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In developed economies, the sign of the price increment influences the volatility in an asymmetric fashion—
negative increments tend to result in larger volatility (increments with larger magnitudes), while positive
increments result in smaller volatility. We explore whether this asymmetry extends from developed economies
to European transition economies and, if so, how such asymmetry changes over time as these transition
economies develop and mature. We analyze eleven European transition economies and compare the results
with those obtained by analyzing U.S. market indices. Specifically, we calculate parameters that quantify both
the volatility asymmetry and the strength of its dependence on prior increments. We find that, like their
developed economy counterparts, almost all transition economy indices exhibit a significant volatility asym-
metry, and the parameter vy characterizing asymmetry fluctuates more over time for transition economies. We
also investigate how the association between volatility and volatility asymmetry varies by type of market. We
test the hypothesis of a negative correlation between volatility and volatility asymmetry. We find that, for
developed economies, y experiences local minima during (i) “Black Monday™ on October 19, 1987, (ii) the
dot-com bubble crash in 2002, and (iii) the 2007-2009 global crisis while for transition economies, y experi-
ences local maxima during times of economic crisis.
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I. INTRODUCTION

The focus of econophysics is marrying economics to
physics by importing concepts and techniques from the latter
to the former. However, one must be cautious in doing so,
since a number of generalizations that can be taken for
granted in physics do not extend to economics.

(i) A physics law discovered in the U.S. presumably holds
universally over the entire Earth. By contrast, few expect
such country invariance to hold in economics, since econom-
ics laws tend to depend on the wealth level of a country. For
example, the hypothesis of the weak form of market effi-
ciency [1], which assumes that stock prices at any future
time cannot be predicted, holds in many large developed
markets [2], even as evidence of violation has been found in
ten transition (developing) economies in Eastern and Central
Europe [3,4]. Also, highly developed economies [5-8] and
those of different levels of aggregation (continents) [9] dis-
play power-law probability distributions in their price fluc-
tuations. However, analysis of the Indian National Stock Ex-
change may instead show exponential distributions [10].

(ii) There is no guarantee that economics laws are time-
independent, even for countries of a given level of wealth.
Just how time-dependent economics laws are remains under
investigation.

We seek here to explore (i) the extent to which economics
laws depend on both level of economic development and (ii)
time.

II. BACKGROUND

Many complex systems exhibit temporal or spatial corre-
lations that can be approximated by power-law scaling
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[11-18], and a range of stochastic models [ 19-23] have been
proposed to explain this scale invariance. Recent studies
have reported that power-law correlations in empirical data
are often characterized by significant skewness or asymmetry
in the distributions of increments. Examples include astro-
physical data [24], genome sequences [25], respiratory dy-
namics [26], brain dynamics [27], heartbeat dynamics [28],
turbulence [29], physical activities, finance [30-32], and
geophysics weather data [33]. Besides power-law correla-
tions in the increments, different complex systems exhibit
power-law correlations in the absolute values of increments.
Examples include finance [34-36], physiology [37], air tem-
perature changes [38,39], and seismology [40,41]. Applica-
tions for this phenomenon are particularly salient in finance
because the absolute values measure the level of financial
risk.

The autoregressive conditionally heteroscedastic (ARCH)
process models financial series with a time-dependent vola-
tility (the standard deviation of price changes) [34]. The time
dependence is captured by defining the volatility o, at a
given time ¢ to be dependent on the previous increments in
the series. The question arises of whether o, depends not
only on the magnitude of preceding increments but also on
their sign. Commonly, stockholders may not react equally to
bad news (negative price increments) as compared to good
news (positive price increments). Many extensions of origi-
nal ARCH process [34] and its generalization (GARCH [35])
have been subsequently defined in order to incorporate such
“volatility asymmetry” [42,43] (see Sec. II), which have re-
vealed such asymmetry in a variety of developed markets
[34,43-43].
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We ask how universal the phenomenon of volatility asym-
metry for global markets is, particularly in transition econo-
mies, which often show different statistics than those of de-
veloped economies. For example, in contrast to the tendency
of financial time series of developed markets to exhibit only
short, exponentially decaying autocorrelations in price
changes, financial time series of Central and Eastern Euro-
pean transition economies [3,4,49] and even some developed
economies [50], exhibit long memory. If the volatility asym-
metry exists in transition economies, is it persistent or does it
change over time? What can we say about the persistence of
volatility asymmetry in developed economies?

Here, we extend the study [48] of volatility asymmetry to
Central and Eastern European transition economies using a
generalization of the ARCH process, finding that most of the
indices under investigation also display statistically signifi-
cant volatility asymmetry. Surprisingly, we find that such
asymmetry is far more pronounced during the 2007-2009
world financial crisis than for the preceding eight years, in-
dicating a greater universality of asymmetric market re-
sponse during times of economic adversity.

Here we investigate financial time series of index returns
of eleven European transition economies of Central and
Eastern Europe. We analyze eleven stock market indices—
PX, BUX, WIG, RTS, SKSM, SVSM, CRO, NSEL30,
TALSE, RIGSE, and PFTS—each corresponding to one of
the eleven transition economies of the Czech Republic, Hun-
gary, Poland, Russia, Slovakia, Slovenia, Croatia, Lithuania,
Estonia, Latvia, and Ukraine, respectively. As a representa-
tive of developed economies, we consider the U.S. stock
market. We analyze three financial indices: the S&P500,
NYSE, and NASDAQ. All data are recorded daily. We define
the relative price change (or “return”)

R,=log S(t + Ar) — log S(1), (1)

where S(7) is the stock price at time ¢ and Ar=1 corresponds
to a time lag of one day. The increments used in time series
are the returns after the average return is subtracted so the
resulting series has a mean of 0.

To estimate the parameter 7y quantifying the volatility
asymmetry of a time series, we employ the maximum likeli-
hood estimation (MLE) method to ascertain which parameter
values optimize the probability of a stochastic process to
reproduce the observed time series. We start by deriving a
likelihood function that is an expression for the probability
of observing a given sample of N known data points
(X;,X5,...,Xy). We denote the probability of obtaining the
ith data point X; as P(X;). Then the probability L of obtaining
our particular N data points is the product of the probability
P(X;) to obtain each

N
L=]] Px). (2)
=1

In the paper, we choose a Gaussian for P(X;) as most of
studies do when MLE is employed, though we obtained
qualitatively similar results for the Student’s z-distribution.
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II1. MODEL

The most widely used volatility processes are based on
the ARCH approach. The GARCH(1,1) and ARCH(n) pro-
cesses, for example, have the volatility, or time-dependent
standard deviation, expressed by the squares of the incre-
ments, a choice which necessarily loses information because
it eliminates the ability to explore if the volatility has any
dependence on the sign of an increment. In order to account
for the possible asymmetric dependence on an increment’s
sign, different variants of GARCH processes have been pro-
posed. Here we employ GJR GARCH(p,q) [42], a process
that incorporates this asymmetry. In order to model long
memory in volatility auto-correlations, the current volatility
o, depends on p prior volatilities o,_; and ¢ prior fluctuations
€

§=R,—p=0m, (3)

q

or=ag+ 2 (a+ VT, e+ 2 Biors, (4)
i=1

i=1

where the return R, is defined in Eq. (1), 7 denotes time, w is
the mean of the return R,, o, is the volatility, », is random
number chosen from a Gaussian distribution with a standard
deviation of 1 and mean equal to 0. The coefficients «; and
B; are determined by MLE and T,=1 if ¢_;<0, 7,=0 if
€,_1=0. The parameter 7y is expected to be positive, bad
news (negative increments) increases volatility more than
good news.

For the sake of simplicity, we follow the common practice
by setting p=g=1. For estimation of the parameters we use
MLE to solve Egs. (3) and (4) numerically. We analyze data
using several numerical tools to estimate parameters: R, the
software package Global Optimization for MATHEMATICA,
and the publicly available GRETL package [51]. During the
approximately 10.5-year period studied, we calculate for
each of the 11 different stock indices of transition economies
the parameters of the GJR GARCH(1,1) process of Egs. (3)
and (4).

IV. RESULTS

We present our results in Table 1. Based on these results,
with the exception of the Lithuanian NSEL30 index, all in-
dices exhibit volatility persistence since the sum a+pf is
close to 1. In addition, we find the asymmetry parameter 7y to
be statistically significant to within two standard deviations
for all indices except the Slovakian SKSM, Ukrainian PFTS,
and Estonian TALSE. We find the largest asymmetry param-
eter v for the Russian RTS and Lithuanian NSEL30 indices.
For all the indices except SKSM (Slovakian) and TALSE
(Estonian), we find that 7y is positive. We also find that only
for PFTS, NSEL30, RIGSE, TALSE and CRO it holds that
a++vy/2<1, implying that only for these indices the sec-
ond moment of GJR(1,1) exists [52]. Similar behavior was
found for some other markets [48].

Besides the procedure explained in Egs. (3) and (4) with
subtracting the average u from return R, in order to generate
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TABLE 1. Estimates of GJR GARCH(1,1) with standard errors in parenthesis.

Index GARCH a;+ 84 a B y Log-likelihood
RTS 0.981 0.065 (0.005) 0.905 (0.006) 0.276 (0.034) -5094
BUX 0.977 0.085 (0.008) 0.885 (0.010) 0.212 (0.030) —4923
WIG 0.990 0.055 (0.005) 0.932 (0.005) 0.140 (0.035) —4673
SKSM 0.996 0.037 (0.002) 0.959 (0.002) —-0.021(0.021) —4318
SVSM 0.962 0.314 (0.016) 0.648 (0.014) 0.105 (0.018) —2949
PX 0.979 0.116 (0.011) 0.846 (0.013) 0.234 (0.030) —4520
PFTS 0.931 0.184 (0.009) 0.748 (0.009) 0.015 (0.012) -5218
NSEL30 0.821 0.184 (0.016) 0.613 (0.021) 0.260 (0.030) -3365
RIGSE 0.956 0.219 (0.013) 0.738 (0.012) 0.075 (0.022) -3817
TALSE 0.999 0.098 (0.005) 0.910 (0.003) -0.016 (0.013) -3967
CRO 0.950 0.193 (0.014) 0.752 (0.016) 0.076 (0.022) —2941

fluctuations €, with zero mean, we also apply the autoregres-
sive moving average ARMA(1,1) model [53] on the time
series of return R, prior GJR GARCH process in order to
extract serial correlations in R,. The final results and conclu-
sions when ARMA(1,1) is applied are very similar to those
obtained with the procedure explained in Egs. (3) and (4).

Next we ask whether the statistical properties concerning
volatility asymmetry are homogeneous. For comparison,
DNA chains are not homogeneous in correlations in that
long-range correlations exist only in intron-containing genes,
and not in intron-less genes [54]. Hence, we ask if these
statistical properties are more pronounced, for example, dur-
ing market crashes and economic crisis.

To answer this question, we split the entire period, 12/31/
98-07/10/09, into two subperiods: a “control” period, 12/31/
98-01/01/07, and a “crash” period, 01/01/07-07/10/09, cho-
sen to coincide with the world financial crisis. Note that in
December 2007 a recession began in the United States and in
July 2009 it was announced that the recession may have
ended. The recession was followed by the global financial
crisis. For each of 11 different indices, and for each subpe-
riod, we estimate the GJR GARCH(1,1) process of Egs. (3)
and (4) and present the results for @+ and y in Table IL
First we note that the parameter a+ 8 changes little during
these two subperiods. Four indices—RTS, BUX, PX, and
NSEL30—for both subperiods exhibit significant volatility
asymmetry. For five other indices—WIG, SVSM, SKSM,
RIGSE, and CRO—the control subperiod is characterized by
no statistically significant volatility asymmetry, while the
crash period is characterized by statistically significant vola-
tility asymmetry. Note that the TALSE and PFTS indices
exhibit no volatility asymmetry in either subperiod. We also
find that for all indices, except the Russian index, the asym-
metry parameter vy estimated for the most recent =~2.5 year
period characterized by 2007-2009 global recession and se-
vere market crash is larger than 7y estimated for the previous
less volatile eight-year period. Thus, the most recent
~2.5 years of the 2007-2009 world financial crisis are char-
acterized by larger and statistically more significant volatility
asymmetry than the previous eight years.

Additionally, we compare the persistence of the autocor-
relations in the transition economies to that in developed

economies by comparing the sum of the parameters a+f.
The smaller this sum, the longer the characteristic lifetime of
the auto-correlations. Table II shows that the parameter re-
sponsible for persistence in auto-correlations, except for the
CRO (Croatia), PFTS (Ukraine), and NSEL30 (Lithuania)
indices, does not change much for different subperiods. Note
that the B parameter determines the weight applied to the
previous volatility, whereas the « parameter determines the
weight applied to the most recent news. In contrast to a+ £,
the parameter y, which controls the volatility asymmetry,
changes substantially for different subperiods. In Fig. 1 we
show how vy estimated annually (by using =252 daily re-
turns) for different indices changes over time. Figure 1(a)
shows the annual variation of 7y for representative countries
with statistically significant y for both subperiods. In Fig.
1(b) we show vy vs year for countries with statistically sig-
nificant y only for the crash subperiod. In Fig. 1(b) we find
that vy substantially changes from positive to negative values.

For reference, we also compare our results to those of
well-developed markets, using the S&P 500, NASDAQ, and
NYSE Composite indices. Applying our method to the S&P
500 for the most recent 20 years in one-year intervals, in Fig.
1(c) we find that y varies over time, and is always positive.

TABLE II. For two subperiods 1998/12/31-2006/01/01 and
2007/01/01-2009/07/10 we estimate the GJIR GARCH(1,1) process
with standard errors in parenthesis.

Index a+ 6 y a+ B b%

RTS 0.946 0.332 (0.049) 0.986 0.259 (0.053)
BUX 0.962 0.177 (0.036) 0.975 0.246 (0.068)
WIG 0.992 0.026 (0.044) 0.959 0.465 (0.201)
SKSM 0.967 —0.075 (0.040) 0.999 0.139 (0.038)
SVSM 0.893 0.015 (0.024) 0.932 0.231 (0.045)
PX 0.957 0.203 (0.042) 0.975 0.257 (0.055)
PFTS 0.865 0.007 (0.017) 0.979 0.025 (0.028)
NSEL30 0.751 0.156 (0.053) 0.692 0.308 (0.061)
RIGSE 0.953 —-0.020 (0.026) 0.927 0.275 (0.053)
TALSE 0.999 —-0.035 (0.019) 0.999 0.042 (0.024)
CRO 0.788 —0.087 (0.040) 0.979 0.164 (0.041)
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FIG. 1. (Color online) Changes of the volatility asymmetry pa-
rameter y each year over the 20-year period 1989-2009. (a) For
transition economies 7y for both subperiods (crisis and control)
changes over time. (b) The same, but for countries with statistically
significant vy only for the crisis subperiod. The parameter y substan-
tially changes from positive to negative values. (c) As a represen-
tative for developed markets, we use the S&P 500 index. Over the
last 20 years, y values vary over time, but 7y is always positive. The
local minima for y values we obtain during dof-com bubble crash
and during the 2007-2009 global crisis.

As an interesting result we find that the smallest y values
occur in 2002 and 2007-2009 corresponding to the dot-com
bubble crash and current global recession, respectively. We
repeat our analysis, this time with two-year intervals on the
S&P 500, and we also include the NASDAQ and NYSE
Composite indices. Our results are shown in Fig. 2. We find
the smallest y values for 1982—1983 and 1988—1989 periods,
proximal to the 1982 recession and Black Monday in 1987,
respectively. Restricting ourselves to the last decade, the
smallest y values again occur in the time periods matching
the dot-com crash and 2007-2009 recession. Due to sample
variability, we expect the asymmetry parameter vy to change
over time. We find, however, that for the well-known U.S.
indices 7y tends to decrease during economic crises.

For the two subperiods 12/31/1998-01/01/2006 (subscript
1 in Table III) and 01/01/2007-07-10-2010 (subscript 2 in
Table III) we show the standard deviation and the GJR
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FIG. 2. Changes of the volatility asymmetry parameter vy, cal-
culated every two years over the 27-year period 1980-2008 for
three developed markets: (a) NASDAQ, (b) NYSE, and (c)
S&P500. Note the local minima for y values during Black Monday,
the dot-com bubble crash, and during the 2007-2009 global crisis.
The late-2000s recession began in the United States in December
2007.

GARCH(1,1) estimation for vy in Table I. Except for the Rus-
sian index (RTSI), in each of the eleven transition markets,
an increase in standard deviation is followed by an increase
in the volatility asymmetry parameter 7 (the opposite of what
is found for U.S. indices and the UK FTSE100 index).

Our results contradict the suggestion of Refs. [55,56] that
a decrease in volatility implies a decrease in asymmetry.
However, our work agrees with Ref. [57], where opposite
results were found analyzing Asia-Pacific Stock Index Re-
turns. Reference [57] found that high-volatility regimes (in-
dicated by “fatter” tails returns) are associated with relatively
low asymmetry. We therefore are in a position to confirm this
finding for the leading U.S. financial indices. The negative
association between volatility and asymmetry is obvious dur-
ing both the dot-com bubble crash and the 2007-2009 global
recession.

V. DISCUSSION AND CONCLUSIONS

By employing an ARCH-type process, we estimate the
level of volatility asymmetry for eleven emerging markets in

046104-4



COMPARISON BETWEEN RESPONSE DYNAMICS IN ...

TABLE III. For two subperiods 1998/12/31-2006/01/01 (sub-
script 1) and 2007/01/01-2009/07/10 (subscript 2) we show the
standard deviation and the GJR GARCH(1,1) estimation.

Index (o oy Y b2

RTSI 1.469 3.002 0.3651 0.2547
BUX 1.467 2.155 0.1977 0.2278
WIG 1.357 1.723 0.0173 0.4994
SKSM 1.312 1.076 -0.0832 0.0972
SVSM 0.657 1.573 0.0026 0.4255
PX 1.242 2.236 0.2232 0.2782
PFTS 1.660 2.164 —-0.050 0.0631
NSEL30 0.835 1.779 0.2337 0.3461
RIGSE 1.555 1.570 —-0.0531 0.3251
TALSE 1.078 1.431 —-0.0558 0.0891
CRO 1.130 2.060 -0.1078 0.2053
DOWJ 1.069 1.794 1.0170 0.4410
SP500 1.110 1.968 0.9802 0.4475
FTSE100 1.125 1.794 1.3776 0.4966

Central and Eastern Europe. Such volatility asymmetry is
important in finance because the greater the volatility asym-
metry, the greater the risk associated with owning a given
stock during market crashes and economic crises. For each
index, except the Russian index, we find that the level of
volatility asymmetry is more pronounced during the 2007-
2009 world financial crisis than for the preceding eight years.
This result is in contrast with what we find for the S&P 500,
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NASDAQ, and NYSE Composite indices, for which the
smallest “local” vy values are immediately following Black
Monday, during the 2002 dot-com bubble burst, and follow-
ing the 2007-2009 global recession, implying negative asso-
ciation between volatility and volatility asymmetry, in con-
tradiction to common economic belief. Thus, we find some
elements of universality in the markets: both the developed
markets and the majority of the transition markets display
significant volatility asymmetry, but the effect of market cri-
ses on this asymmetry is qualitatively different for transition
markets as compared to developed markets.

A variety of studies report that besides finance, different
complex systems ranging from physiology [37] to seismol-
ogy [40,41] generate time series of increments, the magni-
tudes of which are power-law correlated. Asymmetry in
power-law magnitude correlations were first found in finance
and more recently in physiology [58]. Hence, we can expect
similar behavior in brain dynamics, seismology, hydrology
and generally in physics phenomena where time series are
studied. In these phenomena the present analysis may have
the potential to be useful for diagnostic purposes. In physi-
ology this type of analysis may prove important in distin-
guishing between diseased and healthy subjects.
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