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Simple Harmonic Oscillations 
and Resonance

We have an object attached to a spring. The object is 
on a horizontal frictionless surface. We move the 
object so the spring is stretched, and then we release 
it. The object oscillates back and forth in what we call 
simple harmonic motion, in which no energy is lost.

Spring Simple Harmonic Oscillator

Spring constant
To be able to describe the oscillatory motion, we need to 
know some properties of the spring. One key property is 
that if the length of the spring is shortened or lengthened by 
an amount Δl from its equilibrium value, the spring 
experiences a restoring force proportional to Δl. We call it a 
restoring force because it always acts in a direction to return 
the length of the spring to the equilibrium value.

F = - kΔl

Δl

F

k is the 
spring 
constant

Potential Energy stored in a Spring

U = ½ k(Δl)2

For a spring that is stretched or compressed by an 
amount Δl from the equilibrium length, there is 
potential energy, U, stored in the spring:

Δl

F=kΔl

In a simple harmonic motion, as the spring changes 
length (and hence Δl), the potential energy changes 
accordingly.

Understanding oscillations
We have an object attached to a spring. The object is on a 
horizontal frictionless surface. We move the object so the 
spring is stretched, and then we release it. The object 
oscillates back and forth in what we call simple harmonic 
motion, in which no energy is lost. How do we find the 
object's maximum speed? 

Understanding oscillations

We use energy conservation.

A is called the amplitude – the maximum distance 
from equilibrium. The key lesson to take away from 
this is that you already know a lot about analyzing 
simple harmonic motion situations - namely apply 
energy conservation, especially when you want to 
relate a speed to a position. 
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Splitting the energy 
An object attached to a spring is pulled a distance A from the 
equilibrium position and released from rest. It then 
experiences simple harmonic motion. When the object is A/2 
from the equilibrium position how is the energy divided 
between spring potential energy and the kinetic energy of the 
object? Assume mechanical energy is conserved. 

1. The energy is 25% spring potential energy and 75% kinetic. 
2. The energy is 50% spring potential energy and 50% kinetic.
3. The energy is 75% spring potential energy and 25% kinetic.
4. One of the above, but it depends whether the object is   
moving toward or away from the equilibrium position. 

Splitting the energy 
The total energy of the SHM in the spring, Etot, is 
equal to the potential energy of the spring when it is 
maximally stretched. It is because in that case there 
is no kinetic energy and the entire mechanical 
energy comes from U. So we have, Etot = ½ kA2. 
When the object is at x = A/2, U = ½ k(A/2)2 = Etot/4. 
Since the mechanical energy is conserved, the 
kinetic energy at x = A/2 is given by, K = Etot – U = 
3Etot/4.

Motion
Graphs
If we graph 
position, velocity, 
and acceleration 
of the object on 
the spring, as a 
function of time, 
we get the plots 
shown at right. 
The example used 
here has the 
period of 
oscillations equal 
to 4.0 seconds.

ω is called the 
angular frequency.

ω= cos( )x A t

ω ω= − sin( )v A t

ω=maxv A

ω ω= − 2 cos( )a A t

ω= 2
maxa A

Equations

Or,  a = -ω2x

In general,
x = Acos(ωt + θ0)

What determines angular 
frequency?

In general, we have                .

In any specific case, the angular frequency is determined by 
the forces involved. For an object on a spring, we have: 

ω= −
v v2a x

=∑
v v
F ma

− =
vvkx ma

= −
v vka x

m

ω ω= ⇒ =2 k k
m m

A change in frequency
Simulation
The first set of graphs (x-t, v-t, a-t) is for an angular frequency 
ω = 1 rad/s. The second set of graphs is for ω = 0.6 rad/s. 

ω = 1 rad/s ω = 0.6 rad/s
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A change in frequency 
The first set of graphs is for an angular frequency ω = 1 rad/s. 
The second set of graphs is for ω = 0.6 rad/s. This change of 
ω is accomplished either by decreasing the spring constant or 
by increasing the mass. Which change did we make in this 
case? 

1. We decreased the spring constant 
2. We increased the mass 
3. We could have done one or the other, you can't tell the 
difference

A change in frequency
We can’t tell the difference. All we can tell is that the 
angular frequency has changed. Notice that besides 
the period oscillation, we can also perceive that ω is 
changed from the fact that the maximum velocity (= 
Aω), and the maximum acceleration (= Aω2) is 
changed, while A is not changed.

The graphs give us no information about whether the 
spring constant or the mass is different.

Understanding Oscillations from 
Energy Graphs

To understand the motion, let’s take a look at graphs of kinetic
energy and elastic potential energy, first as a function of time
and then as a function of position. 
Which color goes with kinetic energy, and which with elastic 
potential energy?

Simulation

We have an object (mass m) attached to a massless spring. 
The object is on a horizontal frictionless surface. We move 
the object so the spring is stretched, and then we release it. 
The object oscillates back and forth.  

Energy Graphs, I

Which color goes 
with kinetic 
energy, and which 
with elastic 
potential energy?

Simulation

= 21
2

U kx

K = ½ mv2

Energy graphs, I
Which graph is which? 

1. The red one is the kinetic energy; the blue one is the 
potential energy.

2. The blue one is the kinetic energy; the red one is the 
potential energy.

3. The graphs are interchangeable so you can't tell 
which is which. 

The spring is maximally stretched initially so U is the 
maximum at t=0. This is consistent with the red curve. On 
the other hand, when U is maximum, K is zero. This is 
consistent with the blue curve. Similarly, at x=A, U is the 
maximum and K is the minimum. This observation is also 
consistent with the red E-x curve representing U and the 
blue E-x curve representing K.

Energy graphs, II
How does the period of the energy-t graphs (TE) compare 

to that of the x-t, v-t or a-t graphs (T)? 

1. TE = T/2
2. TE = T
3. TE = 2T

The period of the K-t or U-t graph is half that of the x-t
graph.

Reason: K ∝ ½ (1 – cos(2ωt)) while x ∝ cos(ωt). So the 
period of the K-t graph is π/ω while that of the ω-t graph 
is 2π/ω.
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What determines the energy of a SHM?

Etot = U(t) + K(t) = Umax = Kmax

Umax = ½ kA2

From the above, we can perceive the energy of a SHM as 
being either determined by k and A together (eqn. (1)) or m
and vmax together (eqn. (2)) as follows: 

By eqn. (1), if A is not changed, k (= mω2) determines the 
energy. That is, if a graph shows that A is not changed and 
m and/or ω is increased, Etot is increased. By eqn. (2), if vmax
(≡ Aω) is not changed, m determines the energy. That is, if a 
graph shows that vmax is not changed, increasing m
increases Etot.

(1)

(2)Kmax = ½ mvmax
2

A change in frequency, II
Simulation
The first set of graphs (upper: K and U vs. t; lower: K and U 
vs. x) is for an angular frequency ω = 1 rad/s. The second set 
of graphs is for ω = 0.8 rad/s. 

ω = 1 rad/s ω = 0.8 rad/s

A change in frequency, II 

The first set of graphs is for an angular frequency ω = 1 rad/s. 
The second set of graphs is for ω = 0.8 rad/s. Recall that ω = 
(k/m)1/2. So, either a reduction in k or an increase in m can 
produce the reduction in ω. Can you tell from the energy 
graphs whether it was k or m that had been changed in 
producing the reduction in ω? You are given that the amplitude 
of oscillation has not been changed.

1. We decreased the spring constant 
2. We increased the mass 
3. We could have done one or the other, you can't tell the 
difference

A change in frequency, II
With the energy graphs, we can tell the difference. All the 
energy is in the spring initially, with the spring energy given 
by:

We are told that A is not changed and the graphs tell us that 
the energy stored in the spring for the second graph is 
smaller. Thus, we must have changed the spring constant, k. 

On the other hand, if we had been told that vmax is not 
changed. You should instead consider Kmax = ½ mvmax

2 and 
conclude from the graph that m is changed.

= 21
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Thinking about time
An object attached to a spring is pulled a distance A from the 
equilibrium position and released from rest. It then 
experiences simple harmonic motion with a period T. The time 
taken to travel between the equilibrium position and a point A
from equilibrium is T/4. How much time is taken to travel 
between points A/2 from equilibrium and A from equilibrium? 
Assume the points are on the same side of the equilibrium 
position, and that mechanical energy is conserved. 

1. T/8 2. More than T/8 3. Less than T/8 
4. It depends whether the object is moving toward or away   
from the equilibrium position

Thinking about time

Let’s say the object is A from equilibrium at t = 0, so 
the equation                       applies.

Now just solve for the time t when the object is A/2 
from equilibrium.

ω= cos( )x A t
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Thinking about time
Solve for t in the equation:

Here we can use               , so we need to solve:

Take the inverse cosine of both sides. We need to work in 
radians!

ω ω= ⇒ =
1cos( ) cos( )

2 2
A A t t

πω =
2
T

π
=

1 2cos( )
2

t
T

π π
= ⇒ =

2
3 6

t Tt
T

This is more than T/8, because the 
object travels at a small average 
speed when it is far from equilibrium, 
where U is large and hence K is 
small.

A pendulum question 
A simple pendulum is a ball on a string or light rod. We 

have two simple pendula of equal lengths. One has 
a heavy object attached to the string, and the other 
has a light object. Which has the longer period of 
oscillation?

1.  The heavy one 
2.  The light one 
3.  Neither, they're equal 

A pendulum question

= 21
2

mgh mv

= 2v gh

Pull back the ball so it is a vertical 
distance h above the equilibrium 
position. 

If you release the ball from rest, what is 
its speed when it passes through 
equilibrium?

Energy conservation:

We get our familiar result 

Does the ball’s mass matter? No. 
Simulation

Free-body diagrams for a simple 
pendulum, I

Sketch a free- body diagram for a pendulum when 
you release it from rest, after displacing it to the left. 

Free-body diagrams for a simple 
pendulum, II

Sketch a free- body diagram for the pendulum as it 
passes through equilibrium.

How should we analyze the pendulum? Let’s try 
torque.

Angular Frequency of a pendulum

Take torques around the support point.

For small angles we can say that 

which has the SHM form 

So, the angular frequency is                             Simulation

τ α=∑
vv I

θ α− = 2sinLmg mL

α θ= − sing
L

θ θ≈sin

α θ≈ −
g
L α ω θ= − 2

ω =
g
L
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General features of simple 
harmonic motion

A system experiencing simple harmonic motion has: 

• No loss of mechanical energy. 

• A restoring force or torque that is proportional, and opposite
in direction, to the displacement from equilibrium. 

The motion is described by an equation of the form: 

where ω is the angular frequency of the system. 

The period of oscillation is 

ω= cos( )x A t

π
ω

= =
1 2T
f

Two Spring-block Systems
You have two identical springs and two identical blocks. You attach each 
block to a spring so you have two spring-block systems, and you set the 
blocks up to oscillate simultaneously on a frictionless horizontal surface. You 
pull the blocks so they stretch their respective springs, releasing them both 
from rest simultaneously. However, when you release the blocks one of them 
(we’ll call this system 1) is displaced a distance A from equilibrium and the 
other (we’ll call this system 2) is displaced 2A from equilibrium.

(a) If the block in system 1 reaches a maximum speed v in its oscillations, what is 
the maximum speed reached by the block in system 2?

1. v/2          2. v         3. (2)1/2v        4. 2v         5. 4v

(b) If the block in system 1 experiences oscillations with a period T , what is the 
period of the oscillations experienced by the block in system 2?

1. T/2          2. T         3. (2)1/2T        4. 2T         5. 4T

(c) If the block in system 1 experiences oscillations with a period T , what is the 
period of the oscillations experienced by the block in system 2?

System 1 System 2

Two Spring-block Systems

1. Fmax/2          2. Fmax 3. (2)1/2Fmax 4. 2Fmax 5. 4Fmax

(d) If the potential energy stored in the spring in system 1 is Ui when the block is 
first released from rest, what is the potential energy initially stored in the spring in 
system 2?

1. Ui/2          2. Ui 3. (2)1/2Ui 4. 2Ui 5. 4Ui

(e) At a particular instant, some time after being released, the block in system 1 is 
20 cm from its equilibrium position. How far from equilibrium is the block in system 
2 at that same instant? 

System 1 System 2

Two Spring-block Systems

1. 10 cm          2. 20 cm        3. 40 cm        
4. There’s not enough information to answer this question.

(a) Which graph is the block’s v-t graph?

A block on a horizontal frictionless 
surface is attached to a spring. The 
spring is at its natural length when the 
block is at x = 0. At time t = 0, the block 
is released from rest at the point x = A. 
Graph 1 represents the position of the 
block as a function of time for one 
complete oscillation. 

Example: Graphs for a Spring-block I

(b) Which graph is the block’s a-t graph?

(c) Which graph is the block’s K-t graph?

(d) Which graph is the block’s U-x graph?

(e) Which graph is the block’s |F|-x graph?

(f) Which graph is the block’s v-t graph?

Continue from the last example. 
Consider a second experiment. 
Suppose instead of being released 
from rest, the block is given an initial 
push, so at t = 0 it starts moving from 
the origin to the right with speed v. 
Graph 3 represents the position of the 
block as a function of time for one 
complete oscillation. Considering one 
complete oscillation …

Example: Graphs for a Spring-block II

(g) Which graph is the block’s a-t graph?

(h) Which graph is the block’s K-t graph?

(i) Which graph is the block’s U-x graph?

(j) Which graph is the block’s |F|-x graph? (Neglect the initial push)
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Connecting SHM with circular motion
Compare the motion of an 
object experiencing simple 
harmonic motion (SHM) to 
that of an object undergoing 
uniform circular motion. 
Simulation.

ω= cos( )x A t

The time-dependent position 
x(t) of the object on the 
spring is the same as that 
for the x-component of the 
circular motion. Both follow:

Amplitude does not affect frequency!

For simple harmonic 
motion, a neat feature is 
that the oscillation 
frequency is completely 
independent of the 
amplitude of the oscillation. 
Simulation.

In simple harmonic motion, an object oscillated  
with a constant amplitude.

In reality, friction or some other energy 
dissipating mechanism is always present and 
the amplitude decreases as time passes.

This is referred to as damped harmonic 
motion.

Damped Harmonic Motion

1) simple harmonic motion

2&3)  underdamped

4) critically damped

5)  overdamped

When a force is applied to an oscillating system 
at all times, the result is driven harmonic 
motion.

Here, the driving force has the same frequency 
as the spring system (i.e., √(k/m)) and always 
points in the direction of the object’s velocity.

Driven Harmonic Motion

Resonance is the condition in which a time-
dependent force can transmit large amounts of 
energy to an oscillating object, leading to a 
large amplitude motion.

Resonance occurs when the frequency of the 
force matches a natural frequency at which the 
object will oscillate.

Resonance




