Class 23

10/31/2011 (Mon)







### Analogy between 1D (tangential) and rotational motions Below are several analogies between Linear motion variables and rotational motion variables.

| Variable     | Linear<br>(tangential)<br>motion | Rotational motion | Connec-<br>tion                               |       |
|--------------|----------------------------------|-------------------|-----------------------------------------------|-------|
| Displacement | Δχ                               | $\Delta \theta$   | $\Delta \theta = \frac{\Delta \mathbf{x}}{r}$ | (r Ae |
| Velocity     | V                                | ω                 | $\omega = \frac{V_t}{r}$                      |       |
| Acceleration | а                                | α                 | $\alpha = \frac{a_t}{r}$                      |       |

The subscript t stands for tangential.

Note that the variables above represent the <u>magnitude</u> of the respective vector quantity. Note also that  $\theta$  is in rad,  $\omega$  in rad/s<sup>2</sup> and  $\alpha$  in rad/s<sup>2</sup>.









## **Ferris wheel**

You are on a ferris wheel that is rotating at the rate of  $1/(2\pi)$  revolution every second. The operator of the ferris wheel decides to bring it to a stop and so puts on the brake. The brake produces a constant acceleration of -0.1 radians/s<sup>2</sup>. (a) If your seat on the ferris wheel is 4 m from the center of the wheel, what is your speed when the wheel is turning at a

(b) How long does it take before the ferris wheel comes to a stop? (Ans. 10 s)

(c) How many revolutions does the wheel make while it is slowing down? (Ans.  $0.8\ {\rm rev})$ 

(d) How far do you travel while the wheel is slowing down? (Ans. 20 m)

# Ferris wheel Organization of the information: - Radius, r = 4 m - Pick the positive direction: the direction of motion -Use a consistent set of units: The problem provides the value of the initial angular speed of the Ferris wheel in revolution per second. We need to convert into rad/s: $1/(2\pi)$ rev. per second = $[1/(2\pi)$ rev/s] x $[2\pi$ rad/rev] = 1 rad/s. $\Delta \theta$ $\alpha_0$ $\alpha_0$ $\alpha_0$ $\alpha$ $\alpha_0$ $\alpha$ $\alpha$ $\alpha$ $\alpha$ $\alpha$

?

Part (c)

10

t

# Ferris wheel

| (a) The question asks about the tangential motion, use v = r $\omega$ :                                                                                                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $v_0 = r\omega_0 = 4 \text{ m} \times 1 \text{ rad/s} = 4 \text{ m/s}$                                                                                                                                                    |  |  |  |  |
| (b) Use the equation: $\omega = \omega_0 + \alpha t$<br>Substitute the values of the variables organized in the table.                                                                                                    |  |  |  |  |
| $t = \frac{\omega - \omega_o}{\alpha} = \frac{(0 - 1) \text{ rad/s}}{0.1 \text{ rad/s}^2} = 10 \text{ s}$                                                                                                                 |  |  |  |  |
| (c) Use the equation: $\omega^2 = \omega_0^2 + 2\alpha(\Delta\theta)$                                                                                                                                                     |  |  |  |  |
| Substitute the values of the variables organized in the table.                                                                                                                                                            |  |  |  |  |
| $\Delta\theta = \frac{\omega^2 - \omega_0^2}{2\alpha} = \frac{(0 \text{ rad/s})^2 - (1 \text{ rad/s})^2}{2 \times (-0.1 \text{ rad/s}^2)} = 5 \text{ rad} = \frac{5 \text{ rad}}{2\pi \text{ rad/rev}} = 0.8 \text{ rev}$ |  |  |  |  |
| (d) It's the distance you travel along the circular arc. The arc length. Let the arc length be $s\!:$                                                                                                                     |  |  |  |  |
| $s = r(\Delta \theta) = 4 \text{ m} \times 5 \text{ rad} = 20 \text{ m}$ 11                                                                                                                                               |  |  |  |  |





# Front wheel of a bike.

An alternative method is to use the fact that the average angular velocity =  $(\omega_o + \omega)/2 = 1$  rad/s is related to the average angular displacement < $\Delta \theta$ > by:

 $<\Delta\theta> = <\omega>t.$ 

Over a time of 50 s, the wheel makes an angular displacement of 1.0 rad/s multiplied by 50 s, or 50 rad. The corresponding number of revolutions is:

$$50 \operatorname{rad} \times \frac{1 \operatorname{rev}}{2\pi \operatorname{rad}} = \frac{25}{\pi} \operatorname{rev}$$

14

This is the same answer as before.