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Earthquake networks based on similar activity patterns
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Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully
understood despite decades of research and analysis. We propose and develop a network approach to earthquake
events. In this network, a node represents a spatial location while a link between two nodes represents similar
activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross
correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake
catalog spanning the 14-year period 1985–1998. We find strong links representing large correlations between
patterns in locations separated by more than 1000 kilometers, corroborating prior observations that earthquake
interactions have no characteristic length scale. We find network characteristics not attributable to chance alone,
including a large number of network links, high node assortativity, and strong stability over time.
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I. INTRODUCTION

Despite the underlying complexities of earthquake dynam-
ics and their complex spatiotemporal behavior [1,2], celebrated
statistical scaling laws have emerged describing the number
of events of a given magnitude (Gutenberg-Richter law) [3],
the decaying rate of aftershocks after a main event (Omori
law) [4–6], the magnitude difference between the main shock
and its largest aftershock (Bath law) [7], as well as the
fractal spatial occurrence of events [8–11]. Recent work has
shown that scaling recurrence times according to the above
laws results in the distribution collapsing onto a single curve
[12,13]. However, while the fractal occurrence of earthquakes
incorporates spatial dependence, it appears to embed isotropy
in the form of radial symmetry, while the occurrence of
real-world earthquakes is usually anisotropic [14].

To better characterize this anisotropic spatial dependence
as it applies to such heterogeneous geography, network
approaches have been recently applied to study earthquake
catalogs [15–22]. These recent network approaches define
links as being between successive events, events close in
distance [19], or being between events which have a relatively
small probability of both occurring based on three of the
above statistical scaling laws [23]. These methods define links
between singular events. In contrast, we define links between
locations based on the long-term similarity of earthquake
activity. While earlier approaches captured the dynamic nature
of an earthquake network, they did not incorporate the
characteristic properties of each particular location along
the fault. Various studies have shown [4,24–26,28] that the
interval times between earthquake events for localized areas
within a catalog have distributions not well described by a
Poisson distribution [29], even within aftershock sequences
[28]. This demonstrates that each area not only has its own
statistical characteristics [30], but also retains a memory of
its events [24–26]. As a result, successive events may not
be just the result of uncorrelated independent chance, but
instead might be dependent on the history particular to that
location. If prediction is to be a goal of earthquake research,
it makes sense to incorporate interactions due to long-term

behavior inherent to a given location rather than by treating
each event independently. We include long-term behavior as
such in this paper by considering a network of locations
(nodes) and interactions between them (links), where each
location is characterized by its long-term activity over several
years.

II. DATA

For our analysis, we utilize data from the Japan University
Network Earthquake Catalog (JUNEC) [27]. We choose the
JUNEC catalog because Japan is among the most active
and best observed seismic regions in the world. Because our
technique is novel, this catalog provided the best avenue for
employing our analysis. In the future, it may be possible to
fine-tune our approach to more sparse catalogs.

The data in the JUNEC catalog span 14 years from 1 July
1985 through 31 December 1998 and are depicted in Fig. 1.
Each entry in the catalog includes the date, time, magnitude,
latitude, and longitude of the event. We found the catalog to
obey the Gutenberg-Richter law [31] for events of magnitude
2.2 or larger. By convention, this is taken to mean that the
catalog can be assumed to be complete in that magnitude range.
However, because catalog completeness cannot be guaranteed
for shorter time periods over a 14-year span, we also examine
Gutenberg-Richter statistics for each nonoverlapping two-year
period (Fig. 2) [31]. We find that, though absolute activity
varies by year, the relative occurrences of quakes of varying
magnitudes does not change significantly for events between
magnitude 2.2 and 5, where there is the greatest danger of
events missing from the catalog.

Additionally, the data are spatially heterogeneous, as shown
in Fig. 1. Most events take place either over land or off Japan’s
east coast. We remark that this is not an artifact of more
detection equipment being located on land. The primary means
for locating and detecting earthquake events involves using the
S waves and P waves that emanate from the events. Seismic
stations are capable of detecting these waves a great distance
from their source. Both S waves and P waves [32] travel
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FIG. 1. (Color online) Number of events by location in the
JUNEC catalog, shown in a 23 × 23 mesh. Larger circles with
brighter colors denote more events. The JUNEC catalog clusters
spatially, with most activity occurring on the eastern side of Honshu,
Japan’s main island.

through the Earth’s mantle, and the characteristic absorption
distance, defined as the distance for a wave amplitude to drop
to 1/e of its original value, for body waves is on the order
of 10 000 km [33]. Any event of magnitude 5.5 or larger, for
example, is detectable anywhere on Earth. Hence, the location
of the detection equipment does not affect how accurately
events are catalogued. Additionally, because the location of
the Japanese archipelago is a consequence of seismic activity
involving the Philippine and other tectonic plates, it is not
surprising that most seismic events take place on or near the
islands themselves.

FIG. 2. (Color online) Demonstrating that the magnitude above
which the Gutenberg-Richter law is obeyed is approximately constant
from year to year. To this end, we provide Gutenberg-Richter
statistics for the JUNEC catalog over separated two-year periods.
The Gutenberg-Richter law states that the number N of events greater
than a given magnitude M obeys log10 N = a − bM , with b ≈ 1.

III. METHOD

We partition the region associated with the JUNEC cat-
alog as follows: We take the northernmost, southernmost,
easternmost, and westernmost extrema of all events in the
catalog as the spatial bounds for our analysis. We partition
this region into a 23 × 23 grid which is evenly spaced in
geographic coordinates. Each grid square of approximate size
100 × 100 km is regarded as a possible node in our network.
The results do not qualitatively differ when the fineness of the
spatial grid is modified, in agreement with analogous work
carried out by the authors of Ref. [20], using a different
technique from ours [18]. However, 100 km boxes are a
more physical choice, as 100 km is on the order of rupture
length associated with larger earthquakes [34], which in turn
is roughly equivalent to the aftershock zone distance for larger
earthquakes (M � 7.0) [35].

For a given measurement at time t , an event of magnitude
M occurs inside a given grid square. Similar to the method
of Corral [28], we define the signal of a given grid square to
form a time series {st }, where each series term st is related to
the earthquake activity that takes place inside that grid square
within the time window �t , as described below.

Because events do not generally occur on a daily basis in
a given grid square, it is necessary to bin the data to some
level of coarseness. How coarse the data are treated involves a
trade-off between precision and data richness.

We define the best results as those corresponding to the
most prominent cross correlations. To this end, we choose
90 days as the coarseness for our time series. This choice
means that st will cover a time window of �t = 90 days
and st+1 will cover the 90-day nonintersecting time period
immediately following, giving approximately four increments
per year. Additional analysis shows that the results do not
qualitatively differ by changing the time coarseness.

We refer to the time series {st } belonging to each grid cell
ij as that grid cell’s signal. We define the signal that is related
to the energy released in the the ij grid cell by

st (ij ) ≡
Nt (ij )∑

�=1

10
3
2 M�

t (ij ), (1)

where Nt (ij ) denotes the number of events that occur in the
t th time window in grid square ij . We choose this definition
because the term 10

3
2 M is proportional to the energy released

from an earthquake of magnitude M [36]. The signal therefore
is proportional to the total energy released at a given location
in a 90-day time period [38].

To define a link between two grid squares, we calculate the
Pearson product-moment correlation coefficient rx,y between
the two time series {xt },{yt } associated with those two grid
squares [41]

rx,y ≡ 〈XY 〉 − 〈X〉〈Y 〉
σxσy

, (2)

where 〈. . .〉 indicates the mean and σx,σy the standard
deviations of the time series {xt },{yt }.

We consider the two grid squares linked if rx,y is larger than
a specified threshold value rc, where rc is a tunable parameter.
As is standard in network-related analysis, we define the degree
k of a node to be the number of links the node has. Note that our
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FIG. 3. (Color online) Examples of highly correlated signals,
as defined in Eq. (1), with values of (i,j ) marked above. (a) Two
signals with Pearson correlation coefficient r = 0.9617, associated
with locations 878-km apart. (b) The corresponding r̃ as a function
of time offset as defined by Eq. (3). (c) Corresponding scatterplot of
(a) with signal (i,j ) = (10,12) plotted against signal (i,j ) = (2,14).
Each point corresponds to a single point in time for the simultaneous
signals of (10,12) and (2,14). Note that because the signal is defined
in terms of exponentiation that large events dominate the correlation,
just as large events dominate the total energy released in an earthquake
catalog.

signal definition Eq. (1) involves an exponentiation of numbers
of order 1. This means that the energy released, and therefore
the cross correlation between two signals, is dominated by
large events. Examples of signals with high correlation are
shown in Fig. 3.

To confirm the statistical significance of rx,y , we compare
rx,y of any two given signals with rx,y calculated by shuffling
one of the signals. We also compare rx,y with the cross
correlation r̃x,y(τ ) we obtain by time shifting one of the signals
by varying time increments τ

r̃x,y(τ ) ≡ r(sx,t ,sy,t+τ ), (3)

where τ is in units of 90 days. Further, we impose periodic
boundaries

t + τ ≡ (t + τ ) mod tmax, (4)

FIG. 4. (Color online) Testing the statistical significance of cross
correlations to demonstrate that the correlations observed are stronger
than ambient noise. For each pair of signals, i1,j1 and i2,j2, with a
cross correlation r � rc, we shift one of the signals in time by t time
periods and calculate the new correlation coefficient. Each colored
line is a comparison of a pair of signals, as described by Eq. (3). Note
the strong peak at t = 0 corresponding to signals being compared at
the same time. Offsetting the signals in time results in lower cross
correlation, dropping to the level of noise in the actual data. As a
control, we shuffle all the signals for each time shift and calculate
the spread of cross-correlation values at that value of t (shown
below each figure). Cross correlation between various pairs of signals
vs. time offset. Shown are links for which (a) r̃(0) � rc = 0.7 and
(b) r̃(0) � rc = 0.9.

where tmax is the length of the series. Our justification
for these boundaries is that events in the distant past
(>10 years) should have nominal effects on the present,
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FIG. 5. (Color online) Demonstration that empirical data show
far more links than time-shuffled data. (a) In black is the distribution
of the number of links obtained in the network after time shuffling
the data many times. A link corresponds to a correlation coefficient
between two signals of r � rc. Shown is the case rc = 0.8. Actual
results, shown in gray (red), are greater than 5σ from the mean of
the shuffled distribution, about 17% more links than the mean of the
shuffled distribution. (b) Results are similar for other values of rc. We
note that the fraction of links we can regard “real” or meaningful in
general increases with rc.

while they also provide typical background noise for
comparison.

We note that over the 14-year time period 1985 to 1998,
the overall observed activity increases in the areas covered by
the catalog. To ensure that the rx,y values we calculate are
not simply the result of trends in the data, we compare our
results to those obtained with linearly detrended data [39].
We find that the trends do not have a significant effect. For
example, using rc = 0.7, we obtain 815 links, while detrending
the data results in only three links dropping below the threshold
correlation value. For rc = 0.6, we obtain 1003 links, while
detrending results in only three links dropped. Additionally,
after detrending, 94% of correlation values stay within 2% of
their values.

IV. RESULTS

As described above, we compare rx,y ≡ r̃x,y(0) of Eq. (3)
between signals at different locations at the same point in time
with r̃x,y(τ ) and with the correlation coefficient obtained by
shuffling one of the series. Shuffling or time shifting by a
single time step (representing 90 days) reduces r̃x,y to within
the margin of significance, as shown in Fig. 4. We find a large

FIG. 6. (Color online) Network links superimposed on a map of
the Japanese archipelago, including Japan’s main island Honshu. Note
that links are anisotropic and primarily lie parallel to the principal
axis of Honshu. Shown are links satisfying r � rc that are connected
to high degree nodes (k > kmin). Darker grays (red) indicate stronger
links (i.e., stronger cross correlations). Links shown satisfy (a) rc =
0.9, kmin = 5, (b) rc = 0.8, kmin = 7, (c) rc = 0.7, kmin = 8, (d)rc =
0.5, kmin = 8. These choices for rc and kmin give approximately 70,
70, 90, and 90 links, respectively.

number of links with cross correlations far larger than their
shuffled counterparts. The number of links exceeds that of the
time-shuffled data by roughly 3σ–8σ , depending on the choice
of rc as shown in Fig. 5(a). However, as shown, there are still
many links that can be regarded as the result of noise. We
therefore further examine the difference between the number
of links found in the time-shuffled data and the number found
in the original data [Fig. 5(b)]. We find that the fraction of
“real” links in general increases with rc.

A significant fraction of these links connect nodes farther
apart than 1000 km, as can be seen in Fig. 6. This is consistent
with the finding that there is no characteristic cutoff length for
interactions between events [20,23], corroborated by Fig. 7,
showing the number of links a network has at a given distance
as a fraction of the number of links that are possible from
choosing any two nodes in the potential network. Distances
shorter than 100 km have sparse statistics due to the coarseness
of the grid while distances greater than 2300 km have sparse
statistics due to the finite spatial extent of the catalog.
Within this range, the fraction of links observed drops off
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FIG. 7. (Color online) Demonstration that links have no charac-
teristic length scale. To this end, we show the number of network
links at a given distance as a fraction of how many links are possible
at that distance from choosing any pairs of nodes. Distances less than
100 km have sparse statistics due to the coarseness of the spatial grid,
while distances greater than 2300 km have sparse statistics due to the
finite spatial extent of the catalog.

approximately no faster than a power law. We find qualitatively
similar results when we adjust the grid coarseness.

Our results, shown in Fig. 6, are anisotropic, with the
majority of links occurring at approximately 37.5◦ east of
north. This is roughly along the principal axis of Honshu,
Japan’s main island, and parallel to the highly active fault zone
formed by the subduction of the Philippine and Pacific tectonic
plates under the Amurian and Okhotsk plates, respectively.
High degree nodes (i.e., nodes with a large number of links)
tend to be found in the northeast and northcentral regions of
the JUNEC catalog and are notably not strongly associated
with the locations in the catalog that are most active, which
we discuss in further detail below.

In network physics, we often characterize networks by the
preference for high degree nodes to connect to other high
degree nodes. The strength of this preference is quantified by
the network’s assortativity, defined as

A ≡ rk1,k2 , (5)

where r is the Pearson correlation coefficient given by Eq. (2).
The series k1 and k2 are found as follows: Iterating through
all entries i,j in the adjacency matrix [40], the degree of each
node i is appended to the series {k1} and the degree of the
node j that i is linked to is appended to the series {k2}. The
assortativity coefficient thus gives a correlation of the node
degree within the network. If each node of degree k connects
only to nodes of the same degree, the two series {k1} and {k2}
will be identical and A = 1. Networks like the network of
paper coauthorship have positive assortativity, while those of
the World Wide Web and of many ecological and biological
systems have negative assortativity [37].

Figure 8 shows that the networks resulting from our
procedure are highly assortative with assortativity generally
increasing with rc. The finding of a positive correlation
between the degree of a node and the degree of its neighbors
is consistent with an analogous finding [20] with Iranian data,
using a different technique from ours [18]. For comparison
we show the assortativity obtained by using time-shuffled

FIG. 8. (Color online) Demonstration that earthquake networks
are highly assortative [see Eq. (5)] for a wide range of rc, with
assortativity A generally increasing with rc. A > 0 indicates that
high degree nodes tend to link to high degree nodes and low degree
nodes tend to link to low degree nodes. For comparison assortativity
values obtained from networks using time-shuffled data demonstrate
that these findings are neither a finite size effect nor a result of spatial
clustering, since time shuffling preserves location.

networks. Since the assortativity of the original networks is
far higher than those of shuffled systems, the high assortativity
cannot be due to a finite size effect or to the spatial clustering
displayed in the data since time shuffling preserves the
location. We investigate the nature of the high degree nodes
and find that a high degree is not a matter of more events being
nearby, as there is a slight tendency for higher degree nodes to
actually have longer distance links on average than low degree
nodes. Additionally, we find that the node degree is essentially
independent of both maximum earthquake size and number of
events.

Because Fig. 5 shows, as mentioned above, that many
links can be regarded as the result of noise, we investigate
the stability of links over time (Fig. 9). The similarity of the
network between the first seven years (1985–1992) and the
second seven years (1992–1998) in the catalog is found as
follows. We find the set of links that satisfy r � rc in both the

FIG. 9. (Color online) Correlation networks display stability over
time. Shown is the similarity of the 1985–1992 network with the
1992–1998 network. Similarity is obtained by (i) selecting the set
of links that satisfy r � rc in both networks, (ii) making one series
out of the strengths (cross correlation) in the 1985–1992 network
and creating another series out of the corresponding strengths in the
1992–1998 network and (iii) correlating the two series using the
Pearson cross-correlation coefficient given by Eq. (2).
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1985–1992 network and the 1992–1998 network, and create
a series out of the respective link strengths (correlations)
in the 1985–1992 network. We create another series using
the same links, now using the corresponding strengths from the
1992–1998 network. We then correlate the two series using the
Pearson correlation coefficient given by Eq. (2). We find that
the network is far more stable over time than the counterpart
results given by shuffling the time series (Fig. 9). Because one
would expect large correlations that arise purely from noise to
have no “memory” from one time period to another, the finding
of network stability over several years is consistent with our
result that these links are not simply the result of chance.

V. DISCUSSION AND CONCLUSION

To summarize our results, we have introduced a method for
analyzing earthquake activity through the use of networks [42].

The resulting networks (i) display links with no characteristic
length scale, (ii) display far more links than expected from
chance alone, (iii) are far more assortative, and (iv) display
significantly more link stability over time. The lack of a
characteristic length scale is consistent with previous work and
underscores the difficulty in making accurate predictions. The
statistically significant nature of all of these results is consistent
with the possibility of the presence of hidden information
in a catalog, not captured by existing models or previous
earthquake network approaches.
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