
Homework 1; due Tuesday, September 26

PY 502, Computational Physics, Fall 2023

Department of Physics, Boston University

Instructor: Anders Sandvik

TEST OF A RANDOM NUMBER GENERATOR USING RANDOM WALKS

In this assignment, you will test the quality of a random number generator by using it to simulate
a random walk, comparing the exact probability distribution with ones obtained in simulations.

Random walk

Consider a stochastic process in which at each time step t = 1, . . . , n we can move one step “up”
or “down” (x → x ± 1, with probability 1/2 for + and −), starting at t = 0 at x = 0. Three
realizations of such a random walk with n = 100 are shown in Fig. 1.

0 20 40 60 80 100
t

-15

-10

-5

0

5

10

15

x
(t

)

Figure 1: Three different realizations of a random walk with n = 100 steps.

It is easy to calculate the probability distribution of x after n steps: The total number of walks
having n+ moves up and n− down is

N(n+, n−) =

(
n

n+

)
=

n!

n+!n−!
. (1)

The probability for each combination of up and down moves (one random walk) is the same; 1/2n.
Since n = n+ + n− and x after n steps is n+ − n−, we can write the distribution after n steps as

Pn(x) =
1

2n
n!

[(n+ x)/2]![(n− x)/2]!
, (2)

which of course is a binomial distribution. Here it should be noted that if n is even, x must also
be even (for a non-zero probability), whereas if n is odd x is also odd.

1



-40 -20 0 20 40
x

0.00

0.02

0.04

0.06

0.08

P
(x

)

-40 -20 0 20 40
x

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 2: Probability distribution of the displacement after a random walk of n = 100 steps, based
on 5 × 105 different walks (circles with error bars), compared with the exact distribution (solid
curve) plotted on linear (left) and log (right) scales.

To explicitly relate the probability distribution to the general binomial distribution (which will be
referred to later), if the probabilities of + and − are p and 1 − p, respectively, the distribution of
the number of + events z is

Pn(z) = pz(1− p)z n!

z!(n− z)!
. (3)

From this distribution we obtain Eq. (2) by setting p = 1/2 and z = (x+ n)/2 (assuming n is even
now). We can think of Eq. (3) as the distribution of a random walk where the steps are +1 or 0
instead of +1 and −1, and the relationship between the two types of random walks is trivial.

Simulated random walk

In a simulation, we use a random number generator to make the decisions of + or - movement
at each time step (e.g., we generate a floating point number r between 0 and 1, and move up or
down if r < 1/2 and r ≥ 1/2, respectively). If the random numbers are not perfect, there will be
deviations in the probability distribution from the exact distribution (2).

To compute the simulated distribution, we have to repeat simulations many times, using different
sequences of random numbers. Fig. 2 shows the distribution for n = 100 steps, obtained using 5×105

independent simulated random walks with a good random number generator (as the examples shown
in Fig. 1). Here “error bars” for the simulation results have been computed by grouping the results
of the simulations into 50 “bins” and computing the standard deviation of the average result based
on these bin results (we will discuss data binning more later; for now it is not important how
the errors were obtained exactly). The error bars, where visible, show semi-quantitatively that
the deviations are consistent with the expected statistical fluctuations; the exact distribution falls
mostly within the error bars (statistically, one would expect about 2/3 of the points to be within one
standard deviation of the true result). For a bad random number generator, the exact distribution
should fall significantly outside the error bars.

2



Expected statistical fluctuations

We can only perform a finite number of these simulated walks, and therefore we will not obtain the
exact distribution (2). We then have to analyze the statistics of the expected deviations from the
exact distribution, to determine whether the observed deviations from (2) are just due to natural
statistical fluctuations based on a finite sample, or whether they are larger than would be expected
(in which case they must be due to flaws in the random number generator used). Instead of just
computing error bars and examining results visually as in Fig. 2, let us analyze the statistical
fluctuations theoretically.

Let us estimate what deviations from the exact distribution (2) should be expected based solely
on a finite number Nw of walks used to estimate the distribution. Consider the distribution of the
number of walks Cn(x) leading to the location x at the final step. In addition to the expectation
value of the number of counts, 〈Cn(x)〉 = NwPn(x), we need the variance. The distribution of
Cn(x) is simply another binomial distribution, like Eq. (3) with the number of steps n replaced by
Nw, the probability p = Pn(x), and z = Cn(x)—the number of walks out of Nw that end up at x.

The variance of the binomial distribution based on Nw repetitions is var(z) = Nwp(1 − p) =
〈z〉(1− p). Thus, in our case the variance is

var(Cn(x)) = NwPn(x)[1− Pn(x)]. (4)

The factor 1−Pn(x) can be approximated as 1 if n is reasonably large. For simplicity we will now
make this approximation and set var[Cn(x)] ≈ NwPn(x), but please remember the small expected
correction in case your results later on show some small deviations from the derived forms (and it
would be easy to correct those forms as well by using the exact form of the variance).

Give the variance, we have the standard deviation
√

var[Cn(x)], and we can write the expected
number of “hits” at x with its statistical error as

Cn(x) = NwPn(x)±
√
NwPn(x). (5)

Let us now divide this by Nw, to get a properly normalized probability, and compute the expected
deviation from the actual distribution;

∆n(x) = Cn(x)/Nw − Pn(x). (6)

The expected value of this quantity (for a perfect random number generator) is 0, and from (5) we
see that the expected (standard) deviation is;

σn(x) =

√
Pn(x)

Nw
. (7)

We can now compute the total squared deviation (in order to have a sum over positive numbers
characterizing the average deviation) over all final outcomes x, and call it ∆2.

∆2 =
n∑

x=−n

∆2
n(x). (8)

3



According to Eq. (7) its expected value should be

〈∆2〉 =
∑
x

σ2n(x) =
1

Nw

∑
x

Pn(x) =
1

Nw
. (9)

It is appropriate to take the square root, to get an RMS (root-mean-square) deviation;

∆ =

√∑
x

∆2
n(x) =

1√
Nw

. (10)

We can test the random number generator by computing ∆ according to (8) with (6), where Cn(x)
is the actual count based on Nw simulations. According to Eq. (10), for increasing number Nw of
simulated random walks, this number should decay as 1/

√
Nw if the random number generator is

good. If, on the other hand, the generator is bad, we expect ∆ to approach some non-zero value as
Nw → ∞, reflecting a distribution for the “random” walk different from (2). We can also look at√
Nw∆, which should approach 1 for a good generator and diverge as ∝

√
Nw for a bad generator.

Programming task

The random number generator you should test here is the 64-bit linear congruential generator
discussed in class, which uses the algorithm

rk+1 = a · rk + c, (11)

with a = 2862933555777941757 and c = 1013904243. You should work with these by declaring
variables of type UInt64 in Julia.

A random walk consists of n steps, but you do not have to store all the values rk, k = 1, . . . , n, just
use a single integer, called r below, which is updated, r = ar + c at each iteration.

Normally, when using this kind of random number generator, the integers r would be converted into
double precision floating-point numbers between 0 and 1. Here we will instead let the individual
bit values {0, 1} of rn determine 64 different random walks with displacements x[i], i = 1, . . . 64.
To extract the bits of an integer r to bit values and store them in an array b of 64 integer elements
b[i], i = 1, . . . , 64, we can use the Julia bitwise functions >>> k (right shift by k steps) and & (and)
in this way:

b[i] = (r >>> (i− 1)) & 1, (12)

where it should be noted that the bits in the computer are numbered 0, . . . , 63, while the array
should have indices i = 1, . . . , 64 (the convention in Julia). The step to take in the random walk as
defined here can then be obtained as b[i] = 2b[i]− 1, so that the walk governed by bit i is updated
as x[i] = x[i] + b[i] after each step n of the random number generation in Eq. (11 . We want to
check for differences in the randomness among the bits, through the quality of random walks based
on them.

Write a program that tests all the bits in the same run, i.e., perform 64 different random walks
simultaneously, using the 64 different bits. The program should read in the number of random walks
to be performed, Nw, and the number of steps to be taken in each walk, n, from a file read.in

(integers on two different lines). Read the initial integer r0 to be used as a seed for the random

4



number generator (11) from this same file (an integer on the third line). Note that the seed can be
any integer, but if you repeat the calculation multiple times to collect more data, you should make
sure to use a different seen every time (otherwise each run will produce identical random walks,
and the computed statistical properties will not reflect independent random walks). Note, however,
that you should not “reseed” the generator after each random walk, just continue iterating Eq. (11)
even when you start a new walk after resetting the locations to x[i] = 0.

After each set of walks, accumulate the counts Cn(x) of x values for for each bit in an array, i.e.,
it should be a two-dimensional array, with indices corresponding to the possible x values for each
bit (again because of Julia conventions the indices have to be shifted from the actual values [−n, n]
to [1, 2n + 1]). After all the Nw walks have been performed, compute the deviations ∆ based on
Eqs. (8) and (6). Write

√
Nw∆ for all bits to a file d.dat (containing 64 lines, with b and

√
Nw∆(b)

on each line). Also, the program should write the full distributions for each bit to files with names
pnn.dat, where nn stands for the bit numbers; nn=00,01,...,63. Write a separate line for each x
and the corresponding simulated probability (number of counts divided by Nw). Write the exact
probability Pn(x) in the third column.

Plan the program carefully before you start coding. Break down the simulations into functions
for well-defined tasks to make the program easy to read and debug. Also pay attention to code
efficiency, avoid use of global variable in time consuming tasks, etc.

Hint: To compute Pn(x), write down an expression for its logarithm first and evaluate it, in order
to avoid numerical problems with very large and very small numbers.

Simulation tasks and report

Do calculations for n = 100 and vary the number of walks. Use Nw = 10m, with m = 2, 3, . . ., up
to m as high as you can reasonably do (m = 6 or 7 will be sufficient but go further if you wish).

Write a report showing the ability (or lack thereof) of the individual bits to reproduce the correct
statistics of the random walk. Show some illustrative graphs of the simulated probability distri-
butions compared with the correct Pn(x) (it is useful to plot both on linear and log scales, as in
Fig. 2). Show the behavior of

√
Nw∆ versus the bit number b = 0, . . . , 63 for the different Nw you

used. Explain qualitatively why you think the results look as they do.

Assuming that there are no correlations between the bits b (which may not be true and could also
be tested), how do you judge this generator’s ability to produce random floating-point numbers
when the integers between 0 and 263 − 1 are linearly converted to the range [0, 1)?

Your report should explain clearly what you have done. Each figure should have a
caption explaining the figure, and the figures should be discussed and referenced in
the text. The figures should have clear axis markings and the plotting symbols should
have shapes/colors that are clearly visible. Consider your report as an opportunity to
practice scientific writing!

5


