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The Matthew effect refers to the adage written some two-thou-
sand years ago in the Gospel of St. Matthew: “For to all those
who have, more will be given.” Even twomillennia later, this idiom
is used by sociologists to qualitatively describe the dynamics of
individual progress and the interplay between status and reward.
Quantitative studies of professional careers are traditionally lim-
ited by the difficulty in measuring progress and the lack of data
on individual careers. However, in some professions, there are
well-defined metrics that quantify career longevity, success, and
prowess, which together contribute to the overall success rating
for an individual employee. Here we demonstrate testable evi-
dence of the age-old Matthew “rich get richer” effect, wherein
the longevity and past success of an individual lead to a cumulative
advantage in further developing his or her career. We develop an
exactly solvable stochastic career progress model that quantita-
tively incorporates theMatthew effect and validate our model pre-
dictions for several competitive professions. We test our model on
the careers of 400,000 scientists using data from six high-impact
journals and further confirm our findings by testing the model
on the careers of more than 20,000 athletes in four sports leagues.
Our model highlights the importance of early career development,
showing that many careers are stunted by the relative disadvan-
tage associated with inexperience.

career length ∣ hazard rate ∣ output ∣ Poisson process ∣
quantitative sociology

The rate of individual progress is fundamental to career devel-
opment and success. In practice, the rate of progress depends

on many factors, such as an individual’s talent, productivity,
reputation, as well as other external random factors. Using a
stochastic model, here we find that the relatively small rate of
progress at the beginning of the career plays a crucial role in the
evolution of the career length. Our quantitative model describes
career progression using two fundamental ingredients: (i) ran-
dom forward progress “up the career ladder” and (ii) random
stopping times, terminating a career. This model quantifies the
“Matthew effect” by incorporating into ingredient (i) the com-
mon cumulative advantage property (1–8) that it is easier to move
forward in the career the further along one is in the career. A
direct result of the increasing progress rate with career position
is the large disparity between the numbers of careers that are
successful long tenures and the numbers of careers that are un-
successful short stints.

Surprisingly, despite the large differences in the numbers of
long and short careers, we find a scaling law that bridges the
gap between the frequent short and the infrequent long careers.
We test this model for both scientific and sports careers, two
careers where accomplishments are methodically recorded.
We analyze publication careers within six high-impact journals:
Nature, Science, the Proceedings of the National Academy of
Science (PNAS), Physical Review Letters (PRL), New England
Journal of Medicine (NEJM), and CELL. We also analyze sports
careers within four distinct leagues: Major League Baseball

(MLB), Korean Professional Baseball, the National Basketball
Association (NBA), and the English Premier League.

Career longevity is a fundamental metric that influences the
overall legacy of an employee because for most individuals the
measure of success is intrinsically related, although not perfectly
correlated, to his or her career length. Common experience in
most professions indicates that time is required for colleagues
to gain faith in a newcomer’s abilities. Qualitatively, the acquisi-
tion of new opportunities mimics a standard positive feedback
mechanism [known in various fields as Malthusian growth, cumu-
lative advantage, preferential attachment, a reinforcement
process, the ratchet effect, and the Matthew “rich get richer”
effect (9)], which endows greater rewards (10) to individuals who
are more accomplished than to individuals who are less accom-
plished.

Here we use career position as a proxy for individual accom-
plishment, so that the positive feedback captured by the Matthew
effect is related to increasing career position. There are also other
factors that result in selective bias, such as the “relative age
effect,” which has been used to explain the skewed birthday dis-
tributions in populations of athletes. Several studies find that
being born in optimal months provides a competitive advantage
to the older group members with respect to the younger group
members within a cohort, resulting in a relatively higher chance
of succeeding for the older group members, consistent with the
Matthew effect. This relative age effect is found at several levels
of competitive sports ranging from secondary school to the
professional level (11, 12).

In this paper we study the everyday topic of career longevity
and reveal surprising complexity arising from the generic compe-
tition within social environments. We develop an exactly solvable
stochastic model, which predicts the functional form of the prob-
ability density function (pdf) PðxÞ of career longevity x in compe-
titive professions, where we define career longevity as the final
career position x after a given time duration T corresponding
to the termination time of the career. Our stochastic model
depends on only two parameters, α and xc. The first parameter,
α, represents the power-law exponent that emerges from the pdf
of career longevity. This parameter is intrinsically related to the
progress rate early in the career during which professionals estab-
lish their reputations and secure future opportunities. The second
parameter, xc, is an effective time scale that distinguishes newco-
mers from veterans.

Quantitative Model
In this model, every employee begins his or her career with
approximately zero credibility and must labor through a common
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development curve. At each position x in a career, there is an
opportunity for progress as well as the possibility for no progress.
A new opportunity, corresponding to the advancement to career
position xþ 1 from career position x, can refer to a day at work or,
more generally, to any assignment given by an employing body.
For each particular career, the change in career position Δx has
an associated time frame Δt. Optimally, an individual makes
progress by advancing in career position at an equal rate as
the advancing of time t so that Δx≡ Δt. However, in practice,
an individual makes progress Δx in a subordinate time frame,
given here as the career position x. In this framework, career pro-
gress is made at a rate that is slower than the passing of work time,
representing the possibility of career stagnancy.

As a first step, we postulate that the stochastic process govern-
ing career progress is similar to a Poisson process, where progress
is made at any given step with some approximate probability or
rate. Each step forward in career position contributes to the
employee’s resume and reputation. Hence, we refine the process
to a spatial Poisson process, where the probability of progress gðxÞ
depends explicitly on the employee’s position x within the career.
In our model, the progress rate gðxÞ ¼ talentðxÞ þ reputationðxÞþ
productivityðxÞ þ… represents a combination of several factors,
such as the talent, reputation, and productivity at a given career
position x. The criteria for the Matthew effect to apply is that the
progress rate be monotonically increasing with career position, so
that gðxþ 1Þ > gðxÞ. In this paper, we do not distinguish between
the Matthew effect, relating mainly to the positive feedback from
recognition, and cumulative advantage, which relates to the
positive feedback from both productivity and recognition (2).
It would require more detailed data to determine the role of
the individual factors on the evolution of a career.

Employees begin their career at the starting career position
x0 ≡ 1 and make random forward progress through time to career
position x ≥ 1, as illustrated in Fig. 1. Career longevity is then
defined as the final location x≡ xT along the career ladder at
the time of retirement T. Let PðxjTÞ be the conditional probabil-
ity that at stopping time T an individual is at the final career
position xT . For simplicity, we assume that the progress rate
gðxÞ depends only on x. As a result, PðxjTÞ assumes the familiar
Poisson form, but with the insertion of gðxÞ as the rate parameter,

PðxjTÞ ¼ e−gðxÞT ½gðxÞT�x−1
ðx − 1Þ! : [1]

We derive the spatial Poisson pdf PðxjTÞ in Appendix. In SI
Appendix, we further develop an alternative model where the pro-

gress rate gðtÞ represents a career trajectory that depends on
time (13).

According to the Matthew effect, it becomes easier for an in-
dividual to excel with increasing success and reputation. Hence,
the choice of gðxÞ should reflect the fact that newcomers, lacking
the familiarity of their peers, have a more difficult time moving
forward, whereas seasoned veterans, following from their experi-
ence and reputation, often have an easier time moving forward.
For this reason we choose the progress rate gðxÞ to have the func-
tional form,

gðxÞ≡ 1 − exp½−ðx∕xcÞα�: [2]

This function exhibits the fundamental feature of increasing from
approximately zero and asymptotically approaching unity over
some time interval xc. Furthermore, gðxÞ ∼ xα for small x ≪ xc.
In Fig. 2, we plot gðxÞ for several values of α, with fixed
xc ¼ 103 in arbitrary units. We will show that the parameter α
is the same as the power-law exponent α in the pdf of career long-
evity PðxÞ, which we plot in Fig. 2, Inset. The random process for
forward progress can also be recast into the form of random wait-
ing times, where the average waiting time hτðxÞi between succes-
sive steps is the inverse of the forward progress probability,
hτðxÞi ¼ 1∕gðxÞ.

We now address the fact that not every career is of the same
length. Nearly every individual is faced with the constant risk of
losing his or her job, possibly as the result of poor performance,
bad health, economic downturn, or even a change in the business
strategy of his or her employer. Survival in the workplace requires
that the individual maintain his or her performance level with re-
spect to all possible replacements. In general, career longevity is
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Fig. 1. Graphical illustration of the stochastic Poisson process quantifying
career progress with position-dependent progress rate gðxÞ and stagnancy
rate 1 − gðxÞ. A new opportunity, corresponding to the advancement to ca-
reer position x þ 1 from career position x, can refer to a day at work or, even
more generally, to any assignment given by an employing body. In this frame-
work, career progress is made at a rate gðxÞ that is slower than the passing of
work time, representing the possibility of career stagnancy. The traditional
Poisson process corresponds to a constant progress rate gðxÞ≡ λ. Here, we use
a functional form for gðxÞ≡ 1 − exp½−ðx∕xcÞα� that is increasing with career
position x, which captures the salient feature of the Matthew effect, that it
becomes easier to make progress the further along the career. In SI Appendix,
we further develop an alternative model where the progress rate gðtÞ de-
pends on time.
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Fig. 2. Demonstration of the fundamental relationship between the
progress rate gðxÞ and the career longevity pdf PðxÞ. The progress rate
gðxÞ represents the probability of moving forward in the career to position
x þ 1 from position x. The small value of gðxÞ for small x captures the diffi-
culty in making progress at the beginning of a career. The progress rate
increases with career position x, capturing the role of the Matthew effect.
We plot five gðxÞ curves with fixed xc ¼ 103 and different values of the para-
meter α. The parameter α emerges from the small-x behavior in gðxÞ as the
power-law exponent characterizing PðxÞ. (Inset) Probability density functions
PðxÞ resulting from inserting gðxÞ with varying α into Eq. 5. The value αc ≡ 1

separates two distinct types of longevity distributions. The distributions re-
sulting from concave career development α < 1 exhibit monotonic statistical
regularity over the entire range, with an analytic form approximated by the
Gamma distribution Gammaðx; α;xcÞ. The distributions resulting from convex
career development α > 1 exhibit bimodal behavior. In the bimodal case, one
class of careers is stunted by the difficulty in making progress at the begin-
ning of the career, analogous to a “potential” barrier. The second class of
careers forges beyond the barrier and is approximately centered around
the crossover xc on a log–log scale.
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influenced by many competing random processes that contribute
to the random termination time T of a career (14). Our model
accounts for external termination factors that are not correlated
to the contemporaneous productivity of a given individual. A
more sophisticated model, which incorporates endogenous termi-
nation factors, e.g., termination due to sudden decrease in pro-
ductivity below a given employment threshold, is more difficult to
analytically model, which we leave as an open problem. The pdf
PðxjTÞ calculated in Eq. 1 is the conditional probability that an
individual has achieved a career position x by his or her given
termination time T. Hence, to obtain an ensemble pdf of career
longevity PðxÞ, we must average over the pdf rðTÞ of random
termination times T,

PðxÞ ¼
Z

∞

0

PðxjTÞrðTÞdT: [3]

We next make a suitable choice for rðTÞ. To this end, we introduce
the hazard rate, HðTÞ, which is the Bayesian probability that fail-
ure will occur at time T þ δT, given that it has not yet occurred at
time T. This is written as HðTÞ ¼ rðTÞ∕SðTÞ ¼ − ∂

∂T ln SðTÞ,
where SðTÞ≡ 1 − ∫ T

0 rðtÞdt is the probability of a career surviving
until time T. The exponential pdf of termination times,

rðTÞ ¼ xc−1 exp½−ðT∕xcÞ�; [4]

has a constant hazard rate HðTÞ ¼ 1
xc
and thus assumes that ex-

ternal hazards are equally distributed over time. Substituting
Eq. 4 into Eq. 3 and computing the integral, we obtain

PðxÞ ¼ gðxÞx−1
xc½1xc þ gðxÞ�x ≈

1

gðxÞxc
e−

x
gðxÞxc : [5]

Depending on the functional form of gðxÞ, the theoretical predic-
tion given by Eq. 5 is much different than the null model in which
there is no Matthew effect, corresponding to a constant progress
rate gðxÞ≡ λ for each individual.

Using the functional form given by Eq. 2, we obtain a truncated
power law for the case of concave α < 1, resulting in a PðxÞ that
can be approximated by two regimes,

PðxÞ ∝
�
x−α x≲ xc
e−ðx∕xcÞ x≳ xc:

[6]

Hence, our model predicts a remarkable statistical regularity that
bridges the gap between very short and very long careers as a re-
sult of the concavity of gðxÞ in early career development.

In the case of constant progress rate gðxÞ≡ λ, the pdf PðxÞ is
exponential with a characteristic career longevity lc ¼ λxc. In SI
Appendix we further consider the null model where the constant
progress rate λi of individual i is distributed over a given range.
We find again that PðxÞ is exponential, which is quite different
from the prediction given by 6. Furthermore, we also develop
a second model where the progress rate depends on a generic
career trajectory gðtÞ that peaks at a given year corresponding
to the height of an individual’s talent or creativity. We solve
the time-dependent model in SI Appendix for a simple form of
gðtÞ, which results in a PðxÞ that is peaked around the maximum
career length, in contrast to our empirical findings.

In order to account for aging effects, another variation of this
model could include a time-dependent HðTÞ. To incorporate a
nonconstant HðTÞ one can use a more general Weibull distribu-
tion for the pdf of termination times

rðTÞ≡ γ

xc

�
T
xc

�
γ−1

exp
�
−
�
T
xc

�
γ
�
; [7]

where γ ¼ 1 corresponds to the exponential case (15). In general,
the hazard rate of the Weibull distribution is HðTÞ ∝ Tγ−1, where
γ > 1 corresponds to an increasing hazard rate and γ < 1 corre-
sponds to a decreasing hazard rate. We note that the time scale xc
appears both in the definition of gðxÞ in Eq. 2 as a crossover be-
tween early and advanced career progress rates, and also as the
time scale over which the probability of survival SðTÞ approaches
0 in the case of γ ≥ 1 in Eq. 4. It is the appearance of the quantity
xc in the definition of SðTÞ that results in a finite exponential
cutoff to the longevity distributions. Although the time scales de-
fined in gðxÞ and SðTÞ could be different, we observe only one
time scale in the empirical data. Hence we assume here for sim-
plicity that the two time scales are approximately equal.

From the theoretical curves plotted in Fig. 2, Inset, one ob-
serves that αc ¼ 1 is a special crossover value for PðxÞ, between
a bimodal PðxÞ for α > 1, and a monotonically decreasing PðxÞ
for α < 1. This crossover is due to the small x behavior of the
progress rate gðxÞ ≈ xα for x < xc, which serves as a “potential
barrier” that a young career must overcome. The width xw of
the potential barrier, defined such that gðxwÞ ¼ 1∕xc, scales as
xw∕xc ≈ x−1∕αc . Hence, the value αc ¼ 1 separates convex progress
(α > 1) from concave progress (α < 1) in early career devel-
opment.

In the case α > 1, one class of careers is stunted by the barrier,
whereas the other class of careers excels, resulting in a bimodal
PðxÞ. In the case α < 1, it is relatively easier to make progress
in the beginning of the career. It has been shown in ref. 16 that
random stopping times can explain power-law pdfs in many sto-
chastic systems that arise in the natural and social sciences, with
predicted exponent values α ≥ 1. Our model provides a mechan-
ism that predicts truncated power-law pdfs with scaling exponents
α ≤ 1, where the truncation is a requirement of normalization.
Moreover, our model provides a quantitative meaning for the
power-law exponent α characterizing the probability density
function.

Empirical Evidence
The two essential ingredients of our stochastic model, namely
random forward progress and random termination times corre-
sponding to a stochastic hazard rate, are general and should
apply in principle to many competitive professions. The indivi-
duals, some who are championed as legends and stars, are judged
by their performances, usually on the basis of measurable metrics
for longevity, success, and prowess, which vary between pro-
fessions.

In scientific arenas, and in general, the metric for career posi-
tion is difficult to define, even though there are many conceivable
metrics for career longevity and success (17–19). We compare
author longevity within individual journals, which mimic an arena
for competition, each with established review standards that are
related to the journal prestige. As a first approximation, the ca-
reer longevity of a given author within a particular high-impact
journal can be roughly measured as the duration between an
author’s first and last paper in that journal, reflecting his or her
ability to produce at the top tiers of science. This metric for long-
evity should not be confused with the career length of the scien-
tist, which is probably longer than the career longevity within any
particular journal. Following standard lifetime data analysis
methods (20), we collect “completed” careers from our dataset.
The publication data we collect for each journal begins at year
Y 0 ¼ 1958 for all journals except for CELL (for which
Y 0 ¼ 1974), and ends at year Y f ¼ 2008.

For each scientific career i, we calculate hΔτii, the average time
between publications in a particular journal. A journal career that
begins with a publication in year yi;0 and ends with a publication in
year yi;f is considered “complete” if the following two criteria are
met: (I) yi;f ≤ Y f − hΔτii and (ii) yi;0 ≥ Y 0 þ hΔτii. These criteria
help eliminate from our analysis incomplete careers that possibly
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began before Y 0 or ended after Y f . We then estimate the career
length within journal j as Li;j ¼ yi;f − yi;0 þ 1, with a year allotted
for publication time, and do not consider careers with yi;f ¼ yi;0.
This reduces the size of each journal dataset by approximately
25% (for a description of data and methods, see SI Appendix
(Sec. I and Table S1)).

In ref. 21 we further analyze the scientific careers of the
authors in these six journal databases. In order to account for
time-dependent and discipline-dependent factors that affect both
success and productivity measures, we develop normalized
metrics for career success (“citation shares”) and productivity
(“papers shares”). We also find further evidence of the Matthew
effect by analyzing the interpublication time τðxÞ that decreases
with increasing publication x for individual authors within a
given journal. Thus, we conclude that publication in a particular
journal is facilitated by previous publications in the journal,
corresponding to an increasing reputation within the given jour-
nal (22). Several other metrics for quantifying career success (18,
23), such as the h index (17) and generalizations (24, 25), along
with methods for removing time- and discipline-dependent cita-
tion factors (26) have been analyzed in the spirit of developing
unbiased rating systems for scientific achievement.

In athletic arenas, the metrics for career position, success, and
success rate are easier to define (27). In general, a career position
in sports can be measured by the cumulative number of in-game
opportunities a player has obtained. In baseball, we define an
opportunity as an “at bat” (AB) for batters and an “inning pitched
in outs” (IPO) for pitchers, whereas in basketball and soccer, we
define the metrics for opportunity as “minutes played” and
“games played,” respectively.

In Fig. 3 we plot the distributions of career longevity for 20,000
professional athletes in four distinct leagues and roughly 400,000

scientific careers in six distinct journals (data are publicly avail-
able at refs. 28 and 29). We observe universal statistical regularity
corresponding to α < 1 in the career longevity distributions
for three distinct sports and several high-impact journals (see
Table S2 for a summary of least squares parameters). The dispar-
ity in career lengths indicates that it is very difficult to sustain a
competitive professional career, with most individuals making
their debut and finale over a relatively short time interval.
For instance, we find that roughly 3% of baseball pitchers have
a career length in the MLB of one inning pitched or less, whereas
we also find that roughly 3% of basketball players have a career
length in the NBA of less than 12 in-game minutes. Yet, despite
the relatively high frequency of short careers, there are also in-
stances of careers that are extremely long, corresponding to
roughly the entire productive lifetime of the individual. The
statistical regularity that bridges the gap between the “one-hit
wonders” and the “iron horses” indicates that there are careers
of every length between the minimum and the maximum career
length, with a smooth and monotonic relation quantifying the re-
lative frequencies of the careers in between. Furthermore, we find
that stellar careers are not anomalies, but rather, as predicted by
our model, the outcome of the cumulative advantage in compe-
titive professions. The properties of the cumulative advantage
process are also compounded by an individual’s “sacred spark”
factor (2) that accounts for his or her relative level of talent
and/or professional drive, which also factors into career longevity.

The exponential cutoff in PðxÞ that follows after the crossover
value xc arises from the finite human lifetime and is reminiscent
of any real system where there are finite-size effects that domi-
nate the asymptotic behavior. The scaling regime is less pro-
nounced in the curves for journal longevity. This results from
the granularity of our dataset, which records publications by year
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Fig. 3. Extremely right-skewed pdfs PðxÞ of career longev-
ity in several high-impact scientific journals and several ma-
jor sports leagues. We analyze data from American baseball
(Major League Baseball) over the 84-year period 1920–2004,
Korean Baseball (Korean Professional Baseball League)
over the 25-year period 1982–2007, American basketball
(National Basketball Association and American Basketball
Association) over the 56-year period 1946–2004, and Eng-
lish soccer (Premier League) over the 15-year period
1992–2007, and several scientific journals over the 42-year
period 1958–2000. Solid curves represent least-squares best-
fit functions corresponding to the functional form in Eq. 5.
(A) Baseball fielder longevity measured in at-bats (pitchers
excluded): we find α ≈ 0.77, xc ≈ 2;500 (Korea) and
xc ≈ 5;000 (United States). (B) Basketball longevity mea-
sured in minutes played: we find α ≈ 0.63, xc ≈ 21;000 min-
utes. (C) Baseball pitcher longevity measured in IPO: we find
α ≈ 0.71, xc ≈ 2;800 (Korea), and xc ≈ 3;400 (United States).
(D) Soccer longevity measured in games played: we find
α ≈ 0.55, xc ≈ 140 games. (E and F) High-impact journals ex-
hibit similar longevity distributions for the “journal career
length,” which we define as the duration between an
author’s first and last paper in a particular journal. Devia-
tions occur for long careers due to dataset limitations
(for comparison, least-square fits are plotted in Ewith para-
meters α ≈ 0.40, xc ¼ 9 years and in F with parameters
α ≈ 0.10, xc ¼ 11 years). These statistics are summarized in
SI Appendix (Table S2).
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only. A finer time resolution (e.g., months between first and last
publication) would likely reveal a larger scaling regime. However,
regardless of the scale, one observes the salient feature of there
being a large disparity between the frequency of long and short
careers.

In science, an author’s success metric can be quantified by the
total number of papers or citations in a particular journal.
Publication careers have the important property that the impact
of scientific work is time dependent. Where many papers become
outdated as the scientific body of knowledge grows, there are in-
stances where “late-blooming” papers make significant impact a
considerable time after publication (30). Accounting for the
time-dependent properties of citation counts, in ref. 21 we find
that the pdf of total number of normalized citation shares for a
particular author in a single journal over his or her entire career
follows the asymptotic power law PðzÞdz ∼ z−2.5dz for the six jour-
nals analyzed here.

In sports, however, career accomplishments do not wax or
wane with time. In Fig. 4 we plot the pdf PðzÞ of career success
z for common metrics in baseball and basketball. Remarkably, the
power-law regime for PðzÞ is governed by a scaling exponent that
is approximately equal to the scaling exponent of the longevity
pdf PðxÞ. In SI Appendix, we show that the pdf PðzÞ of career
success z follows directly from a simple Mellin convolution of
the pdf PðxÞ for longevity x and the pdf PðyÞ of prowess y.

The Gamma pdf PðxÞ ¼ Gammaðx; α;xcÞ ∝ x−αe−x∕xc is com-
monly employed in statistical modeling and can be used as an
approximate form of 6. One advantage to the Gamma pdf is that
it can be inverted in order to study extreme statistics correspond-
ing to rare stellar careers. In SI Appendix and in ref. 31, we further
analyze the relationship between the extreme statistics of the
Gamma pdf and the selection processes for Hall of Fame mu-

seums. In general, the statistical regularity of these distributions
allows one to establish robust milestones, which could be used for
setting the corresponding financial rewards and pay scales, within
a particular profession. Interestingly, we also find in ref. 31 that
the pdfs for career success in MLB are stationary even if we quan-
titatively remove the time-dependent factors that can relatively
inflate or deflate measures for success. This stationarity implies
that the right-skewed statistical regularity we observe in PðzÞ
arises from both the intrinsic talent and the longevity of profes-
sional athletes and does not result from changes in technology,
economic factors, training improvements, etc. In the case of
MLB, this detrending method allows one to compare the
accomplishments of baseball players across historical eras and,
in particular, can help to interpret and quantify the relative
achievements of players from the recent “steroids era.”

In summary, a wealth of data recording various facets of
social phenomena has become available in recent years, allowing
scientists to search for universal laws that emerge from human
interactions (32). Theoretical models of social dynamics, employ-
ing methods from statistical physics, have provided significant
insight into the various mechanisms that can lead to emergent
phenomena (33). An important lesson from complex system
theory is that oftentimes the details of the underlying mechanism
do not affect the macroscopic emergent phenomena. For baseball
players in Korea and the United States, we observe remarkable
similarity between the pdfs of career longevity (Fig. 3) and the
pdfs of prowess (Fig. S1), despite these players belonging to com-
pletely distinct leagues. This fact is consistent with the hypothesis
that universal stochastic forces govern career development in
science, professional sports, and presumably in a large class of
competitive professions.

In this paper we demonstrate strong empirical evidence for
universal statistical laws that describe career progress in compe-
titive professions. Universal phenomena also occur in many
other social complex systems where regularities arise despite
the complexity of the human interactions and the spatiotemporal
dynamics (34–47). Stemming from the simplicity of the assump-
tions, the stochastic model developed in this paper could concei-
vably apply elsewhere in society, such as the duration of both
platonic and romantic friendships. Indeed, long relationships
are harder to break than short ones, with random factors inevi-
tably terminating them forever. Also, supporting evidence for the
applicability of this model can be found in the similar truncated
power-law pdfs with α < 1, which describe the dynamics of
connecting within online social networks (43).

Appendix: The Spatial Poisson Distribution
The master equation for the evolution of Pðx;NÞ is

Pðxþ 1;N þ 1Þ − Pðxþ 1;NÞ ¼ f ðxÞPðx;NÞ − f ðxþ 1ÞPðxþ 1;NÞ;
[8]

with initial condition

Pðxþ 1;0Þ ¼ δx;0: [9]

Here f ðxÞ represents the probability that an employee obtains
another future opportunity given his or her resume at career
position x. We next write the discrete-time discrete-space master
equation in the continuous-time discrete-space form

∂Pðxþ 1;tÞ
∂t

¼ gðxÞPðx;tÞ − gðxþ 1ÞPðxþ 1;tÞ; [10]

where gðxÞ ¼ f ðxÞ∕δt and t ¼ Nδt (for an extensive discussion of
master equation formalism, see ref. 48). Taking the Laplace trans-
form of both sides, one obtains
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Fig. 4. Probability density function PðzÞ of common metrics for career
success, z. Solid curves represent best-fit functions corresponding to Eq. 5.
(A) Career batting statistics in American baseball: xHitsc ≈ 1;200, xRBIc ≈ 600,
(RBI = runs batted in). (B) Career statistics in American basketball: xPointsc ≈
8;000, xReboundsc ≈ 3;500. For clarity, the top set of data in each plot has been
multiplied by a constant factor of four in order to separate overlapping data.

22 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1016733108 Petersen et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016733108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016733108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016733108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016733108/-/DCSupplemental/Appendix.pdf


sPðxþ 1;sÞ − Pðxþ 1;t ¼ 0Þ ¼ gðxÞPðx;sÞ − gðxþ 1ÞPðxþ 1;sÞ:
[11]

From the initial condition in Eq. 9, we see that the second term
above vanishes for x ≥ 1. Solving for Pðxþ 1;sÞ we obtain the re-
currence equation

Pðxþ 1;sÞ ¼ gðxÞ
sþ gðxþ 1ÞPðx;sÞ: [12]

If the first derivative d
dx gðxÞ is relatively small, we can replace

gðxþ 1Þ with gðxÞ in the equation above. Then, one can verify
the ansatz

Pðx;sÞ ¼ gðxÞx−1
½sþ gðxÞ�x ; [13]

which is the Laplace transform of the spatial Poisson distribution
P½x;t; λ ¼ gðxÞ� as in ref. 49. The Laplace transform is defined as
Lff ðtÞg ¼ f ðsÞ ¼ ∫ ∞

0 dtf ðtÞe−st. Inverting the transform we obtain

Pðx;tÞ ¼ e−gðxÞt½gðxÞt�x−1
ðx − 1Þ! : [14]

Hence, Eq. 14 corresponds to the pdf of final career position x
observed at a particular time t. Because not all careers last the
same length of time, we define the time t≡ T to be a conditional
stopping time that characterizes a given subset of careers that
lasted a time duration T. We average over a distribution rðTÞ
of stopping times to obtain the empirical longevity pdf PðxÞ in
Eq. 5, which is equivalent to Eq. 13, so that PðxÞ is comprised
of careers with varying T.
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I. DATA AND METHODS

The publication data analyzed in this paper was downloaded from ISI Web of Knowledge in May 2009. We restrict our
analysis to publications termed as “Articles”, which excludes reviews, letters to editor, corrections, etc. Each article summary
includes a field for the author identification consisting of a last name and first and middle initial (eg. the author name John M.
Doe would be stored as “Doe, J” or “Doe, JM” depending on the author’s designation). From these fields, we collect the career
works of individual authors within a particular journal together, and analyze metrics for career longevity and success.

For author i we combine all articles in journal j for which he/she was listed as coauthor. The total number of papers for author
i in journal j over the 50-year period is ni. Following methods from lifetime statistics [S1], we use a standard method to isolate
“completed” careers from our data set which begins at year Y0 and ends at year Yf . For each author i, we calculate 〈∆τi〉,
the average time ∆τi between successive publications in a particular journal. A career which begins with the first recorded
publication in year yi,0 and ends with the final recorded publication in year yi,f is considered “complete”, if the following two
criteria are met:

(1) yi,f ≤ Yf − 〈∆τi〉

(2) yi,0 ≥ Y0 + 〈∆τi〉.

This method estimates that the career begins in year yi,0−〈∆τi〉 and ends in year yi,f + 〈∆τi〉. If either the estimated beginning
or ending year do not lie within the range of the data base, than we discount the career as incomplete to first approximation.
Statistically, this means that there is a significant probability that this author published before Y0 or will publish after Yf . We
then estimate the career length within journal j as Li,j = yi,f − yi,0 + 1, and do not consider careers with yi,f = yi,0. This
reduces the size of the data set by approximately 25% (compare the raw data set sizes N to the pruned data set size N∗ in Table
S1).

There are several potential sources of systematic error in the use of this database:

(i) Degenerate names→ increases career totals. Radicchi et al. [S2] observe that this method of concatenated author ID leads
to a pdf P (d) of degeneracy d which scales as P (d) ∼ d−3.

(ii) Authors using middle initials in some but not all instances of publication→ decreases career totals.

(iii) A mid-career change of last name→ decreases career totals.

(iv) Sampling bias due to finite time period. Recent young careers are biased toward short careers. Long careers located
towards the beginning Y0 or end Yf of the database are biased towards short careers.

II. A ROBUST METHOD FOR CLASSIFYING CAREERS

Professional sports leagues are geared around annual championships that celebrate the accomplishments of teams over a whole
season. On a player level, professional sports leagues annually induct retired players into “halls of fame” in order to celebrate
and honor stellar careers. Induction immediately secures an eternal legacy for those that are chosen. However, there is no
standard method for inducting players into a Hall of Fame, with subjective and political factors affecting the induction process.
In [S5] we quantitatively normalize seasonal statistics so to remove time-dependent factors that influence success. This provides
a framework for comparing career statistics across historical eras.
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In this section we propose a generic and robust method for measuring careers. We find that the pdf for career longevity can
be approximated by the gamma distribution,

Gamma(x;α, xc) =
x−αe−x/xc

x1−α
c Γ(1− α)

, (S1)

with moments 〈xn〉 = xnc
Γ(1−α+n)

Γ(1−α) , where we restrict our considerations to the case of α ≤ 1, with xc >> 1. This distribution
allows us to calculate the extreme value x∗ such that only f percentage of players exceed this value according to the pdf P (x),

f =
∫ ∞
x∗

x−αe−x/xc

x1−α
c Γ(1− α)

dx =
Γ[1− α, x

∗

xc
]

Γ(1− α)
= Q[1− α, x

∗

xc
] , (S2)

where Γ[1 − α, x
∗

xc
] is the incomplete gamma function and Q[1 − α, x

∗

xc
] is the regularized gamma function. This function can

be easily inverted numerically using computer packages, e.g. Mathematica, which results in the statistical benchmark

x∗ = xc Q
−1[1− α, f ]. (S3)

In [S5] we use the maximum likelihood estimator (MLE) for the Gamma pdf to estimate the parameters α and xc for each
pdf. The values we obtain using MLE are systematically smaller for α values and for xc values, but the relative differences are
negligible.

In Table S2 we provide statistical benchmarks x∗ corresponding to career longevity and career metrics for several sports. For
the calculation of each x∗ we use the parameter values α and xc calculated from a least-squares fit to the empirical pdf P (x)
using the functional form of Eq. [5], and the significance level value f calculated from historical induction frequencies in the
American Baseball Hall of Fame (HOF) in Cooperstown, NY USA. The baseball HOF has inducted 276 players out of the 14,644
players that exist in Sean Lahman’s baseball database between the years 1879-2002, which corresponds to a fraction f ≡ 0.019.
It is interesting to note that the last column, x

∗

σ ≡ β ≈ 3.9 for all the gamma distributions analyzed. This approximation is a
consequence of the universal scaling form of the gamma function Gamma(x) ≡ U(x/xc), where the standard deviation σ of
the Gamma pdf has the simple relation σ = xc

√
1− α. Hence, for a given f and α, the ratio

x∗/σ =
Q−1[1− α, f ]√

1− α
(S4)

is independent of xc. Furthermore, this approximation is valid for all statistics in MLB since α is approximately the same for all
pdfs analyzed. Thus, the value x∗ ≈ 4σ is a robust approximation for determining if a player’s career is stellar at the f ≈ 0.02
significance level. The highly celebrated milestone of 3,000 hits in baseball corresponds to the value x∗ = 1.26 βσhits. Only 27
players have exceeded this benchmark in their professional careers, while only 86 have exceeded the arbitrary 2,500 benchmark.
Hence, it makes sense to set the benchmark for all milestones at a value of x∗ = βσ corresponding to each distribution of career
metrics.

We check for consistency by comparing the extreme threshold value x∗ calculated using the gamma distribution with the value
x∗d derived from the database of career statistics. Referring to the actual set of all baseball players from 1871-2006, to achieve
a fame value fd ≈ 0.019 with respect to hits, one should set the statistical benchmark at x∗d ≈ 2250, which account for 146
players (this assumes that approximately half of all baseball players are not pitchers, who we exclude from this calculation of
fd). The value of x∗d ≈ 2250 agrees well with the value calculated from the gamma distribution, x∗ ≈ 2366. Of these 146
players with career hit tallies greater than 2250, there are 126 players who have been eligible for at least one induction round,
and 82 of these players have been successfully inducted into the American baseball hall of fame. Thus, a player with a career hit
tally above x∗ ≈ x∗d has a 65% chance of being accepted, based on just those merits alone. Repeating the same procedure for
career strikeouts obtained by pitchers in baseball we obtain the milestone value x∗d ≈ 1525 strikeouts, and for career points in
basketball we obtain the value x∗d ≈ 16, 300 points. Nevertheless, the overall career must be taken into account, which raises the
bar, and accounts for the less than perfect success rate of being voted into a hall of fame, given that a player has had a statistically
stellar career in one statistical category.

III. CAREER METRICS

In Fig. 4 we plot common career metrics for success in American baseball and American basketball. Note that the exponent
α for the pdf P (z) of total career successes z is approximately equal to the exponent α for the pdf P (x) of career longevity x
(see Table S2). In this section, we provide a simple explanation for the similarity between the power law exponent for career
longevity (Fig. 2) and the power law exponent for career success (Fig. 4).
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Consider a distribution of longevity that is power law distributed, P (x) ∼ x−α for the entire range 1 ≤ x ≤ xc < ∞. The
cutoff xc represents the finiteness of human longevity, accounted for by the exponential decay in Eq. [7]. Also, assume that
the prowess y has a pdf P (y) which is characterized by a mean and standard deviation, which represent the talent level among
professionals (see Ref. [S3] for the corresponding prowess distributions in major league baseball). In the first possible case, the
distribution is right-skewed and approximately exponential (as in the case of home-runs). In other cases, the distributions are
essentially Gaussian. Regardless of the distribution type, the prowess pdfs P (y) are confined to the domain δ ≤ y ≤ 1, where
δ > 0.

Assume that in any given appearance, a person can apply his/her natural prowess towards achieving a success, independent
of past success. Although prowess is refined over time, this should not substantially alter our demonstration. Since not all
professionals have the same career length, the career totals are in fact a combination of these two distributions as in their
product. Then the career success total z = xy has the distribution,

P (z = xy) =
∫ ∫

dy dx P (y)P (x)δ(xy − z)

=
∫ ∫

dy dxP (y)P (x)δ(x(y − z/x))

=
∫
dx P (

z

x
)P (x)

1
x
. (S5)

This integral has three domains (Ref. [S4]),

P (z) ∝


∫ z/δ

1
dx P ( zx )x−(α+1) , δ < z < 1∫ z/δ

z
dx P ( zx )x−(α+1) , 1 < z < xcδ∫ xc

z
dx P ( zx )x−(α+1) , xcδ < z < xc .

The first regime δ < z < 1 is irrelevant, and is not observed since z is discrete in the cases analyzed here. For the first case of an
exponentially distributed prowess,

P (z) ∝
{

z−α , 1 < z < xc δ
z−α exp(−z/λxc) , xcδ < z < xc .

(S6)

In Ref. [S3] we mainly observe the exponential tail in the home-run distribution, as the above form suggests in the regime
xcδ < z < xc, resulting from δ ≈ 0 for the right-skewed home-run prowess distribution. However, in the case for a normally
distributed prowess, the power law behavior of the longevity distribution is maintained for large values into the career success
distribution P (z), as xcδ > 103.

P (z) ∝
{

z−α , 1 < z < xcδ

z−αe−( z
σxc

)2/2 , xcδ < z < xc .
(S7)

Thus, the main result of this demonstration is that the distribution P (z) maintains the power law exponent α of the career-
longevity distribution, P (x), when the prowess is distributed with a characteristic mean and standard deviation. This result is
also demonstrated with the simplification of representing the prowess distribution P (y) as an essentially uniform distribution
over a reasonable domain of y, which simplifies the integral in Eq. (S5) while maintaining the inherent power law structure.

In Fig. S1 we plot the prowess distributions that correspond to the career success distributions plotted in Fig. 4. It is interesting
that the competition level based on the distributions of prowess indicates that Korean and American baseball are nearly equiva-
lent. Also, note that the prowess distributions for rebounds per minute are bimodal, as the positions of players in basketball are
more specialized.

IV. A NULL MODEL WITHOUT THE MATTHEW EFFECT

In this section, we compare the predictions of our theoretical model with the predictions of a theoretical model which does
not incorporate the Matthew effect. Since the Matthew effect implies that the progress rate g(x) increase with career position x,
we analyze the more simple model where for each individual i the progress rate gi(x) is constant,

gi(x) ≡ λi . (S8)

The solution to the conditional longevity pdf P (x|λi) is still given by Eq. [5], taking the form

P (x|λi) =
λx−1
i

xc( 1
xc

+ λi)x
≈ 1
λixc

e
− x
λixc , (S9)
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FIG. S1: Probability density functions of seasonal prowess for several career metrics. Each pdf is normally distributed, except for the bimodal
curve for rebound prowess, NBA (Reb.). The bimodal distribution for Rebound prowess reflects the specialization in player positions in the
sport of basketball. Furthermore, note the remarkable similarity in the distributions between American (MLB) and Korean (KBB) baseball
players.

which is an exponential pdf, with a characteristic career length lc ≡ λixc. Hence, this null model corresponds to a career
progress mechanism wherein intrinsic ability, which is incorporated into the relative value of λi, is the dominant factor. In order
to calculate the longevity pdf P (x) which incorporates a distribution of intrinsic abilities across the population of individuals,
we average over the conditional pdfs using a pdf P (λ) that we assume is well-defined by a mean λ and standard deviation σ,
consistent with what we observe for the seasonal prowess pdfs shown in Fig. S1. In the case of P (λ) = Normal(λ, σ), then

P (x) =
∫ 1

0

P (λ)P (x|λ)dλ ≡
∫ 1

0

e−(λ−λ)2/2σ2

√
2πσ2

P (x|λ)dλ . (S10)

For the sake of providing an analytic result, we replace P (λ) by a uniform distribution,

P (λ) ≈
{

0 , |λ− λ| > 2σ
1

4σ , |λ− λ| ≤ 2σ ,
(S11)

which does not change the overall result. The integral in Eq. (S10) then becomes,

P (x) ≈ 1
4σ

∫ λ+2σ

λ−2σ

dλ

λxc
e−

x
λxc =

1
4σxc

[Γ(0,
x/xc

λ+ 2σ
)− Γ(0,

x/xc

λ− 2σ
)] ≈ e−x/λxc , (S12)

for 1 > λ > 2σ, where the last approximation corresponds to a relatively small σ. Thus, we find that even with a reasonable
dispersion in the constant progress rates λ in a population of individuals, the pdf P (x) is still exponential. Hence, our theoretical
model cannot explain the empirical non-exponential form of P (x) unless we incorporate the Matthew effect using g(x) that
increase with x.
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FIG. S2: A graphical illustration of a hypothetical career progress trajectory g(t) = a sech[(t − t∗)/w] (dashed red line), with amplitude
a = 0.9, peak time t∗ = 2500, and width w = 1000, in arbitrary time units. As an approximation, in order to provide an analytic solution to
the model, we approximate g(t) by a uniform plateau function g(t) ≈ γ[H(t− t1)−H(t− t2)] (solid red line), as in Eq. (S18), where H(t)
is the standard Heavyside step function.

V. A NULL MODEL WITH TIME-DEPENDENT CAREER TRAJECTORY

In this section, we develop a career progress model where the progress rate g(t) is time-dependent instead of being position-
dependent g(x), as in the previous sections. We use a time dependent career trajectory to capture the non-monotonic peaks in
key productivity factors, e.g. creativity and talent, that are observed for various creative careers [S6]. In Fig. S2 we show a
generic g(t) which peaks at a variable time t∗, and has an amplitude a related to the individual’s underlying talent. The regime
in which g(t) is increasing reflects the learning curve associated with a difficult endeavor, whereas the regime in which g(t) is
decreasing reflects e.g. aging factors and the upper limit to the finite resources which facilitate improvement.

In analogy to Eq. [10], the master equation for the evolution of career progress is

∂P (x+ 1, t)
∂t

= g(t)P (x, t)− g(t)P (x+ 1, t) , (S13)

where g(t) is an arbitrary function which quantifies the forward progress rate at time t. To solve for P (x, t), we define the
“integrated time” τ given by,

τ ≡
∫ t

0

dt′g(t′) . (S14)

Hence, we write Eq. (S13) as,

∂P (x+ 1, τ)
∂τ

= P (x, τ)− P (x+ 1, τ) , (S15)

which along with the initial condition P (x+ 1, τ) = P (x+ 1, t) = δx,0, has the solution,

P (x, τ) =
e−ττx−1

(x− 1)!
. (S16)

As previously described in the main text, we obtain the unconditional probability density function P (x) of career longevity x
from the conditional pdf P (x|T ) = P (x, t ≡ T ) using a pdf of random termination times r(T ),

P (x) =
∫ ∞

0

P (x|T )r(T )dT , (S17)

where we use the exponential pdf r(T ) = x−1
c exp[−(T/xc)] for the demonstration of a career termination model with constant

hazard rate, corresponding to the Laplace transform of P (x|T ) in the variable s = 1/xc. The integral in Eq. (S17) is typically
difficult to calculate given the time-dependence of the progress rate.
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FIG. S3: Exact solutions for P (x) with time-dependent career trajectory g(t) defined in Eq. (S21), for the case of t1 = 0, xc = t2, and
γxc = {1000, 2000, 3000, 4000}.

Simonton [S6] finds that the annual productivity of creative products or ideas has a trajectory that is peaked around a given
characteristic time t∗ into a given profession. This peak is determined by two model parameters quantifying “ideation” and
“elaboration” rates, and two additional parameters quantifying initial creative potential and the age at career onset. To demon-
strate the solution to our null model, we use an simplified functional form for g(t) corresponding to a uniform distribution over
the interval t ∈ [t1, t2],

g(t) ≈

 0 , t < t1
γ , t ∈ [t1, t2]
0 , t > t2 ,

(S18)

where t1 is the “breakout” year of the career, t2 corresponds to the year in which the individual’s productivity declines rapidly,
and 0 ≤ γ ≤ 1 is the intrinsic potential or talent of the given individual, and the time duration t2 − t1 is the precocity of the
given individual. Hence, the corresponding integrated time τ is given by

τ ≡
∫ t

0

dt′g(t′) =

 0 , t < t1
γ(t− t1) , t ∈ [t1, t2]
γ(t2 − t1) , t > t2 .

(S19)

Then Eq. (S17) becomes,

P (x) =
∫ t2

t1

dTe−γ(T−t1) [γ(T − t1)]x−1

(x− 1)!
x−1
c e−T/xc +

∫ ∞
t2

dTe−γ(t2−t1) [γ(t2 − t1)]x−1

(x− 1)!
x−1
c e−T/xc

=
e−t1/xc

γxc

( 1
1 + 1/γxc

)x[
1− Γ(x, γ(t2 − t1))

Γ(x)

]
+ e−γ(t2−t1) [γ(t2 − t1)]x−1

Γ(x)
e−t2/xc . (S20)

In the limit t1 → 0 and with t2 ≡ xc, the functional form of P (x) has only one parameter, the product γxc � 1, so that

P (x) =
1
γxc

[
1− Γ(x, γxc)

Γ(x)

]
+ e−(γxc+1) [γxc]x−1

Γ(x)
(S21)

In Fig. S3 we plot P (x) for several values of the parameter γxc, where each curve demonstrates two common features, (i)
a uniform distribution of career longevity x for 1 ≤ x . γxc, and (ii) a sharp peak that is centered around x = γxc which
corresponds to approximately 10% of careers which are stellar. Averaging the P (x) over a distribution P (γ) of talent values γ
that is approximately normal, as in the case of the prowess pdfs in Fig. S1, would result in a qualitatively similar P (x) which is
peaked around the value x ≈ γxc. The resulting distribution would be essentially “bimodal”, with one mode corresponding to
“stellar” careers distributed for x ≈ γxc, and a mode corresponding to less-substantial careers for x . γxc, just as in the case of
the convex progress rate for α > 1, both of which do not agree with the statistical regularity in the empirical data (Fig. 3) which
occurs over several orders of magnitude.

In our model, we assume that termination is due to external factors. A more complex model might include the possibility that
termination is due to endogenous factors, e.g. a reduced level of productivity below a predetermined employment threshold at
any given time. This type of endogenous termination is more difficult to model, since it correlates the progress δx/δt with the
termination probability r(T ), whereas above they are assumed to evolve independently. We leave this more complex model as
an open avenue of research.
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TABLE S1: Summary of data sets for each journal. Total number N of unique (but possibly degenerate) name identifications. N∗ is the
number of unique name identifications after pruning the data set of incomplete careers.

Journal Years Articles Authors, N N∗

Nature 1958-2008 65,709 130,596 94,221

Science 1958-2008 48,169 109,519 82,181

PNAS 1958-2008 84,520 182,761 118,757

PRL 1958-2008 85,316 112,660 72,102

CELL 1974-2008 11,078 31,918 23,060

NEJM 1958-2008 17,088 66,834 49,341

TABLE S2: Data summary for the pdfs of career statistical metrics. The values α and xc are determined for each career longevity pdf P (x)
and each career success pdf P (z) via least-squares method using the functional form given by Eq. [5]. We calculate the Gamma pdf average
〈x〉, the standard deviation σ, and the extreme threshold value x∗ at the f = 0.019 significance level using the corresponding values of α and
xc. The units for each metric are indicated in parenthesis alongside the league in the first column.

For publication distributions, the career longevity metric x is measured in years.
Least-square values Gamma pdf valuesProfessional League,

(success metric) α xc 〈x〉 σ x∗ x∗

〈x〉
x∗

σ

MLB, (H) 0.76 ± 0.02 1240 ± 150 300 610 2400 7.8 3.9

MLB, (RBI) 0.76 ± 0.02 570 ± 80 140 280 1100 7.8 3.9

NBA, (Pts) 0.69 ± 0.02 7840 ± 760 2400 4400 17000 7.0 3.9

NBA, (Reb) 0.69 ± 0.02 3500 ± 130 1100 2000 7600 6.9 3.9

Least-square values Gamma pdf valuesProfessional League,

(opportunities) α xc 〈x〉 σ x∗ x∗

〈x〉
x∗

σ

KBB, (AB) 0.78 ± 0.02 2600 ± 320 580 1200 4700 8.2 3.9

MLB, (AB) 0.77 ± 0.02 5300 ± 870 1200 2500 9700 8.1 3.9

MLB, (IPO) 0.72 ± 0.02 3400 ± 240 950 1800 6900 7.3 3.9

KBB, (IPO) 0.69 ± 0.02 2800 ± 160 840 1500 5900 7.0 3.9

NBA, (Min) 0.64 ± 0.02 20600 ± 1900 7700 12600 48800 6.4 3.9

UK, (G) 0.56 ± 0.02 138 ± 14 61 92 360 5.8 3.9

Least-square valuesAcademic Journal,

(career length in years) α xc

Nature 0.38 ± 0.03 9.1 ± 0.2

PNAS 0.30 ± 0.02 9.8 ± 0.2

Science 0.40 ± 0.02 8.7 ± 0.2

CELL 0.36 ± 0.05 6.9 ± 0.2

NEJM 0.10 ± 0.02 10.7 ± 0.2

PRL 0.31 ± 0.04 9.8 ± 0.3
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