
[62, 47], H is written as a sum of singlet projector operators (as in tleéséhberg
antiferromagnet), or products of singlet operators (as@ndodels), and strings of such
operators are sampled (along with the valence bond confignsaof|W)). The singlet
projectorsS;, defined in Eq. (21), lead to simple reconfigurations of boaiispwhen
acting on valence bond states. When acting on a valence toadperator is diagonal

with eigenvalue 1,
Sin(a,b) = (a,b), (301)

while acting on a pair of different valence bonds leads tongp reconfiguration of
those bonds, with matrix element2;

SJC(av b)(C,d) = %(Cv b)(avd)v (302)

This can be shown easily by going back to the basis afid| spins. Note the order of
the indices within the singlets, which reflects consistetfite convention corresponding
to Marshall’s sign rule discussed aboweec are on sublatticé andb, d on sublatticeB.
These rules allow for a well-defined path integral (or SSE§ firopagation of the states,
and these propagation paths can be sampled using a Monteschdme.
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In a more recent formulation of the valence bond projectothoet [50], theT and
| spin basis is reintroduced, by expressing all singlets imseof their sums over
antiparallel spin pairs. This leads to an algorithm veryilsimto SSE and world line
loop methods. Essentially, the periodic time boundariesiwghen simulating a system
at a fixed temperature are cut open and replaced by two sefemandaries at which the
valence bond states live. This is illustrated and discugsedore detail with a simple
configuration for a four-site Heisenberg chain in Fig. 91.

The valence bond basis (or its translation to loop methodi$,[20]) has some unique
aspects which makes it possible to access observablesréhabemally out of reach
or difficult to calculate. In an extended valence bond basisttie triplet sector, one
can study some properties of excited states [47, 49, 278}.can also generalize the
valence bond basis to include one [279] or several [278] wepapins, which is useful
for studies of, e.g., the magnetization distribution integss with unequal sublattice
occupation of the spins. Simulations in the valence bonaltese also recently found
applications in studies of entanglement entropy [23, 280, 282, 283]. One can also
extend valence bond projector methods to SU(N) spins [108]L(ding even non-integer
N generalizations [248]) and other related symmetry gro@pg].
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