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PY105
• Hand-in Assignment 6 has been posted on 

WebCT. It’s due on Oct. 18 (next 
Tuesday). Uniform and Vertical 

Circular Motions

Topics to Cover

• Uniform circular motion 
– velocity = ωr tangential
– acceleration v2/r or ω2r toward center

• ΣF = ma
• Inclined planes and banked turns

– With and without friction!
• Vertical Circular Motion 
• ΣF = ma

DEFINITION OF UNIFORM CIRCULAR MOTION

Uniform circular motion is the motion of an object traveling at a 
constant speed on a circular path.

r

Uniform Circular Motion
• The path is a circle (radius r, circumference 2πr).

• “Uniform” means constant speed v = 2πr / T, where the 
period T is the time to go around the circle once.

• Angle in “radians” ≡ (arc length Δs) / (radius r)

• Angular velocity ω ≡ Δθ/Δt = 2π/T [rad/sec], is also 
independent of r

• Note that v = r (2π/T) = r ω [m/s], and therefore  v is 
proportional to the radius of the circle.

Δθ =  Δs1/r1 = Δs2/r2 is independent of the 
radius r of the circle, and is dimensionless

Velocity on circular path

Displacement for 
large time interval

Displacement for 
small time interval

Direction approaches 
tangent to circle, which 
is perpendicular to r

v = Δr/Δt but  chord Δr
is almost  arc s = r Δθ

So again v = (rΔθ)/Δt = 
r(Δθ/Δt) = ωr = constant

For uniform circular motion, the velocity vector has 
magnitude v = ωr, and direction is tangent to the 
circle at the position of the particle.
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Magnitude of the acceleration

v1
v2

Δθ

For small time intervals, 
the vector Δv points 

toward the center, and 
has the magnitude Δv ~ v 

Δθ so 

a = Δv /Δt= v (Δθ/Δt) =

v ω = v2/r

For uniform circular motion, the magnitude of the 
acceleration is ω2r = v2/r, and the direction of 
the acceleration is toward the center of the circle.

v2

−v1

Δv

Δθ

ΔV = V2 – V1

Magnitude of the acceleration
In the last discussion, we have considered the case where the 
circular motion is counter-clockwise. Below, we show the vector 
diagram for when it is clockwise.

v2

−v1

Δv

Δθ

ΔV = V2 – V1

v1

v2

Δθ
Δv

The above drawings show that the acceleration vector a (which is 
parallel to Δv) is still pointing towards the center of the circle.

Coins on a turntable 
Two identical coins are placed on a flat turntable that is 
initially at rest. One coin is closer to the center than the 
other disk is. There is some friction between the coins and 
the turntable. We start spinning the turntable, steadily 
increasing the speed. Which coin starts sliding on the 
turntable first?

1. The coin closer to the center.

2. The coin farther from the center.

3. Neither, both coin start to slide at the same time.

A general method for solving circular 
motion problems

Follow the method for force problems!
•Draw a diagram of the situation. 
•Draw one or more free-body diagrams showing all 
the forces acting on the object(s). 
•Choose a coordinate system. It is often most 
convenient to align one of your coordinate axes 
with the direction of the acceleration. 
•Break the forces up into their x and y components. 
•Apply Newton's Second Law in both directions.

•The key difference: use toward the center=
2va

r

Coins on a turntable

Sketch a free-body diagram (side view) for one of the 
coins, assuming it is not sliding on the turntable.

Apply Newton’s Second Law, once for each direction.

Coins on a turntable

Sketch a free-body diagram (side view) for one of the 
coins, assuming it is not sliding on the turntable.

mg

FN

FS

Axis of 
rotation

Can you tell 
whether the 
velocity is into 
or out of the 
screen? 
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Coins on a turntable
Apply Newton’s Second Law, once for each direction.

y-direction:  FN −mg = 0    so that   FN = mg
x-direction:  FS = max = m(v2/r)  [both FS and a are to left]

mg

FN

FS

Axis of 
rotation

Can you tell 
whether the 
velocity is into 
or out of the 
screen? *

* It is the same diagram 
and result either way!

As you increase r, what happens 
to the force of friction needed to 
keep the coin on the circular path?

y

x

“Trick” question!
v has a “hidden” dependence on r, so that the “obvious” 
dependence on r is not the whole story. The two coins 
have different speeds.

Use angular velocity for the comparison, because the two 
coins rotate through the same angle in a particular time 
interval.

This gives: 

As you increase r, what happens to the force of friction 
needed to keep the coin staying on the circular path? 
The larger r is, the larger the force of static friction has to 
be. The outer one hits the limit first.

sov v r
r

ω ω= =

2 2 2
2

S
mv mrF mr

r r
ω ω= = =

Conical pendulum 

A ball is whirled in a horizontal circle by 
means of a string. In addition to the force 
of gravity and the tension, which of the 
following forces should appear on the 
ball’s free-body diagram?

1. A normal force, directed vertically up.
2. A centripetal force, toward the center 
of the circle.
3. A centripetal force, away from the 
center of the circle.
4. Both 1 and 2.
5. Both 1 and 3.
6. None of the above.

FT

mg

Conical pendulum
Sketch a free-body diagram for the ball.

Apply Newton’s Second Law, once for each direction.
y-direction:    T cosθ − mg = may = 0
x-direction:    T sinθ = max = m(v2/r)
Solve:    (mg/cosθ)sinθ = mv2/r

(rg tanθ )1/2 = v

Axis of 
rotation

mg

T

θ θ
Tcosθ

Tsinθ
y

x

Choose Resolve

Gravitron (or The Rotor) 

http://www.youtube.com/watch?v=ewmdPNfyBzI&feature=related
Starship 2000

In a gravitron, riders are pressed against the vertical wall of 
the gravitron preventing them from falling under gravity. 
Which force acting on each rider is directed toward the 
center of the circle?

1. A normal force.
2. A force of gravity.
3. A force of static friction.
4. A force of kinetic friction.
5. None of the above.

Gravitron
Sketch a free-body diagram for the rider.

Apply Newton’s Second Law, once for each direction.
y direction:  FS − mg = may = 0  (he hopes)
x direction:  FN = max = m (v2/r)

Axis of 
rotation

mg

FS

FN

y

x

He’s 
blurry 
because 
he is 
going so 
fast!

a
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Inclined Plane – Brief Review

Breaking mg into x- and y- components The end result – we replaced mg by its components.

Inclined Plane – Brief Review

Banked Turns

• The same picture can describe 
the motion of a car on a 
circular turn of radius R that 
has a sideways sloping road. 
Here the velocity is into the 
diagram, but the acceleration 
is v2/R, horizontally to the left.

Many roads are designed so that 
at the expected speed, no friction 
Fs is required to make the turn.

In that case (i.e., Fs=0) FN has a 
horizontal component 

FN sinθ =  m v2/R

and a vertical component

FN cosθ – mg = 0.

Putting these together gives

mg tanθ = mv2/R.

This gives the relationship 
between angle and speed for a 
curve of a certain radius R. Note 
that m cancels out, so any mass 
of car or truck needs the same 
speed on a given banked turn.

θ

Vertical circular motion
Examples
• Ball on String
• Water buckets
• Cars on hilly roads
• Roller coasters

At the top or bottom of a circular 
arc, the apparent weight (FN or 
T), as we have seen before, is:

Wapp = m(g+a) [ for up ≡ +, 
a can be + or - ]

But now a = ± v2/r [toward center]

Free-body diagram for the ball on 
string

Sketch a free-body diagram for the ball, at the top of the 
circle, and apply Newton’s Second Law. Find the 
minimum speed of the ball at the top for it not to fall from 
there.

ma = 
m(v2/r )

“Toward 
center” is 

down

(mg + T) = m(v2/r )   {down is positive}

But critical speed is when T = 0

So mg = mv2
min /r or   vmin = (rg)1/2

mg T

Free-body diagram for the
bucket and water

Sketch a free-body diagram for the bucket+water
(mb+m) = M), at the top of the circle, and apply Newton’s 
Second Law.

Ma = 
M(v2/r )

“Toward 
center” is 

down

(Mg + T) = M(v2/r )   {down is positive}

But critical speed is when T = 0

So Mg = Mv2
min /r or   vmin = (rg)1/2

Mg
T The string pulls down 

on the bucket 
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Free-body diagram for the 
water

Sketch a free-body diagram for just the water, at the top
of the circle, and apply Newton’s Second Law.

ma = 
m(v2/r )

“Toward 
center” is 

down

(mg + N) = m(v2/r )   {down is positive}

But critical speed is when N = 0

So mg = mv2
min /r or   vmin = (rg)1/2

mg

N

NN

Free-body diagram for the 
water

Sketch a free-body diagram for just the water, if the 
speed is less than the critical speed.

a = g

“down” is 
down

mg
mbg

N=0

If same vo, 
same path!

Roller coaster
On a roller coaster, when the coaster is traveling fast at 
the bottom of a circular loop, you feel much heavier than 
usual. Why?

Draw a free-body diagram and apply Newton’s Second 
Law.

FN

mg

ma = m(v2/r)

FN – mg  = mv2/r  so

FN = m(g + v2/r)

Check: [ FN = m(g + a) ]

The faster you go, the 
larger the normal force 
has to be to support 
your weight and cause 
your acceleration.  The 
normal force is your 
apparent weight.

Driving on a hilly road
As you drive at relatively high speed v over the top of a 
hill curved in an arc of radius r, you feel almost weightless 
and your car comes close to losing contact with the road. 
Why?
Draw a free-body diagram and apply Newton’s Second 
Law.

r

Driving on a hilly road
As you drive at relatively high speed v over the top of a 
hill curved in an arc of radius r, you feel almost weightless 
and your car comes close to losing contact with the road. 
Why?
Draw a free-body diagram and apply Newton’s Second 
Law.

Mv2/r

Mg
FN -> 0

FN – Mg = M(-v2/r)
loses contact when 
FN = 0 at v = (rg)1/2

Warning to 
drivers: Your 
braking is 
worst at the 
crest of a hill.




