
1

Torque and Rotational Inertia
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Torque

Torque is the rotational equivalence of force.  So, a net 
torque will cause an object to rotate with an angular 
acceleration.

Because all rotational motions have an axis of rotation, a 
torque must be defined about a rotational axis.

A torque is a force applied to a point on an object about the 
axis of rotation.

The size of a torque depends on (1) the size of the force 
applied and (2) its perpendicular distance from the axis of 
rotation (which depends both on the direction of the force plus 
its physical distance from the axis of rotation).
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A revolving door – effect of the physical 
distance from the axis of rotation

A force is applied to a revolving door that rotates about its center: 

Rank these situations based on the magnitude of the torque 
experienced by the door, from largest to smallest. 

A < B

1.  B > A
2.  B = A
3.  B < A

Axis of rotation
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A revolving door – effect of the 
direction of force

A force is applied to a revolving door that rotates about its center: 

Rank the above two situations based on the magnitude of the 
torque experienced by the door, from largest to smallest. 

1.  D > A
2.  D = A
3.  D < A

Axis of rotation
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The force component (Fcosθ) that acts along a line that 
passes through the axis of rotation does nothing. 

A revolving door – effect of the 
direction of force (components view)

Axis of rotation

Axis of rotation
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Perpendicular force 
Fsinθ acting at a 
distance of r from 
the axis of rotation.

A revolving door – Components vs. 
perpendicular distance view

r

θrsinθ

Component 
view 

Perpendicular distance
view 

r

Force F acting at a perpendicular 
distance of rsinθ from the axis of 
rotation. Notice that rsinθ
encompasses the effects of both the 
physical distance and direction of F.
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Torque

In short, torque is a vector with magnitude given by:

τ θ= sinr F
where θ is the angle between r and F.

Unit (SI): Nm

r

Axis of 
rotation

The direction of a torque (counterclockwise or clockwise) 
is determined by the direction of rotation the torque will 
cause an object to adopt from rest.
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Example: Torque on a rod

Find the torque applied by the string on the rod shown below.

τstring = LFTsinφ

FT

Direction: anticlockwise
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Torque due to the weight of an 
extended object

Center of mass of 
the rod

mg

For an extended object (i.e., one whose mass is distributed 
over a volume in space), the torque due to its weight (mg) 
is that due to a force equal to mg acting downward at its 
center of mass.

Axis of rotation
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Net torque acting on the rod in Example 1

L/2

mg

τFT = LFTsinφ

τmg = −(L/2)mg

(Negative because it 
produces rotational 
motion in the opposite 
direction to τFT.)

The net torque acting on the rod is a sum of the two torques:
τ = τFT + τmg

So, there are actually two torques acting on the rod about the 
hinge (labeled axis of rotation in the figure), one from the 
tension in the string, τFT, and one from the rod’s own weight, 
τmg:
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Rotational Inertia or Moment of Inertia
The rotational equivalence of mass is moment of 
inertial, I. It accounts for how the mass of an extended 
object is distributed relative to the axis of rotation. 

For a point mass m connected to the axis of rotation 
by a massless rod with length r,  I = mr2.

If the mass is distributed at different distances from 
the rotation axis, the moment of inertia can be hard to 
calculate. The expressions for I for several standard 
shapes are listed on the next page. 

m

rAxis of 
rotation
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A table of 
rotational 
inertia

The distribution of the mass 
of a rod about an axis is 
more spread out when the 
axis is located at the edge of 
the rod than when it is 
located at the center of mass.
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The parallel axis theorem
If you know the rotational inertia of an object of mass m when 
it rotates about an axis that passes through its center of 
mass, the object’s rotational inertia when it rotates about a 
parallel axis a distance h away is:

= + 2
CMI I mh

x

Take a ring with radius R and mass M as an example:

x

Axis of rotation

I = MR2 I = MR2 + MR2 = 2MR2 14

Newton’s Second Law for Rotation

The equation,               

is the rotational equivalent of                .

Torque plays the role of force.

Rotational inertia plays the role of mass.

Angular acceleration plays the role of the acceleration.

τ α=∑
vv I

=∑
v v
F ma
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Newton’s First Law for Rotation

An object at rest tends to remain at rest, and an 
object that is spinning tends to spin with a 
constant angular velocity, unless (1) it is acted 
on by a nonzero net torque or (2) there is a 
change in the way the object's mass is 
distributed. 

Based on Δω/Δt = α = τnet / I, if either τnet is 
nonzero or if I is changing with time, ω is 
changing with time.
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Equilibrium
For an object to remain in equilibrium, two conditions 
must be met.

(1) The object must have no net force:

(2) and no net torque:              about any rotational axis.

=∑
v

0F

τ =∑
v 0

17

Hinge Force

L/2

mg

FHy

FHx

A hinge force (a vector), FH, generally exists at the 
hinge (usually the axis of rotation) of an hinged object at 
equilibrium

The figure below shows the hinge force (decomposed 
into x and y components) for the hinged rod discussed 
before. By appropriately using the requirements ΣF = 0 
and Στ = 0, we can determine both components of FH.
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An equilibrium example

Example 1: Model of our lower arm
This is a model of our lower arm, with the elbow being 
the hinge.

Weight of the 
lower arm

Center of mass 
(CoM) of the 
lower arm

Force from 
the biseps
and triseps

Hinge at our 
elbow joint
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Draw a free-body diagram for a horizontal rod that is hinged 
at one end. The rod is held horizontal by an upward force 
applied by a spring scale ¼ of the way along the rod.

Find the reading on the scale (FS) and the hinge force (FH) in 
terms of mg, the weight of the rod if the rod is at equilibrium.

Let FH be the hinge force, 
and we decompose it into 
FH,x and FH,y along the x 
and y direction, 
respectively.

mg

L/4
L/2

FH,y

FH,x

FS

Example 1: Model of our lower arm
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To solve for FS, we can use ________, calculated about any
rotational axis, EXCEPT for the one that passes through the 
point where FS is applied because this choice will make the 
torque coming from FS go to zero (since r for that torque 
would be zero) and cause FS to be eliminated from the 
equation.

Among the different possible choices for the rotational axis, 
we choose the one that passes through the hinge, with the 
advantage being that the unknown hinge force will get 
eliminated from the equation. 

Let’s define clockwise to be positive, and assume that FS is 
upward and the rod has length L. 

Example 1: Model of our lower arm

+ × − × = ⇒ =0
2 4 2

S
S

FL Lmg F mgτ =∑
v 0 ⇒ ⇒ FS = 2mg

τ =∑
v 0
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To find the hinge force, we can applied ΣFx = 0 and ΣFy = 
0 to the system. 

ΣFx = 0 ⇒ FHx = 0

ΣFy = 0 ⇒ FHy + FS – mg = 0

⇒ FHy = mg – FS

⇒ FHy = mg – 2mg = -mg

This negative sign means that the hinge force is actually 
pointing down, i.e., directed opposite to what is drawn for 
FHy in the picture.

Example 1: Model of our lower arm

mg

L/4
L/2

FH,y

FH,x

FS
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Moving the spring scale

What, if anything, happens when the spring scale is 
moved farther away from the hinge? To maintain 
equilibrium:

1. The magnitude of the spring-scale force increases.
2. The magnitude of the spring-scale force decreases.
3. The magnitude of the downward hinge force 

increases.
4. The magnitude of the downward hinge force 

decreases.
5. Both 1 and 3
6. Both 1 and 4
7. Both 2 and 3
8. Both 2 and 4
9. None of the above. 

The drawing shows an A-shaped ladder. Both sides of the ladder are equal in 
length. This ladder is standing on a frictionless horizontal surface, and only the 
crossbar (which has a negligible mass) of the "A" keeps the ladder from 
collapsing. The ladder is uniform and has a mass of 14.0 kg. Determine the 
tension in the crossbar of the ladder.

Example 3 An A-shaped ladder

Solution
Due to the symmetry of the ladder, the weight of the ladder
can be taken to be acting equally at the mid-point of each 
side of the ladder. 

In addition, due to the symmetry of the problem, it is
sufficient to consider only one side of the ladder.

mg/2 mg/2

FN FN

T T

By ΣFy = 0, FN = mg/2

In writing the explicit terms for Στ = 0, we choose the axis of rotation to be at the 
vertex of the ladder, perpendicular to the plane facing us.

(2 m)(mg/2)(sin15o) + (3 m)(Tcos15o) – (4 m)(FNsin15o) = 0
⇒T = (4FNsin15o – mgsin15o)/(3cos15o)
⇒T = (2mg - mg)tan15o/3 = (14 kg)(9.8 m/s2)tan15o/3 = 12.3 N

since FN = mg/2

15o




