
PY 502, Computational Physics, Fall 2023

Monte Carlo simulations in classical statistical physics

Anders W. Sandvik, Department of Physics, Boston University

NOTE: This version has not been completely changed from Fortran to Julia; some Fortran code
remains in the latter half.

1 Introduction

Monte Carlo simulation is a very important class of stochastic methods for calculating thermal
properties of many-particle systems—arguably these are the most important numerical techniques
in statistical physics. Monte Carlo simulation methods are related to the elementary Monte Carlo
integration methods that we discussed earlier, but are based on more efficient non-uniform sampling
schemes. By using importance sampling, the configurations (particle positions, spin directions, etc.)
of a finite but large many-body system (up to millions of degrees of freedom) can be generated
according to the Bolzmann distribution, so that thermal expectation values are obtained as simple
arithmetic averages of functions “measured” on the configurations.

As a simple illustration of the advantages of non-uniform Monte Carlo sampling, consider a one-
dimensional integral similar to a thermal expectation value in statistical physics (the discussion
here can be directly generalized to multi-dimensional integrals);

〈A〉 =

∫ L

−L
P (x)A(x)dx,

∫ L

−L
P (x)dx = 1, (1)

where P (x) is an arbitrary probability distribution. By randomly sampling M points x1, . . . , xM
in the range [−L,L], the expectation value is estimated as

〈A〉 ≈ 2L

M

M∑
i=1

P (xi)A(xi). (2)

As we discussed before, if P (x) is sharply peaked in a small region, the statistical fluctuations of this
estimate will be large as only a small fraction of the generated points will fall within the dominant
region. If we instead sample the points according to some probability distribution W (x), i.e., the
probability of picking a point in an infinitesimal range [x, x+ dx] is W (x)dx (we now assume that
this can be done for arbitrary W (x), and leave for later discussion how this is accomplished in
practice), then the estimate for the expectation value is

〈A〉 ≈ 1

M

M∑
i=1

P (x)

W (x)
A(xi). (3)

This has less statistical fluctuations than the estimate (2) of the uniform sampling if W (x) is peaked
in the same region as P (x) and if the function A(x) is well-behaved, in the sense of being reasonably

1

smooth and not very small where P (x) is large and vice versa. More precisely, the fluctuation in
the values sampled using the distribution W (x) is given by

σ2
W [A] =

∫ L

L

(
P (x)

W (x)
A(x)− 〈A〉

)2

W (x)dx, (4)

which in principle can be minimized by choosing a particular W (x). In general (for the multi-
dimensional integrals or sums encountered in statistical physics) it is not possible in practice to
find the optimal W (x) that minimizes the fluctuations, but if P (x) has much larger variations than
A(x) a very good solution is to use W (x) = P (x). The expectation value is then just the simple
arithmetic average of A(x) over the sampled configurations

〈A〉 ≈ 1

M

M∑
i=1

A(xi), (5)

and the expected fluctuation of the measured values is

σ2
P [A] =

∫ L

L
[A(x)− 〈A〉]2 P (x)dx. (6)

It should be noted that the distribution of the values Ai is typically not Gaussian, and hence to
calculate the statistical errors of 〈A〉 estimated as (5) the values should first be binned, in the same
way as we discussed previously in the chapter on Monte Carlo integration.

In statistical physics, P is a sharply peaked exponential function e−E/kBT of the energy and A is typ-
ically a linear or low-order polynomial function of the system degrees of freedom. The fluctuations
in P are thus very large relative to those of A and the sampling using P as the probability distri-
bution is then close to optimal. This is what is normally meant by the term importance sampling.
Using importance sampling instead of uniform random sampling is crucial when a small fraction
of the configuration space dominates the partition function, which is always the case with the
Bolzmann probability in statistical mechanics models at temperatures of interest. How to achieve
the correct distribution in practice is the main theme of this chapter; we will discuss importance
sampling schemes for both lattice and continuous-space models.

One of the primary utilities of Monte Carlo simulation is in studies of phase transitions and critical
phenomena. This will be the focus of applications discussed here. Although there are analogous
simulations methods available also for quantum systems (called quantum Monte Carlo methods),
we will here consider only Monte Carlo simulations of classical many-body models. In addition to
describing simulation algorithms, we will also discuss how simulation data is analyzed in order to
locate phase transitions and extract critical exponents.

In the following sections we will first briefly review the the expressions for thermal expectation values
in systems of particles identified by coordinates in continuous space. We then consider models with
discrete degrees of freedom on a lattice, focusing on spin models, the Ising model in particular.
We will discuss the general form of the detailed balance condition that can be used to sample
configurations according to any desired probability distribution. Monte Carlo simulation algorithms
are for instructional purposes often developed in the context of the Ising model, and we will follow
this path here as well (it should also be noted that Ising models are of continued importance
in research). We will develop a standard program for simulations using the Metropolis algorithm,

2

which is based on evolving (updating) configurations by flipping individual spins. We will study the
performance of this method using autocorrelation functions, which characterize the way in which
generated configurations gradually become statistically independent of the past configurations.
This leads us to the problem of critical slowing down, which makes accurate studies close to phase
transitions difficult. Critical slowing down can be often be greatly reduced, in some cases completely
eliminated, using cluster algorithms, where clusters of spins are flipped collectively (using cluster-
building rules that satisfy detailed balance). We will develop a cluster Monte Carlo program and use
it to study the ferromagnetic phase transition in the two-dimensional Ising model. For this purpose,
we will also discuss finite size scaling methods used to extract critical points and exponents. Finally,
we will return to problems involving particles in continuous space; we will develop a program for
simulating a mono-atomic gas and its phase transition into the liquid state.

2 Statistical mechanics of many-body systems

We here briefly review the mathematical formalism used for evaluating thermal expectation values
in classical many-body physics, considering first particles in continuous space and after that focusing
on the lattice spin models for which we will develop Monte Carlo simulation algorithms initially. We
will also discuss the magnetic phase transitions that can be studied using Monte Carlo simulations.

2.1 Particles in continuous space

For a system of N particles, with position coordinates ~xi and momenta ~pi in a d-dimensional space,
the thermal expectation value of a quantity A at temperature T is given by

〈A〉 =
1

Z

∫ N∏
i=1

dxdi

∫ N∏
i=1

dpdiA({~xi, ~pi})eH({~xi,~pi})/kBT , (7)

where Z is the partition function

Z =

∫ N∏
i=1

dxdi

∫ N∏
i=1

dpdi e
H({~xi,~pi})/kBT , (8)

kB is Bolzmann’s constant, and H is the Hamiltonian. For identical particles of mass m in a
potential U(~xi) and a two-particle interaction V (~xi, xj), the Hamiltonian is

H({~xi, ~pi}) =
N∑
i=1

p2
i

2m
+

N∑
i=1

U(~xi) +
∑
i 6=j

V (~xi, xj). (9)

If the observable A is velocity independent (i.e., a function only of the positions xi), the momentum
integrals cancel in (7), leading to

〈A〉 =
1

Z

∫ N∏
i=1

dxdiA({~xi})eE({~xi})/kBT , (10)

Z =

∫ N∏
i=1

dxdi e
E({~xi})/kBT , (11)

3

Figure 1: Spins living on the sites of a square lattice. In this case the spin vectors are confined to
a plane; they are then often referred to as XY-spins.

i.e., only the potential energy,

E({~xi}) =
N∑
i=1

U(~xi) +
∑
i 6=j

V (~xi, xj), (12)

is relevant for the static properties [the density ρ(~x), density fluctuations, equal-time correlation
functions, etc.] of the system. Often the only velocity dependent quantity considered in equilibrium
statistical mechanics is the kinetic energy, which for a single particle is given by

Ki =

〈
p2
i

2m

〉
=

1

Zp

∫
dpdi

p2
i

2m
e−p

2
i /2mkBT , (13)

Zp =
1

Zp

∫
dpdi e

−p2i /2mkBT , (14)

since all integrals except those over ~pi cancel. This gives the equipartition theorem;

Ki =
d

2
kBT. (15)

In general it is not possible to analytically calculate expactation value of more complicated func-
tion of the particle momenta or positions, except in one dimension. In a Monte Carlo simulation,
real-space expectation values are evaluated by importance sampling of a finite number of the config-
urations {~xi}. Before discussing how this is done for particles in continuous space, we will consider
the slightly simpler case of lattice models.

2.2 Lattice and spin models

In a lattice model the degrees of freedom of the system ”live” on the vertices of a lattice; these
degrees of freedom can be continuous or discrete. Spin models constitute an important class of
lattice models in which the degrees of freedom correspond to magnetic moments of fixed magnitude
S and variable orientation; the energy is a function of the orientation angles. In nature, spin
models have direct realizations in crystals of atoms with unpaired electronic spins that are localized
at the atomic sites, i.e., in insulators where the spins are not carried by delocalized conduction
electrons but can be associated with individual atoms (S = 1/2 for single unpaired electrons; higher
spins can result from Hund’s rule and/or electronic states with non-zero angular momentum). If
the spin quantum number S is relatively large, quantum fluctuations can be neglected to a good

4

Figure 2: Lowest-energy states of the two-dimensional Ising model with ferromagnetic (left) and
antiferromagnetic (right) interactions. Solid and open circles correspond to up an down spins,
respectively.

approximation and the spins can be described with classical vectors (however, for small spin,
S = 1/2 and 1 in particular, quantum effects do play a big role and classical models may give
quantitatively, and often even qualitatively, wrong results). One of the most important models of
this kind is the Heisenberg model, where the interaction between spins at sites i and j is proportional
to their scalar product;

E =
∑
i,j

Jij ~Si · ~Sj . (16)

The coupling constants Jij are often restricted to be non-zero only for lattice sites i, j that are
nearest neighbors. Here the spin vectors are three dimensional, but anisotropies can lead to effective
spin models in which the spin orientations are confined to within a plane, as illustrated in Fig. 1,
or along a single axis.

The simplest spin model is the Ising model, in which the spins have only two possible orientations
along a chosen axis; ”up” or ”down”. Denoting the degrees of freedom σi = ±1, the energy is

E =
∑
i,j

Jijσiσj − h
∑
i

σi, (17)

where we have also included an external magnetic field. The interaction Jij is again often (but not
always) non-zero only between nearest neighbors. Ising couplings can arise in a system of S = 1/2
quantum spins when anisotropies make the interactions in one spin direction dominant, e.g., only
Szi S

z
j may have to be considered. There is also a plethora of other physical situations that can be

mapped onto Ising models with various forms of the interaction Jij and the field h in Eq. (17), e.g.,
binary alloys (where σi correspond to the two species of atoms) and atoms adsorbed on surfaces
(where σi correspond to the presence of absence of an atom on a surface).

Considering nearest-neighbor interactions only and zero external field, the energy is

E = J
∑
〈i,j〉

σiσj , (18)

where 〈i, j〉 denotes a pair of nearest-neighbor sites i, j. In sums like thse one normally counts each
interacting spin pair only once, i.e., if the term 〈i, j〉 is included in the sum, the term 〈j, i〉 is not.
Denoting by σ the whole set of spin configurations {σ1, . . . , σN}, where N is the total number of

5

Figure 3: Schematic magnetization versus temperarure curve for a system undergoing a ferromag-
netic transition at temperature T = Tc.

spins in the system, the thermal expectation value of a function A(σ) is

〈A〉 =
1

Z

∑
σ

A(σ)e−E(σ)/T , (19)

Z =
∑
σ

e−E(σ)/T . (20)

For ferromagnetic interactions (i.e., J < 0) when T → 0 there are only two contributing spin config-
urations; those with all spins pointing up or down. For antiferromagnetic interactions (J > 0) there
are also two lowest-energy configurations if the lattice is bipartite, i.e., if the system can be subdi-
vided into two sublattices such that all interacting paris 〈i, j〉 have one member on each sublattice.
For example, on a two-dimensional square lattice the lowest-energy configurations have alternating
up and down spins in a checkerboard pattern (the up and down spins form the two sublattices). The
two-dimensional ferromagnetic and antiferromagnetic ground states are illustrated in Fig. 2. In this
case (and for all other bipartite lattices) there is a simple mapping between the antiferromagnet and
the ferromagnet; by performing a spin rotation σi → −σi on one of the sublattices we effectively
achieve J → −J , and hence all the properties of these two models at any T/J are simply related to
each other. This is not the case for a non-bipartite lattice, e.g., a triangular lattice, in which case
antiferromagnetic interactions are said to be geometrically frustrated (meaning that the individual
energies of the interacting spin pairs cannot all be simultaneously minimized). The lowest-energy
states of the antiferromagnet are then non-trivial, while the completely polarized states remain the
lowest-energy states of the ferromagnet. Frustrated antiferromagnets are of great interest in current
magnetism research, but we will here for simplicity consider mainly ferromagnetic interactions.

In dimensions d > 1, the Ising model exhibits a phase transition between a disordered (param-
agnetic) state at high temperatures and an ordered (ferromagnetic) state at low temperatures (in
one dimension, thermal fluctuations prohibit order at T > 0, and the system then exhibits true
long-range order only exactly at T = 0). The order parameter of this phase transition is the
magnetization,

m =
1

N

N∑
i=1

σi. (21)

Fig. 3 shows the expectation value of the magnetization versus the temperature for an infinitely
large ferromagnet, in which the spin-reversal symmetry can be broken, i.e., if the system has been

6

prepared with the spins predominantly in one direction below T < Tc it cannot spontaneously
(in a finite time) fluctuate through a series of local spin flips into the phase with the opposite
magnetization.1 In a finite system such fluctuations are possible and then 〈m〉 = 0 for all T . In
simulations of finite lattices one can instead define the order parameter as 〈|m|〉 or

√
〈m2〉; such

magnetization curves will be smooth and non-zero for all T . As the system size is increased the
magnetization sharpens close to the critical temperature and approaches the infinite-size symmetry-
broken 〈m(T)〉, which has the form 〈m(T)〉 ∼ (Tc−T)β for T → Tc from below. Here β is an example
of a critical exponent. In subsequent sections we will discuss Monte Carlo simulation algorithms
for the Ising model and learn how to extract transition temperatures and critical exponents from
simulation data. Before that, we will consider the general conditions for importance sampling
according to a desired distribution.

3 Importance sampling and detailed balance

We will here consider a discrete configuration space {C} = C1, C2, . . . , CN (where N can be finite
or infinite), but the discussion can be directly generalized to a continuum of configurations as well
(we will mention an example of this as well). For a system at temperature T , an expectation value
is given by

〈A〉 =
∑
i

P (Ci)A(Ci), P (Ci) =
1

Z
e−E(Ci)/T , (22)

where we work in units such that kB = 1 (i.e., we measure energies in degrees Kelvin). In a
simulation we start with some arbitrary configuration Ci(0) and from it stochastically generate a
sequence Ci(1), Ci(2), . . . , Ci(M), which we use to approximate various expectation values of interest.
Our goal is for the configurations to be distributed according to P .

We use some stochastic process in which a configuration Ci(k+1) is obtained from the previous
configuration Ci(k) by making some kind of random change in the latter. We consider a sequence of
configurations constituting a Markov chain, i.e., the probability of making a transition from Ci(k)

to Ci(k+1) is not dependent on how we arrived at Ci(k) (its history). We will discuss conditions on
the transition probabilities P (Ci → Cj) for the desired distribution P (C) to be achieved. It should
be noted that P can be any probability distribution; not necessarily the Bolzmann probability that
we are interested in here.

Instead of considering a single sequence of configurations, it is useful to first imagine an ensemble of
a large number of configurations. If this ensemble is distributed according to P , then the number
N0(Ci) of configurations Ci in the ensemble is proportional to P (Ci). At a given time (step) we
apply some scheme to change (update) the configurations, with the probability of changing Ci to
Cj denoted P (Ci → Cj). The number of configurations Ci after updating all the configurations is

N1(Ci) = N0(Ci) +
∑
j 6=i

[N0(Cj)P (Cj → Ci)−N0(Ci)P (Ci → Cj)], (23)

1The symmetry breaking can be eachieved by applying a weak magnetic field, which is removed once equilib-
rium has been reached. The system will order also spontaneously, without an external symmetry-breaking field,
through fluctuations into a state with excess magnetization in one direction, but then large domains with different
magnetizations will typically from.

7

where the two terms for each j in the sum correspond to the number of configurations that were
changed into and out of Ci, respectively. This is called the master equation. If we want the ensemble
to remain distributed according to P , we clearly must have, for all i = 1, . . . ,N ,∑

j 6=i
[N0(Cj)P (Cj → Ci)−N0(Ci)P (Ci → Cj)] = 0, (24)

or, since N0(Ci) ∝ P (Ci),∑
j 6=i

[P (Cj)P (Cj → Ci)− P (Ci)P (Ci → Cj)] = 0. (25)

This equation may have many solutions, and in general it would be very difficult to find all solutions.
However, we can obtain a particular solution by satisfying the above condition term-by-term;

P (Cj)P (Cj → Ci)− P (Ci)P (Ci → Cj) = 0, (26)

which gives a condition, called detailed balance, on the ratio of the transition probabilities;

P (Ci → Cj)

P (Cj → Ci)
=
P (Cj)

P (Ci)
. (27)

In statistical mechanics the configuration probabilities P (Ci) is given by

P (Ci) =
1

Z
W (Ci), W (Ci) = e−E(Ci)/T , (28)

where W (Ci) is referred to as the configuration weight. Since the partition function cancels in the
ratio on the right hand side of Eq. (27) we can also write

P (Ci → Cj)

P (Cj → Ci)
=
W (Cj)

W (Ci)
, (29)

which is the way the detailed balance condition normally is written.

Although we have derived the detailed balance condition starting from an ensemble of configura-
tions, it is valid for a single Markov chain as well. This statement would clearly be true if the
Markov chains formed by the time evolution of all of the individual configurations in the ensemble
would have the same distribution over time, in which case they clearly all would be distributed
according to P. For this to hold the sampling has to be ergodic, i.e., the types of updates made
must be such that from an arbitrary configuration any configuration can be reached by a series of
updates. Most Monte Carlo simulation schemes are based on the principles of detailed balance and
ergodicity.

We have shown that detailed balance maintains the desired distribution of configurations if we start
from an ensemble that is already in that distribution. In practice one starts a Markov chain from
some arbitrary state, which may be an improbable state of the target distribution. It will then take
some time before the generated configurations are correctly distributed, but with detailed balance
and ergodicity fulfilled we are guaranteed to reach the correct distribution after some time. This
can be seen in the master equation (23), where it is clear that if we have an ensemble with an excess
of configurstions Ci (implying an over-all deficit of other onfigurations), then after one updating

8

Figure 4: Updating attempts for the Ising model (left), where a spin to be flipped is selected at
random (here the one indicated by a circle), and for particles occupying a volume (right), where
a particle to be moved is selected at random and its new position is selected randomly within a
sphere surrounding it (indicated by a gray circle).

step the excess is reduced because when N0(Ci) is large there are also more configurations changing
out of Ci than into it. The time needed for equilibration depends on the system under study and
one should make sure that a sufficient number of updates are carried out before the configurations
are used to measure observables.

In a simulation, one typically does not consider all possible transitions Ci → Cj , but only a subset
of all transitions corresponding to making certain small changes in Ci. For example, for an Ising
configuration with N spins one can consider flipping a randomly selected spin, in which case N
new configurations can be reached. For a system of particles in continuous space, one can consider
moving a randomly chosen particle by a displacement vector ~δ, with ~δ chosen randomly within
a sphere of radius ∆. These updates are illustrated in Fig. 4; these clearly constitute erogidic
processes as we can create any configuration by repeating the update many times.

The transition probability P (Ci → Cj) in the examples given above can be written as a product of
two probabilities; one for attempting a certain update (selection of the spin to be flipped, or the
particle to be moved and the displacement vector ~δ) and one for actually carrying out the change
(accepting it). We hence write

P (Ci → Cj) = P attempt(Ci → Cj)P
accept(Ci → Cj). (30)

It is often the case, as it is in the examples mentioned above, that the probability of attempting
each of the possible updates is trivially uniform, i.e., P attempt(Ci → Cj) = constant, independent
of i, j. This part of the transition probability then drops out of the detailed balance condition (29)
and we are left with a detailed-balance condition for the acceptance probabilities;

P accept(Ci → Cj)

P accept(Cj → Ci)
=
W (Cj)

W (Ci)
. (31)

This condition can be fulfilled in a number of ways, among which the most commonly used is the
Metropolis acceptance probability;

P accept(Ci → Cj) = min

[
W (Cj)

W (Ci)
, 1

]
. (32)

In other words, if the new configuration weight is higher (corresponding to lowering the energy of
the system) we always accept the update, whereas if it is lower we accept it with a probability equal

9

to the ratio of the new and old weights. It can easyly be checked that this Metropolis acceptance
probability indeed satisfies the detailed balance condition (31). To determine whether or not to
accept the update when P accept(Cj) < 1, the acceptance probability can be compared with a ranom
number r ∈ [0, 1); if r < P accept(Ci → Cj) the update is accepted, and otherwise it is rejected. If
an update is rejected, the old configuration Ci should be considered the next configuration in the
sequence. The whole procedure of attempting updates and accepting or rejecting them using the
above scheme goes under the name of the Metropolis algorithm, after the first author of the paper
where this method was first introduced.2

Another often used acceptance probability that can be used with the Metropolis algorithm is

P accept(Ci → Cj) =
W (Cj)

W (Ci) +W (Cj)
, (33)

which is a special case of a heat bath probability involving selection among a number m of choises

P select(Cj(k)) =
W (Cj(k))∑m
l=1W (Cj(l))

. (34)

Here the current configuration is Ci = Cj(l) for some l ∈ {1, . . . ,m} and there is no explicitly
rejected update, i.e., one of the options l = 1, . . . ,m is always chosen, according to the above
probabilities. Since one of the choises equals the old configuration the update may still lead to no
change. This approach is useful, e.g., for lattice models where each lattice site can be in m > 2
different states. The acceptance probability (33) can be considered a special case of the heat-bath
approach when there are just two states to be selected among.

4 Metropolis algorithm for the Ising model

It was already indicated above how the Metropolis algorithm works in the case of the Ising model,
for which the energy in the presence of a magnetic field is given by Eq. (17); a configuration update
amounts to selecting a spin at random and flipping it with probability (32). When updating an
Ising configuration; C → C ′, by flipping any number of spins, the weight ratio W (C ′)/W (C) in the
acceptance probability is given explicitly by

W (C ′)

W (C)
= exp

−J
T

∑
〈i,j〉

(σ′iσ
′
j − σiσj) +

h

T

∑
i

(σ′i − σi)

 , (35)

where {σ′i} are the spins of the updated configuration. Flipping a single spin j, we get

W (C ′)

W (C)
= exp

2J

T
σj

∑
δ[j]

σδ[j] −
h

J

 , (36)

where δ[j] denotes a nearest neighbor of site j (of which there are 2d on a d-dimensional cubic
lattice). Since the accept/reject criterion in practice amounts to comparing the above ratio with

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations
by fast computing machines, J. Chem. Phys. 21, 1087 (1953). This paper is recommended reading!

10

a random number 0 ≤ r < 1, these ratios can be used directly without taking the minimum
with 1, which required in the actual probability (32). In order to avoid repeated time-consuming
evaluations of exponential functions, the weight ratios should be precalculated and stored in a table.

It should be pointed out that it is actually not necessary to select the spin to be flipped at random;
one can also go through all spins one-by-one. In this case detailed balance is not fulfilled for each
step, but with some more effort one can show that the correct distribution is nevertheless obtained.
It is likely, however, that the random spin selection makes the simulation less sensitive to flaws in
the random number generator (whether or not this statement really holds clearly depends on the
random number generator used) and hence this is the preferred way to do it.

4.1 Program implementation

The ising spins σi = ±1 can be stored in a one-dimensional vector; spin[1:n]. For a simple cubic
lattice with dimensionality d = 1, 2, or 3, and the number of spins N = Ld, the correspondence
between the index i and the coordinates of the lattice sites can then be conveniently chosen as x=i
for d = 1, x=mod(i,l), y=div(i,l) for d = 2, and x=mod(i,l), y=mod(i,l^2)/l, z=div(i,l^2)
for d = 3. The neigbors δ[i] can be easily calculated on the run using these coordinates. For more
complicated non-cubic lattices it may be better to precalculate the neighbors and store them in an
array.

It is useful to define a size-normalized ”time” unit of a simulation, so that the probability of carrying
out an update of a spin during a time unit is independent of the system size. Hence we define a
Monte Carlo step as N attempts to flip randomly selected spins.

As an example we here consider the two-dimensional ferromagnetic Ising model with n=lx*ly spins
and J = −1. We discuss the main elements of the program ’ising2d.f90’ which is available on
the course web site. The spins spin[s] can be initially set to arbitrary values ±1, e.g., chosen
at random. The precalculated weight ratios (36) are stored in a matrix pflip[s0,ss] where the
indexes s0 and ss correspond to the values of σj = ±1 and

∑
δ[j] σδ[j] = −4,−2, 0, 2, 4, respectively

(since we work on a periodic lattice in which each spin has four neighbors, the sum is always even).
We use a simple array (which has more elements than needed); with S0=-1,0,1 and ss=-4,-3,...,

4. With the temperature stored in a floating-point variable temp the probability matrix can be
constructed by

for ss=-4:2:4

pflip[-1,ss]=exp(+(ss+h)*2/temp)

pflip[+1,ss]=exp(-(ss+h)*2/temp)

end

Using the Julia function rand() with two methods to generate either integer random numbers
between 1 and n or floating-point values between 0 and 1 , a Monte Carlo step can be carried out
as follows;

for i=1:n

s=rand(1:n)

11

x=mod(s-1,lx)

y=div(s-1,lx)

s1=spin[1+mod(x+1,lx)+y*lx]

s2=spin[1+x+mod(y+1,ly)*lx]

s3=spin[1+mod(x-1,lx)+y*lx]

s4=spin[1+x+mod(y-1,ly)*lx]

if rand()<pflip[spin[s],s1+s2+s3+s4]

spin[s]=-spin[s]

end

end

A full simulation consists of a number of equilibration steps and a much larger number of steps
after each of which measurements of physical quantities of interest are carried out (however, in some
cases it may not be statistically worthwile to measure after each step, as we will discuss further
below in connection with autocorrelation functions). The main part of the simulation should be
subdivided into bins, for which separate averages are calculated that can be subsequently used
for calculating statistical errors (in the same way as we discussed in the chapter on Monte Carlo
integration). The statistical analysis can be carried out using a separate program; hence all the bin
averages are stored on disk (this is useful if one later wants to increase the number of bins without
having to redo the bins already completed). The main part of a simulation program can then look
like this:

for i=1:binsteps

mcstep()

end

for j=1:bins

resetdatasums()

for i=1:binsteps

mcstep()

measure()

end

writebindata()

end

where equilibration is done for a number of steps corresponding to one bin (which may or may
not be sufficient) and the subroutine names are self-explanatory (with the exception perhaps of
resetdatasums(), which sets to zero all the variables used to accumulate measurements). No
arguments have been indicated for the functions, as those will depend on exactly how the program
is written.

As a general rule, the number of bins should be at least 10 in order to calculate the statistical errors
reliably. In order not to generate unnecessarily large data files, one should adapt the number of
steps per bin so that the number of bins required in order to reach a satisfactory statistical error is
not too large (how many bins are too many is somewhat a matter of taste, but to have more than
1000 bins would generally be considered excessive, unless one has some specific reason for this, e.g.
to construct high-precision histograms of bin averages).

12

We discussed data binning also in the context of Monte Carlo integration, where its purpose was
to obtain data following a normal distribution (which is the case in the limit of a large number
samples per bin). In Monte Carlo simulations based on a Markov chain, where by construction
the configurations are time-correlated, an additional purpose of binning is to achieve statistically
independent data; this will also be the case if the bins are sufficiently long; a statement which can
be made more precise in terms of autocorrelation functions, which we will discussed below in Sec. 5.

4.2 Evaluating physical observables

A quantity of natural interest in the context of the ferromagnetic Ising model is the magnetization,
which is the order parameter of the phase transition occuring at a temperature Tc > 0 in two
and three dimensions. We denote by M the full magnetization and by m the corresponding size-
normalized quantity;

M =
N∑
i=1

σi, m =
M

N
. (37)

As we discusseed in Sec. 2.2, on a finite lattice the spin-reversal symmetry is not broken in a simula-
tion running for a long time and hence 〈m〉 = 0 (although in practize the time to “tunnel” between
states with positive and negative magnetization becomes very long in Metropolis simulations of
large systems when T < Tc; in practice one will then “measure” (a term often used on the field
for accumulating expectation values in simulations) 〈m〉 6= 0). One can instead measure 〈|m|〉 or√
〈m2〉, since in the thermodynamic limit the become equal to the symmetry-broken 〈m〉. Another

quantity of great interest is the magnetic susceptibility, defined as

χ =
d〈m〉
dh

, (38)

i.e., the linear response of the magnetization to a unifrom magnetic field. In the thermodynamic
limit, the susceptibility of a system in zero field (h = 0) diverges at the ferromagnetic transition.
We can take the derivative in the statistical expression for 〈m〉 to obtain an estimator for χ. Writing
the energy (17) as E = E0 − hM , we have

〈m〉 =
1

Z

∑
S

me−(E0−hM)/T , Z =
∑
S

e−(E0−hM)/T . (39)

The susceptibility (38) is then

χ = −dZ/dh
Z2

∑
S

me−(E0−hM)/T +
1

Z

1

T

∑
S

mMe−(E0−hM)/T , (40)

and with
dZ

dH
=

1

T

∑
S

Me−(E0−hM)/T , (41)

we obtain

χ =
1

N

1

T

(
〈M2〉 − 〈M〉2

)
. (42)

13

This expression can be used for h 6= 0 at any T . In the zero field case 〈M〉 = 0 for T ≥ Tc and thus

χ =
1

N

1

T
〈M2〉, (h = 0, T ≥ Tc). (43)

For T < Tc we can again substitute |M | for M in (42) and use

χ =
1

N

1

T

(
〈M2〉 − 〈|M |〉2

)
. (44)

This formula can also be used for T > Tc, since there 〈|M |〉 → 0 as N → ∞, and hence the two
expressions (43) and (44) are equivalent in the thermodynamic limit.

The specific heat can be derived in a similar way;

C =
1

N

dE

dT
=

1

N

d

dT

1

Z

∑
C

E(C)e−E(C)/T =
1

N

1

T

(
〈E2〉 − 〈E〉2

)
. (45)

Like the susceptibility, the specific heat is singular at the ferromagnetic phase transition. Another
quantity of interest is the spin-spin correlation function

C(~rj − ~ri) = 〈σiσj〉 − 〈σi〉2, (46)

which can be averaged over pairs of sites with the same separation ~rj−~ri. For T 6= Tc the correlation
function decays exponentially to zero as |~r| = r → ∞; C(~r) ∼ e−r/ξ, where ξ is the correlation
length. As T → Tc the correlation length diverges, and exactly at Tc the correlation function decays
to zero as a power-law. We will discuss these issues further in Sec. 7.2.

In the example program ising2d.f90 the energy and the magnetization, as well as their squares,
are measured, and their bin averages are stored in a file on disk for later processing. This is the
main part of the measurement routine:

e=0

for y=0:ly

for x=0:lx

s=1+x+y*lx

e=e-spin[s]*(spin[1+mod(x+1,lx]+y*lx]+spin[1+x+mod(y+1,ly)*lx])

end

end

m=sum(spin)

enrg1=enrg1+e

enrg2=enrg2+e**2

magn1=magn1+m

magn2=magn2+m**2

After each completed bin, the averages 〈E〉/N , 〈E2〉/N , 〈|M |〉/N , and 〈M2〉/N2 are written to the
file bindata.dat. This file should be processed by the program average.f90, which calculates the
final averages and statistical errors. The susceptibility and the specific heat are computed based
on bin averages according to Eqs. (44) and (45).

14

5 Autocorrelation functions

The Metropolis algorith generates statistically independent configurtions through a series of spin
flips. How many Monte Carlo steps are required between two configurations before they can
be considered statistically independent? This important question can be answered by studying
autocorrelation functions. For a quantity Q, the autocorrelation function is defined as

AQ(τ) =
〈QkQk+τ 〉 − 〈Qk〉2

〈Q2
k〉 − 〈Qk〉2

, (47)

where the averages are over the time-index k (counting the number of Monte Carlo steps) and
the normalization is such that AQ(0) = 1. If the configurations Ci(k) and Ci(k+τ) are statistically
independent for all k, the correlation function 〈QkQk+τ 〉 = 〈Qk〉〈Qk+τ 〉 = 〈Qk〉2. For an ergodic
simulation we expect statistical independence as τ → ∞, and hence the autocorrelation function
(47) should approach 0 as τ →∞. For large τ the approach to zero is exponential,

AQ(τ)→ e−τ/Θ, (48)

where Θ is called the autocorrelation time. We can also define an integrated autocorrelation time,

Θint =
1

2
+

∞∑
τ=1

AQ(τ), (49)

which corresponds to the trapezoidal integration formula in which the term 1/2 comes from
AQ(0)/2. For a purely exponential autocorrelation function we would have Θint = Θ (strictly
only for large Θ, in which case the discrete sum approaches the integral of e−τ/Θ), but the short-
time behavior is typically of a different form and then the two autocorrelation times differ. The
autocorrelation times also depend on what quantity Q is considered. There is, however, some intrin-
sic slowest fluctuation mode of the system, which depends on the physics of the model as well as on
the simulation algorithm used. The presence of this mode is reflected in most measured quantities,
which hence share the same asymptotic autocorrelation time Θ. The slowest mode corresponds to
fluctuations of the largest structures in the system (ordered domains), and hence it will be reflected
most strongly in quantities sensitive to changes in this structure, e.g., the order parameter close to
a phase transition and the closely related long-distance correlation function. Quantities that do not
depend strongly on the large-scale structure (e.g., short-distance correlation functions) may have
much faster decaying autocorrelations, and the eventual long-time decay governed by the slowest
mode may then be difficult to detect.

In order to calculate the autocorrelation function up to a Monte Carlo step separation (time)
τ = K, we need to store K + 1 consecutive measurements Qk. Storing these in a a vector tobs(),
we first have to fill all the elements during K + 1 steps, and after that we can begin accumulate
contributions to the averages 〈QkQk+τ 〉 and 〈Qk〉. After each Monte Carlo step the contents of the
vector have to be shifted, so that a new measurement can be inserted as the first element. This
is illustrated in Fig. 5. The following section of code carries out the shift of the elements in the
storage vector and the measurements of the autocorrelation function:

for t=2:k+1

15

Figure 5: Contents after Monte Carlo steps n and n + 1 of the vector tobs() used for storing
individual measurements of a quantity Q.

0 5 10 15 20 25
τ [MC steps]

0.01

0.1

1

A
|M

|(τ
)

 L=32
 L=16
 L=8
 L=4

Figure 6: Autocorrelation function for the magnetization magnitude |M | in 2D Ising models of
different sizes at T = 3 (> Tc = 2/ ln(1 + 2

√
2) ≈ 2.269)

tobs[t]=tobs[t-1]

end

tobs[1]=q

for t=0:k

acorr[t]=acorr[t]+tobs[1]*tobs[1+t]

end

On the course web site, there is a version ising2d a.f90 of the 2D Ising simulation program
which carries out autocorrelation function measurements for the energy and the magnetization.
The output file of this program should be processed with the program autoaverage.f90, which
calculates the averages and statistical errors of the binned autocorrelation functions, as well as the
corresponding integrated autocorrelation times.

Some autocorrelation results obtained using ising2d a.f90 are shown in Figs. 6 and 7. Here it
can be seen that the autocorrelations for the magnetization depend almost purely exponentially on
Monte Carlo time (a linear decay on the linear-log scale used in the figures), with the autocorrelation

16

0 50 100 150 200 250
τ [MC steps]

0.01

0.1

1

A
|M

|(τ
) L=32

 L=16
 L=8
 L=4

Figure 7: Autocorrelation function for the magnetization magnitude |M | in 2D Ising models of
different sizes at T = 2.269 (≈ Tc = 2/ ln(1 + 2

√
2)).

time (the slope) depending on the system size L. Above Tc, the autocorrelation time converges,
whereas close to Tc it apparently continues to grow considerably with L. This phenomenon is called
critical slowing down. Quite generally, a simulation algorithm utilizing local updates, such as the
single-spin flips of the Metropolis algorithm, becomes inefficient close to a critical point, where the
divergent correlation length (increasingly large ordered domains) makes the Markov-chain evolution
through the contributing part of the configuration space slow; the local spin updates can only
slowly change the structure of a configuration containing large ordered domains. This is illustrated
in Fig. 8, which shows Ising spin configurations obtained after three consecutive Monte Carlo steps
at three different temperatures (in all cases the simulations were first equilibrated). The center row
of configurations were generated at T = 2.5, which is approximately the temperature at which the
size of the ordered domains becomes comparable with the system length for the system size L = 32
considered (this temperature can be taken as a critical temperature Tc(L) for a given system size,
which is higher than the value in the thermodynamic limit, known exactly from Onsager’s solution
to be Tc = 2/ ln(1 + 2

√
2) ≈ 2.269) Here it can be seen that although a large number of spins

have been flipped, the global cluster structure does not change much between the first and third
configuration, wheareas below and above Tc the clusters are small; their locations and shapes are
then much more easily changed in the Metropolis updating procedure.

Away from the critical point the autocorrelation function (like other properties of the system) will
converge when the system size becomes considerably larger than the correlation length. Exactly
at the critical point the correlation length diverges and the system length L is the only relevant
length scale. In this case the autocorrelation time Θ (as well as Θint) diverges as a power of the
system size;

Θ,Θint ∼ Lz, (50)

where z is called the dynamic exponent. The integrated autocorrelation times corresponding to the
autocorrelation functions shown in Figs. 6 and 7 are graphed in Fig. 9. In the case of the Metropolis

17

Figure 8: Ising spin configurations obtained with the Metropolis algorithm for two-dimensional
L = 32 lattices at three different temperatures. The left, center, and right graphs at each T were
generated after three consecutive Monte Carlo steps.

18

5 10 20 30

L

1

10

100

Θ
in

t

 T/J = 3.000

 T/J = 2.269

 L
2.2

Figure 9: Integrated autocorrelation time versus system size for the 2D ising model at two different
temperatures.

algorithm, the dynamic exponent is known to be z ≈ 2.2 for the 2D Ising model. The results for
T = 2.269 ≈ Tc are consistent with this.

For calculating Θint, the summation in Eq. (49) was carried out (by the program autoaverage.f90)
only up to the τ at which AQ(τ) begins to be dominated by statistical errors. This will in principle
lead to an underestimated Θint, but for most purposes it is a sufficiently accurate method.

The effective number of independent configurations generated during M Monte Carlo steps is
roughly M/Θint, and hence it takes increasingly long to generate good statistics in simulations as
the autocorrelation time increases. In cases where the autocorrelation time becomes very long,
one should also pay attention to the number of steps used in each simulation bin. The statistical
analysis based on calculating standard deviations of bin averages assumes that the bin averages
constitute independent data, which is only true if the number of Monte Carlo steps per bin is much
larger than the autocorrelation time. If this is not the case, the calculated standard deviations of
the averages will be smaller than the actual statistical errors.

6 Cluster algoritms for the Ising model

Critical slowing down severaly hampers studies of systems close to critical points, and even away
from critical points the autocorrelation times can be long in many systems. In some cases, these
problems can be significantly reduced, or even completely eliminated, using cluster algorithms,
where a large number of spins can be flipped simultaneously to achieve a faster evolution of the
configurations.

It should be noted that simultaneous flips of several spins in the Metropolis method are also possible
in principle, but then the weight ratio (35) becomes very small on average, reflecting the fact that
the new energy is very likely to go up if several spins are flipped, and very few such updates will

19

be accepted. In a cluster algorithm one constructs clusters of spins in such a way that the whole
cluster can be flipped with a high probability (1/2 or 1 depending on the formulation).

We will here be considering only the case of zero magnetic field (h = 0 in the Ising energy (17), as
the cluster method does not work in practice when h 6= 0.

6.1 Swendsen-Wang algorithm

To construct the cluster algorithm for the Ising model first developed by Swendsen and Wang, we
introduce a bond index b corresponding to a pair of interacting spins σi(b)σj(b); b = 1, 2, . . . , Nb,
where the number of bonds Nb = dN for a d-dimensional cubic lattice with N sites and periodic
boundary conditions. We can then write the energy of the ferromagnetic Ising model as,

E(σ) = −|J |
Nb∑
b=1

[σi(b)σj(b) + 1] =

Nb∑
b=1

Eb. (51)

A constant −|J | has been added to the energy of each bond, for reasons that will become clear
below. Using the bond energies Eb, we can write the partition function as

Z =
∑
σ

e−E(σ)/T =
∑
σ

Nb∏
b=1

eEb/T =
∑
σ

Nb∏
b=1

[1 + (eEb/T − 1)]. (52)

We now define a bond function with arguments 0, 1 corresponding to the two terms on the right
hand side above;

Fb(0) = 1,

Fb(1) = eEb/T − 1, (53)

and write the partition function as

Z =
∑
σ

Nb∏
b=1

[Fb(0) + Fb(1)]. (54)

We now intruduce a set of auxilary bond variables τb = ±1 to be used as arguments in the bond
function (53) for each bond b. We use the notation τ = {τ1, τ2, . . . , τNb

} to refer to a whole bond
configuration, in a way analogous to a spin configuration σ. We can now write Z as sum over spins
and bonds;

Z =
∑
σ

∑
τ

Nb∏
b=1

Fb(τb). (55)

The bond function Fb depends implicitly on the spins connected by bond b;

Fb(0) = 1, independent of σi(b), σj(b) (56)

Fb(1) = eEb/T − 1 =

{
e2|J |/T − 1, if σi(b) = σj(b),

0, if σi(b) 6= σj(b).
(57)

20

Figure 10: A spin configuration (circles) in which filled bonds (thick lines between circles) have
been cast between equal spins according to the appropriate probability. A cluster consisting of
three spins is identified and its two orientations are shown. The weight in the partition function is
the same for these two configurations.

For a non-vanishing contribution to the partition function (55), the bond variable τb = 1 is hence
allowed only between parallel spins; we will refer to τb = 1 as a filled bond. In the combined space
of spins and bonds, the configuration weight in the partition function (55) is

W (σ, τ) =

Nb∏
b=1

Fb(τ), (58)

which if we have no “illegal” filled bonds is simply

W (σ, τ) = (e2|J |/T − 1)N1 , (59)

where N1 is the number of filled bonds. Hence the spin configuration affects the weight only by
imposing restrictions on where the filled bonds can be placed. This scheme relies critically on the
added constant −|J | in each bond energy in Eq. (51); without this term there could be (with a
different probability) filled bonds also between antiparallel spins, and the weight function would
have a more complex dependence on this spins. As we will see, the key feature of the Swendsen-
Wang scheme is that the weight is exactly zero if a filled bond is placed between antiparallel spins,
and that if no such illegal bonds are present the weight is independent on the spin configuration.

The objective now is to construct a scheme for generating spin and bond configurations distributed
according to the weight function (58). For a given spin configuration, we define the probability of
a bond configuration corresponding to the weight (58);

P (τ) =
∏
b

Pb(τb), (60)

where the individual bond probabilities are

P (τb) =
Fb(τb)

Fb(0) + Fb(1)
. (61)

The probability of a filled bond is hence

P (τb = 1) = 1− e−2|J |/T , if σi(b) = σj(b), (62)

P (τb = 1) = 0, if σi(b) 6= σj(b). (63)

21

Figure 11: Labeling convention for the spins and bonds of a 2D square lattice (here of size 4× 4)
with periodic boundary conditions.

The next key observation underlying the Swendsen-Wang algorithm is that for a configuration of
spins and bonds, we can form clusters of spins connected by filled bonds, and if all spins in such a
cluster are flipped collectively the weight (59) is unchanged (the number of bonds does not change,
and since all spins are equal also in the flipped cluster, no instances of forbidden filled bonds will
result). A single spin connected to no filled bond can also be considered a cluster.

We have now completed all steps needed to formulate the cluster algorithm:

1) Start with an arbitrary spin configuration.
2) Cast filled bonds according to the probabilities (62) and (63).
3) Identify all clusters of spins; flip each of them with probability 1/2.
4) Repeat from 2).

Here the reason to flip the clusters with probability 1/2 is that this implies that on average 50%
of the spins will be flipped in every step. In principle any probability < 1 could be used (flipping
with probability 1 would not be good, as every spin belongs to a cluster and hence all spins would
be flipped), but 1/2 can, by symmetry, be expected to be the best choise.

6.2 Program implementation of the Swendsen-Wang method

An important feature to notice is that the Swendsen-Wang algorithm is essentially independent
of the dimenionality and the type of lattice; we only need to define the list of interacting sites
[i(b), j(b)], a list containing the bonds b connected to a given site j, and also a table of the nearest
neighbors of each site. We call the list of sites connected by bonds spinbond(i,b), where the bond
index b=0,...,nb-1 and i=1,2 correspond to the two sites i(b), j(b). The bonds connected to spin
s are stored as bondspin(i,s), where i=1,...,nbors, where nbors is the number of neighbors
(if the number of neighbors is not the same for every site, e.g., in the case of open boundary
conditions, we would also have to store a list of the number of neighbors of each spin). The nearest
neighbors of spin s are stored in neighbor(i,s), where again i=1,...,nbors. As an example
of how to construct these lists, we consider the 2D square lattice with n=lx*ly sites, using the
labeling convention for the sites and bonds shown in Fig. 11. This code segment carries out the
construction of the lattice tables:

22

Figure 12: Spin/bond configurations of a 2D Ising model generated with the Swendsen-Wang
algorithm at two different temperatures (left). The flipped clusters are indicated by gray sircles
(center). The configurations obtained after flipping the clusters are also shown (right).

for s0=0:n-1

x0=mod(s0,lx)

y0=div(s0,lx)

x1=mod(x0+1,lx)

x2=mod(x0-1+lx,lx)

y1=mod(y0+1,ly)

y2=mod(y0-1+ly,ly)

s1=x1+y0*lx

s2=x0+y1*lx

s3=x2+y0*lx

s4=x0+y2*lx

neighbor[1,s0]=s1

neighbor[2,s0]=s2

neighbor[3,s0]=s3

neighbor[4,s0]=s4

bondspin[1,2*s0]=s0

bondspin[2,2*s0]=s1

bondspin[1,2*s0+1]=s0

bondspin[2,2*s0+1]=s2

spinbond[1,s0]=2*s0

spinbond[2,s0]=2*s0+1

spinbond[3,s1]=2*s0

spinbond[4,s2]=2*s0+1

end

To generate a bond configuration we need the list bondspin(i,b) of spins connected by the bonds.

23

Figure 13: The first steps of building a cluster out of a seed spin which by definition belong to the
cluster. In (a) the bonds connected to the seed spin are indicated; a spin at the other end of a
bond belongs to the cluster if the bond is a filled one. (b) shows the result of the examination of
the bonds, with the filled bonds indicated by thicker black lines. The spins visited (per definition
these are spins that are added to the cluster) are shown as circles. (c) indicates the bonds to be
examined that are connected to one of the new spins in the cluster, and (d) shows the result of this
step.

We store the spins ±1 in an integer vector spin[1:n] and the bonds in a logical vector bond(1:nb],
with T and F corresponding to filled and empty bonds, respectively. This segment of code casts the
filled bonds with a probability bprob that has been preset to 1− e−2|J |/T , using a random number
generator rand();

for b=1:nb

if spin[bondspin[1,b]]==spin[bondspin[2,b]]

if rand()<bprob

bond[b]=T

else

bond[b]=F

end if

else

bond[b]=F

end

end

The next step is to identify and flip clusters. There are several cluster finding algorithms, the most
efficient being the so-called Hoshen-Koppelmann algorithm. Here we will use a simpler method
which is only slightly less efficient. The aim is to construct all clusters and to flip each of them
with probability 1/2. The search for the first cluster is done using spin 0 as the “seed” spin; all
its nearest-neighbor spins connected to it by filled bonds are to be identified, and the neighbors of
those spins must be checked in turn, etc., until no new neighbors of spins that have been identified
as belonging to the cluster are connected to it by filled bonds. The first steps of this procedure are
illustrated in Fig. 13. Each new spin that is added to the cluster is stored on a stack (a last-in-
first-out list); when the bonds of one spin has been examined a new spin is drawn from the stack,
until the stack is empty, in which case the cluster is completed. A vector of flags should be kept
to indicate whether a spin already has been “visited” or not, i.e., whether or not it has already
been added to a cluster. Using these flags, one can make sure that no spin is visited more than
once. The decision of whether to flip the cluster or not can be made before the cluster building
starts. If the decision is to flip, spins are flipped when they are put on the stack. When a cluster

24

has been completed a new seed site that has not previouisly been visited is searched for using the
vector of flags, starting from the previous seed spin position plus one. Calling the flag for spin s

notvisited(s), with boolean values .false. and .true. for spins that have and have not been
visited, and storing the seed spin in cseed, we initialize the cluster search/flip procedure by

notvisited(:)=.true.

cseed=0

Then the flip decision is made and the first spin is added to the cluster (which corresponds to
adding it to the stack), and a loop for building the cluster to completion is executed;

1 if (rand()<0.5d0) then

flipclus=.true.

else

flipclus=.false.

end if

notvisited(cseed)=.false.

if (flipclus) spin(cseed)=-spin(cseed)

stack(1)=cseed; nstack=1

do

if (nstack==0) exit

s0=stack(nstack); nstack=nstack-1

do i=1,nbors

s1=neighbor(i,s0)

if (bond(spinbond(i,s0)).and.notvisited(s1)) then

notvisited(s1)=.false.

if (flipclus) spin(s1)=-spin(s1)

nstack=nstack+1; stack(nstack)=s1

end if

end do

end do

After completion of the cluster (exit from the loop when the staack is empty) we search for a not
previously visited spin to be used as the seed of the next cluster;

do i=cseed+1,n-1

if (notvisited(i)) then

cseed=i

goto 1

end if

end do

This continues until all sites have been visited, which implies that all clusters have been constructed
(as each spin belongs uniquely to one cluster).

25

4 8 16 32 64 128 256 512 1024

L

2

3

4

5

6

7

Θ
in

t

Figure 14: Integrated autocorrelation time of the magnetization of the 2D ising model at the
critical temperature; Tc = 2/ ln(1+2

√
2). The system size dependence corresponding to logarithmic

divergence is shown as the straight line [Θint = 0.75 + 0.85 ln(L)].

We have now covered all the important elements of a Swendsen-Wang simulation. A program,
sw.f90, using these elements is available on the course web site.

6.3 Autocorrelations

The simulation dynamics of the Swendsen-Wang algorithm has been investigated extensively. While
there are some claims that the dynamic exponent is small but not equal to zero, a more likely
scenario is that the autocorrelation time diverges logarithmically. This can be considered as z = 0
with a logarithmic correction to a size-independent autocorrelation time . Later, we will see that
such logarithmic behaviors occur in some physical quantities of the 2D Ising model as well.

With the logarithmic divergence of the autocorrelation time, there is still a mild critical slowing
down problem, but the improvement is dramatic compared to the Metropolis algorithm (for which
z ≈ 2.2 in two dimensions, as shown in Fig. 9.

6.4 Wolff algorithm

There is a slightly different variant of the cluster algorithm, called the Wolff algorithm, in which
only one cluster is constructed at each step and flipped with probability one, using a randomly
selected seed spin. The bonds are in this case cast during the cluster building process, i.e., instead
of examining whether or not the bonds are filled, they are at that stage filled, with the same
probability as in the Swendsen-Wang algorithm. The types of clusters generated this way are
naturally exactly the same as in the Swendsen-Wang algorithm, but on average the generated
clusters will be larger because the probability of a given spin (the seed spin) belonging to a large
cluster is higher than it belonging to a small cluster. This may in some cases further reduce the

26

dynamic exponent slightly. The Wolff scheme can also more easily be generalized to other spin
models.

7 Critical phenomena and Finite-size scaling

We here give a brief review of critical phenomena and scaling, and the finite-size scaling properties
that can be used to quantitatively study critical phenomena using Monte Carlo simulations. In
most cases we will not be deriving results here, but simply define the quantities that we will be
studying numerically and discuss their properties. For more background on these issues, consult a
book on critical pheonomena, e.g., Scaling and Renormalization in Statistical Physics, by J. Cardy
(Cambridge University Press).

The 2D Ising model is one of the few models in statistical physics that can be exactly solved and
has a non-trivial phase transition. Simulation results for this model (obtained using the Swendsen-
Wang program discussed in the previous section) will be used to illustrate the finite-size scaling
concepts. Thanks to the known exact results for Tc and the critical exponents, we can check whether
the simulation results for large system sizes indeed converge to the correct thermodynamic limit
behavior.

7.1 Critical exponents and universality

The most fundamental concept underlying the theory of critical phenomena is that of a correlation
length, which is a measure of a typical length-scale of a system. The correlation length can be
defined in terms of the correlation function, which in the case of the Ising model is given by
(46). The correlation function decays exponentially at long distances, and is given by the so-called
Ornstein-Zernicke form

C(~r) ∼ e−r/ξ

r(d−2)/2
, (64)

where ξ is the correlation length. The asymptotic Ornstein-Zernicke form is a result of mean-field
theory, but it turns out that it is valid also more generally when r � ξ; at shorter distances there
are corrections to this form. The correlation length ξ roughly corresponds to the typical size of the
ordered domains in the system. In the Ising model above Tc there are on average equal numbers
of ordered domains with spin up and down, and their typical size corresponds to the correlation
length. Below Tc the correlation length corresponds to the typical size of domains of spins in an
ordered background of oppositely directed spins. Examples of Ising configurations illustrating these
cases are shown in Fig. 8.

Quite generally, as a critical point (continuous phase transition) is approached, the correlation
length diverges, in the thermodynamic limit, according to a power-law;

ξ ∼ t−ν , (65)

where t is the reduced temperature measuring the distance from the critical point,

t =
|T − Tc|
Tc

, (66)

27

and ν is an example of a critical exponent. The exponent is the same on approaching Tc from above
or below [the prefactor in (65) is in general different for t→ t+ and t→ t−, however].

Exactly at the critical point the correlation function decays purely as a power-law, but not with
the power that might be expected from Eq. (64). The Ornstein-Zernicke form is valid only when
r � ξ, which is never true at the critical point, where ξ has diverged. The power-law is instead

C(~r) ∼ 1

rd−2+η
, (67)

where the exponent η = 0 in mean-field theory. The exact value of η is also typically small.

Another important critical exponent is the one determining the onset of order at the critical point,
e.g., the magnetization of a ferromagnet (as illustrated in Fig. 3). The order parameter is zero
above Tc, and below Tc it emerges as

〈m〉 ∼ (Tc − T)β. (68)

The order parameter susceptibility exhibits a divergence at Tc. In the case of the ferromagnet the
susceptibility is given by (42), and on approaching Tc from below or above it is given by

χ ∼ t−γ . (69)

Hence, the system becomes infinitely sensitive to a magnetic field h as the critical point is ap-
proached, and exactly at Tc the linear response form 〈m〉 = χh ceases to be valid. Instead, exactly
at Tc the magnetization depends on the (weak) field as h1/δ, where δ is yet another critical exponent.

The specific heat is also singular, with
C ∼ t−α. (70)

The exponent α can be positive or negative, i.e., in some cases, when α < 0, the specific heat does
not diverge but instead exhibits a cusp singularity.

The set of exponents ν, η, β, γ, δ, α for different systems fall into universality classes. Systems
belonging to the same universality class have the same exponents. We have here exemplified
the critical exponents using the Ising model, but in most continuous phase transitions there is
an order parameter, an associated correlation length, and an external field which couples to the
order parameter. The universality class does not depend on microscopic details related to the
system constituents and their interactions (as long as the interactions are short-ranged; long-range
interactions can change the universality class), only on the dimensionality of the system and the
nature of the order parameter. In the case of the Ising model the exponents are known exactly, and
many other universality classes have been studied accurately over the years, using both analytical
and numerical approaches. In the majority of cases the most precise estimates come from Monte
Carlo simulations.

The critical exponents are not independent of each other, but are given, according to results of the
renormalization group theory of critical phenomena, in terms of two more fundamental exponents.

28

1 2 3 4

T

0.0

0.2

0.4

0.6

0.8

1.0

<
|m

|>

1 1.5 2 2.5 3 3.5 4

T

0.0

0.2

0.4

0.6

0.8

1.0

<
m

2
>

Figure 15: Temperature dependence of the absolute value of the magnetization (left) and its square
(right) in L×L Ising lattices with L = 4 (open squares), 8, 16, 32, 64, and 128 (open circles). The
statistical errors of these Monte Carlo results are much smaller than the graphing symbols.

This leads to exponent relations, e.g.,

γ = ν(2− η), (71)

γ = β(d− 1), (72)

γd = 2− α, (73)

α+ 2β + γ = 2, (74)

α+ β(1 + δ) = 2, (75)

which were found much before the renormalization group theory using other means. These relations
are useful for checking the consistency of numerical results for the exponents.

7.2 Finite-size scaling

In a system of finite size, the correlation length cannot grow beyond the system length L. All
divergent quantities (such as χ and C) saturate when ξ approaches L. The order parameter
measured using 〈|m|〉 or

√
〈m2〉 cannot vanish for T ≥ Tc, and the temperature dependence instead

shows a rounding over the region in which the infinite-size correlation length exceeds L. This finite-
size rounding of the phase transition in the 2D Ising model is illustrated using simulation data in
Fig. 15.

In order to extract critical exponents from Monte Carlo data, one can in principle carry out calcu-
lations for increasingly large L until the results converge. For a given reduced temperature t 6= 0
there is some system size L ≈ ξ(t) above which measured expectation values converge exponentially
fast to their thermodynamic limit values. Results for, e.g., L = 4ξ may be in practice (considering
statistical errors) indistinguishable from the thermodynamic limit values. By carrying out such
size-converged calculations close to Tc, one can extract the critical exponents.

For a quantity A that has a power-law form A ∼ tλ, we have ln (A) = c + λ ln (t), where c is a
constant. Thus the exponent λ can be extracted from simulation results for A by fitting a straight

29

0.001 0.01 0.1 1

T
c
-T

0.6

0.7

0.8

0.9

1

<
|m

|>

0.001 0.01 0.1 1

T
c
-T

0.4

0.5

0.6

0.7

0.8

0.9

1

<
m

2
>

Figure 16: Log-log plot of the temperature dependence of the absolute value of the magnetization
(left) and its square (right) of the 2D Ising model at T < Tc. The system sizes are the same
as in Fig. 15. The straight lines show the expected asymptotic behaviors 〈|m|〉 ∼ (Tc − T)β and
〈|m|〉 ∼ (Tc − T)2β, with the known 2D ising exponent β = 1/8.

line to ln (A) versus ln (t). Since t ∼ |T − Tc|, such a procedure requires that we know the critical
temperature. If we do not know Tc, which is normally the case (finding Tc is often a purpose
of the simulations), we can treat it as a variable that is adjusted to give the best linear form
ln (A) = c+ λ ln (t) (a rough estimate of Tc can be easily obtained from plots such as those shown
in Fig. 15). Since the pure power-law critical form of A is only valid asymptotically as t→ 0, one
may have to go to very large system sizes in order to obtain high-precision estimate of Tc and the
critical exponents.

We can use the exact results for the 2D Ising model; Tc = 2/ ln (1 +
√

2) and the exponents
ν = 1, β = 1/8, γ = 7/4, α = 0, to test various finite-size approaches. Fig. 16 shows the data
of Fig. 15 for T < Tc plotted on a log-log scale, along with the linear behavior expected. For
Tc−T < 0.2, the expected asymptotic behavior is rather well reproduced, down to the temperatures
at which the finite-size rounding sets in. However, even for the largest size, L = 128, some deviations
can be noticed; there is no extended region where the slope is exactly in agreement with the exact
result. With larger system sizes we would find and increasingly good agreement as the finite-size
rounding ocuurs closer and closer to Tc.

What we have described above is the most straight-forward finite-size approach. The deviations
from scaling due to the finite size were seen as a nuisance that we have to overcome by going to
increasingly large system sizes. In a finite-size scaling study one instead uses the regularity in these
deviations to extract information.

The basis of finite-size scaling is that deviations from the infinite-size critical behavior occurs when
the correlation length ξ becomes comparable with the system length L. The way these finite-size
deviations affect other quantities can be studied by expressing their temperature dependencies using
the correlation length as the variable, i.e., by inverting Eq. (65) we get;

t ∼ ξ−1/ν . (76)

For instance, in the asymptotic power-law form of the susceptibility, Eq. (69), the substitution

30

2 2.2 2.4 2.6 2.8 3 3.2

T/J

1

100

χ

 L=4

 L=8

L=16

L=32

L=64

L=128

Figure 17: The temperature dependence of the magnetic susceptibility of the 2D Ising model for
different lattice sizes. The dashed line indicates the critical temperature.

t→ ξ−1/ν gives
χ ∼ ξγ/ν . (77)

From this form we can deduce that the maximum value of the susceptibility for a given system size
L should be

χ(L) ∼ Lγ/ν . (78)

From (65) we can also deduce that the reduced temperature at which ξ reaches L is ∼ L−1/ν , and
hence the maximum value of the susceptibility should occur at

tmax(L) ∼ L−1/ν . (79)

Fig. 17 shows 2D Ising Monte Carlo results for the susceptibility versus the temperature for the
different lattice sizes. Since the peak value of χ grows very rapidly with L, in accord with Eq. (78)
where γ/ν = 7/4 for the 2D Ising model, it is useful to use a log-scale for χ. Here the shift in the
peak temperature with L can also be clearly seen.

If we study a model for which we wish to extract Tc and the exponents, we could write Eq. (78) as
lnχ(L) = a+ γ

ν ln (L), and hence obtain the exponent ratio γ/ν from a linear fit to the logarithm
of the peak height. Adjusting Tc so that ln [tmax(L)] is a linear function of ln (L) one can extract
ν (and Tc), and hence also γ from the estimated ratio γ/ν.

The above finite-size scaling forms for χmax and tmax (which hold generally for a quantity which
diverges at Tc) follow also from a more general finite-size scaling hypothesis. The hypothesis, which
can be proven using the renormalization group theory, is that an observables close to Tc is power
of L multiplied by a non-divergent function of ξ/L (the ratio of the two relevant length scales in a
finite system), i.e., for the susceptibility we should then have

χ(t, L) = Lσf(ξ/L), (80)

which, using ξ ∼ t−1/ν , we can also write as

χ(t, L) = Lσg(tL1/ν). (81)

31

0 2 4 6 8 10 12

tL
1/ν

0.01

0.02

0.03

0.04

0.05

χ
/L

γ/
ν

 L=4

 L=8

L=16

L=32

L=64

L=128

Figure 18: Finite-size scaling plot of the magnetic susceptibility of the 2D Ising model for different
system sizes. The exponents γ = 7/4 and ν = 1.

To determine the exponent σ in the prefactor, we can use the fact that for fixed t close to 0 the
infinite-size form has to be χ(t, L → ∞) ∼ t−γ . To get this form, the scaling function g(x) must
have a form g(x) ∼ x−γ for x→∞, and σ = γ/ν, i.e., the finite-size scaling form should be

χ(t, L) = Lγ/νg(tL1/ν). (82)

To extract the scaling function g(x), one can plot χ/Lγ/ν versus x = tL1/ν for different system
sizes. If the scaling hypothesis is correct, data for different (large) system sizes should fall onto the
same curve, which then is the scaling function (this is referred to as curves collapsing onto each
other). Fig. 18 illustrates this with the 2D Ising data of Fig. 17. The curves for large L (L = 64 and
128) indeed collapse almost onto each other, whereas this is not the case for the smallest system
sizes. Clearly the scaling forms for the peak size, Eq. (78), and the peak position, Eq. (79) are
contained in this graph, but these are just two features of the finite-size scaling. In particular, the
scaling exactly at the critical temperature can clearly also be used to extract γ/ν and Tc;

χ(Tc, L) ∼ Lγ/ν , (83)

by adjusting Tc so that a linear behavior is seen on a log-log plot.

We expect the same type of finite-size scaling to hold also for the specific heat;

C(t, L) = Lα/νg(tL1/ν). (84)

In the case of the 2D Ising model, α = 0. The left panel of Fig. 19 shows C/Lα = C graphed versus
tL1/ν . The curves do not collapse onto each other and hence the scaling form (84) does not hold.
This is understood as being due to a logarithmic scaling when α = 0, i.e., (84) should be replaced
by

C(t, L) = ln (L)g(tL1/ν). (85)

A scaling plot assuming this form is shown in the right panel of Fig. 19; this indeed leads to an
approximate collapse of the curves onto each other as L grows. Normally α 6= 0, and the logarithmic
scaling is thus an anomaly of the 2D Ising model.

32

0 5 10 15 20

tL
1/ν

0

1

2

3

4

5

6

C

L = 4
L = 8
L =16
L = 32
L = 64
L = 128

0 2 4 6 8

tL
1/ν

0.6

0.8

1.0

1.2

1.4

C
/l

n
(L

)

Figure 19: Finite-size scaling of the specific heat of the 2D Ising model. In the left panel C has
been divided by Lα, which with the exponent α = 0 equals 1. In the right panel C has been divided
by ln (L).

Finite-size scaling studies aimed at extracting critical exponents would clearly be made easier if
we had some other method to obtain the critical temperature, i.e., one that would not invole
simultaneously adjusting Tc and an exponent until curves collapse or we see linear dependence
of a divergent quantity on a log-log scale. This two-parameter scaling can be easily affected by
corrections to the leading finite-size scaling forms. A quantity which allows for an independent
estimation of Tc without knowledge of exponents will be discussed next.

7.3 Binder ratios

The ratio of two quantities which have the same finite-size scaling exponents at Tc should be size-
independent at Tc. The most useful of such ratios are the Bainder ratios, which are ratios of powers
of the magnetization. From the susceptibility definition (43), it follows that the size-normalized
squared magnetization 〈m2〉 scales as t−(γ/ν−d) at Tc. It turns out that any expectation value 〈mp〉
simply scales as 〈m2〉p/2 (where in the case of odd p we have to replace m by |m|). This implies
that the Binder ratios, defined as

Q2p =
〈m2p〉
〈|m|p〉2

, (86)

should become size independent at Tc for large L. In many cases, the size independence as T → Tc
is approached in such a way that curves Q(T) for different L cross each other, and the crossing
point is only weakly dependent on L, being quite close to Tc already for moderate system sizes.
Such crossing points are very useful for obtaining precise estimates of Tc. We will here consider the
lowest-order binder ratio Q2, which we simply call Q.

It is instructive to first look at behavior of Q in the limits T → 0 and T → ∞. In the case of the
Ising model, the T = 0 limit is trivial; here we have m = ±1, which implies Q = 1. In the T =∞
limit, all spin configurations have equal weight in thermal expectation values, and to calculate the
Binder ratio we hence have to find the magnetization distribution P (M) for N uncorrelated spins.

33

Denoting the number of up and down spins N↑, N↓, we have N = N↑ +N↓ and M = N↑ −N↓, or

N↑ = (N +M)/2
N↓ = (N −M)/2

(87)

There are in all 2N spin configurations, and the probability of a configuration with N↑ up spins is

P (N↑) =
1

2N

(
N

N↑

)
=

1

2N
N !

N↑!N↓!
, (88)

and hence the probability as a function of the magnetization is

P (M) =
1

2N
N !

[1
2(N +M)]![1

2(N −M)!]
. (89)

It is clear that this distribution will be sharply peaked around M = 0, i.e., the dominant configu-
rations have small M/N , and hence for large N we can use Stirling’s formula,

n! =
√

2πnn+1/2e−n, (n→∞), (90)

for the three factorials. This gives

P (M) =
1

2N
1√
2π

NN+1/2

[1
2(N +M)]

1
2

(N+M+1)[1
2(N −M)]

1
2

(N−M+1)
. (91)

We now work with the logarithm of this expression;

ln [P (M)] = −N ln (2)− ln (
√

2π) + (N + 1
2) ln (N)

−1
2(N +M + 1) ln [1

2(N +M)]− 1
2(N −M + 1) ln [1

2(N −M)]

= − ln (2)− ln (
√

2π)− 1
2 ln (N)

−1
2(N +M + 1) ln (1 +M/N)− 1

2(N −M + 1) ln (1−M/N). (92)

Here we can again use the fact that the distribution should be sharply peaked around M/N = 0
and thus we can expand the logarithms;

ln [P (M)] = ln (2)− ln (
√

2π)− 1
2 ln (N)

−1
2(N +M + 1)(

M

N
+
M2

N2
+ . . .)− 1

2(N −M + 1)(−M
N

+
M2

N2
+ . . .). (93)

Keep only terms up to order 1/N we get

ln [P (M)] = ln (2)− ln (
√

2π)− 1
2 ln (N)− 1

2

M2

N
, (94)

and the distribution is thus

P (M) =

√
2

πN
e−M

2/2N . (95)

For the Binder ratio Q, we need the expectation values 〈|m|n〉 = 〈|M |n〉/Nn, with n = 1, 2;

〈|M |n〉 = P (0) + 2

N∑
M=1

MnP (M). (96)

34

1.5 2.0 2.5 3.0 3.5
T

1.0

1.2

1.4

1.6

Q

2.20 2.25 2.30 2.35
T

1.00

1.05

1.10

1.15

1.20

Q

Figure 20: Binder ratio for the 2D Ising model with L = 4 (open squares), 8, 16, 32, 64, and 128
(open circles) graphed using two different scales. The dashed lines indicate Tc.

Assuming that N is even, the sum only contains even values of M . Converting the sum to an
integral for large M we therefore get

〈|M |n〉 =

√
2

πN

∫ N

0
Mne−M

2/2N . (97)

Since P (M) is sharply peaked at M = 0, we can extend the upper integration limit to ∞ and use
the definite integrals ∫ ∞

0
dxe−ax

2
=

1

2

√
π

a
, (98)∫ ∞

0
dxxe−ax

2
=

1

2a
, (99)∫ ∞

0
dxx2e−ax

2
=

1

4a

√
π

a
. (100)

The result for n = 0 confirms that the distribution P (M) is normalized. For n = 1 and 2 we obtain

〈|M |〉 =
√

2N/π, (101)

〈M2〉 = N, (102)

and hence the Binder ratio in the high-temperature limit is

Q =
〈m2〉
〈|m|〉2

=
〈M2〉
〈|M |〉2

=
π

2
. (103)

Fig. 20 shows results for the 2D Ising model; these results confirm the high and low temperature
limits Q = 1 and π/2, and also show that the Binder ratio is a monotonic function. The curves
for different L cross each other very close to Tc. The crossing points, looking at, e.g., crossings
of curves for L and 2L, do show some L dependence, but the convergence is clearly very rapid
compared to, e.g., the peak position in the susceptibility graphed in Fig. 18. The Binder ratio is
the preferred way to extract Tc in many systems.

35

